JP2009031233A - Multi-channel qcm sensor - Google Patents

Multi-channel qcm sensor Download PDF

Info

Publication number
JP2009031233A
JP2009031233A JP2007198243A JP2007198243A JP2009031233A JP 2009031233 A JP2009031233 A JP 2009031233A JP 2007198243 A JP2007198243 A JP 2007198243A JP 2007198243 A JP2007198243 A JP 2007198243A JP 2009031233 A JP2009031233 A JP 2009031233A
Authority
JP
Japan
Prior art keywords
channel
qcm sensor
channels
oscillation circuit
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007198243A
Other languages
Japanese (ja)
Inventor
Takutaka Noguchi
卓孝 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007198243A priority Critical patent/JP2009031233A/en
Publication of JP2009031233A publication Critical patent/JP2009031233A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a simultaneous measurement to be carried out stably by suppressing mutual interferences between channels. <P>SOLUTION: A grounded type oscillation circuit, which oscillates in such the state that one electrode of its oscillator X is grounded, is adopted as an oscillation circuit to be applied to a multi-channel QCM sensor, thereby preventing any electromagnetic wave from propagating to another channel and interfering with it although oscillations simultaneously take place on a plurality of channels. In the QCM sensor having two or more channels, one channel of the two or more channels is used as a measurement channel, and one channel is used as a reference channel, and a difference between the oscillation frequency of the measurement channel and the oscillation frequency of the reference channel is used as a sensing/quantitating frequency signal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水晶振動子等の振動子の電極表面を試料ガスや試料溶液に晒したときの振動子の共振周波数やインピーダンス等の電気的特性の変化から試料の成分を検知・定量するQCM(Quarz Crystal Microbalance)センサに関し、特に同じ試料から複数の成分を同時に検知・定量するマルチチャンネルQCMセンサに関する。   The present invention provides a QCM that detects and quantifies a sample component from a change in electrical characteristics such as the resonance frequency and impedance of the vibrator when the electrode surface of the vibrator such as a quartz vibrator is exposed to a sample gas or a sample solution. In particular, the present invention relates to a multi-channel QCM sensor that simultaneously detects and quantifies a plurality of components from the same sample.

化学・生化学および電気化学の分野において、反応量や生成物質量を定量することは重要なことであるが、従来装置では極めて微量の反応量に対して十分な検出感度を得ることは難しかった。   In the fields of chemistry, biochemistry and electrochemistry, it is important to quantify the amount of reaction and the amount of product, but it was difficult to obtain sufficient detection sensitivity for very small amounts of reaction with conventional devices. .

近年、ATカット水晶振動子を用いてマイクロバランス原理を応用したケミカル及びバイオセンサーが注目を集めている。ATカット水晶振動子は、その主共振周波数が振動子の板厚と反比例する現象を呈し、その電極面に試料成分が成膜したり、あるいは物質の吸着が起きると表面に存在する物質の単位平面積当たりの重量に対応した周波数のシフトが起きる。   In recent years, chemical and biosensors that apply the microbalance principle using AT-cut quartz resonators have attracted attention. AT-cut quartz resonators exhibit a phenomenon in which the main resonance frequency is inversely proportional to the plate thickness of the resonator. When a sample component is formed on the electrode surface or when adsorption of a substance occurs, the unit of the substance present on the surface A frequency shift corresponding to the weight per plane area occurs.

QCMセンサは、上記の周波数シフト現象を応用したもので、ATカット水晶振動子は広い温度範囲において周波数が安定しているため、安定した検出感度が期待でき、条件が揃えば1〜10ngの吸着物質の検出がリアルタイムで可能である。(1)式に吸着物質量と周波数のシフト量の関係を示す。   The QCM sensor is an application of the frequency shift phenomenon described above. Since the AT-cut quartz resonator has a stable frequency over a wide temperature range, a stable detection sensitivity can be expected. Substance detection is possible in real time. Equation (1) shows the relationship between the amount of adsorbed material and the amount of frequency shift.

まず、ATカット水晶振動子の共振周波数は、   First, the resonance frequency of the AT-cut crystal unit is

Figure 2009031233
Figure 2009031233

qはさらに、 v q is

Figure 2009031233
Figure 2009031233

で表わされる。ここで,f0:水晶振動子の主共振周波数、vq:厚みすべり振動の音響波(横波)の伝播速度、tq:水晶振動子の厚み、μq:水晶の剛性率、ρq:水晶の密度である。 It is represented by Where f 0 is the main resonance frequency of the crystal resonator, v q is the propagation speed of the acoustic wave (transverse wave) of the thickness shear vibration, t q is the thickness of the crystal resonator, μ q is the rigidity of the crystal, and ρ q is The density of the crystal.

この主共振を持つ水晶振動子の厚み変化Δtによる共振周波数変化率Δfは(1)、(2)式より、   The resonance frequency change rate Δf due to the thickness change Δt of the crystal resonator having the main resonance is obtained from the equations (1) and (2):

Figure 2009031233
Figure 2009031233

で表わされる。さらに、水晶の厚み変化Δtは、Δt=Δm/ρqである。ここで、Δmは単位表面積当たりの質量変化である。水溶液中にQCMを浸漬すると、溶液の密度及び粘性率が気相中と比べて高い。したがって、厚みすべり振動の音響波が溶液側に減衰して伝わり、共振周波数が減少する。これは、水晶振動子上に有効厚さの液膜層が形成された状態と等価であるとみなすことができる。この液膜層の有効厚さd1は、水溶液がニュートン流体であるとすると、 It is represented by Further, the thickness change Delta] t of the crystal is Δt = Δm / ρ q. Here, Δm is a mass change per unit surface area. When QCM is immersed in an aqueous solution, the density and viscosity of the solution are higher than in the gas phase. Therefore, the acoustic wave of thickness shear vibration is attenuated and transmitted to the solution side, and the resonance frequency is reduced. This can be regarded as equivalent to a state in which a liquid film layer having an effective thickness is formed on the quartz resonator. The effective thickness d 1 of this liquid film layer is given by assuming that the aqueous solution is a Newtonian fluid.

Figure 2009031233
Figure 2009031233

で近似される。ここで,v1:水溶液の動粘性率、η1:水溶液の粘性率、ρ1:水溶液の密度、f1:水溶液中の水晶振動子の共振周波数であり,v1=μ1/ρ1である。 Is approximated by Where v 1 is the kinematic viscosity of the aqueous solution, η 1 is the viscosity of the aqueous solution, ρ 1 is the density of the aqueous solution, f 1 is the resonance frequency of the quartz crystal in the aqueous solution, and v 1 = μ 1 / ρ 1 It is.

QCMを溶液中で使用する場合、両電極間の絶縁を保つため、水晶振動子の片面のみを溶液に浸漬する。水晶振動子の片面のみを浸漬する場合、電極の単位面積当たりの見かけの質量変化Δm1は(4)式より、以下の(5)式となる。 When QCM is used in a solution, only one side of the crystal unit is immersed in the solution in order to maintain insulation between both electrodes. When only one side of the crystal unit is immersed, the apparent mass change Δm 1 per unit area of the electrode is expressed by the following equation (5) from equation (4).

Figure 2009031233
Figure 2009031233

ここで、f1=f0として、(5)式を(3)式に代入すれば,溶液に水晶振動子を片面のみ浸漬する場合の共振周波数変化Δfは、 Here, assuming that f 1 = f 0 and substituting the equation (5) into the equation (3), the resonance frequency change Δf when the crystal unit is immersed only in one side in the solution is

Figure 2009031233
Figure 2009031233

で表わされる。(6)式から分かるように、全体感度を上げるには主共振周波数f0を上げることが重要となる。したがって、センサとして用いる水晶振動子の主共振周波数を高くするほど、高感度のセンサとすることができる。 It is represented by As can be seen from the equation (6), it is important to increase the main resonance frequency f 0 in order to increase the overall sensitivity. Therefore, the higher the main resonance frequency of the crystal resonator used as the sensor, the higher the sensitivity of the sensor.

ここで、ATカット水晶振動子は,厚みすべりのモードを使用しているため,主共振周波数f0はその厚みtqと反比例する。したがって、高周波用の水晶振動子は電極面積が小さく、しかも水晶厚の薄いものが必要となる。水晶振動子を高周波に対応した薄い水晶基板とする場合、基板の中央部のみを薄くする方法が提案されている。 Here, since the AT-cut quartz resonator uses the thickness slip mode, the main resonance frequency f 0 is inversely proportional to the thickness t q . Therefore, a high-frequency crystal resonator needs to have a small electrode area and a thin crystal thickness. In the case where the quartz resonator is a thin quartz substrate corresponding to a high frequency, a method of thinning only the central portion of the substrate has been proposed.

また、QCMセンサには応答速度を高めること、換言すれば測定時間の短縮方式として、フローセル型に構成し、さらにマルチチャンネル化したものを本願出願人は既に提案している(例えば、特許文献1参照)。   Further, the applicant of the present invention has already proposed a QCM sensor having a response cell with a higher response speed, in other words, a method of shortening measurement time, which is configured in a flow cell type and further multi-channeled (for example, Patent Document 1). reference).

このフローセル型マルチチャンネルQCMセンサのセル構造例を図4に示す。同図にはセル構造を(a)上面図と、このA−A’線に沿った(b)側断面図で示す。鏡面仕上げされた水晶基板11の両面に、フッ酸などを用いた化学エッチング法により2チャンネル分の掘り込み部12A,12B,12C,12Dを形成する。両掘り込み部12A,12Cの底面には電極13A,13Cを形成し、これら電極13A,13Cと対向させて掘り込み部12B,12Dの底面にそれぞれ電極13B,13Dを形成する。電極13A〜13Dは、同じ対向位置で同じ形状(半径)にされ、それぞれリード電極14A〜14Dを通して外部接続端子15A〜15Dに接続される。   An example of the cell structure of this flow cell type multi-channel QCM sensor is shown in FIG. In the figure, the cell structure is shown by (a) a top view and (b) a side sectional view along the line A-A ′. Two channels of dug portions 12A, 12B, 12C, and 12D are formed on both surfaces of the mirror-finished quartz substrate 11 by a chemical etching method using hydrofluoric acid or the like. Electrodes 13A and 13C are formed on the bottom surfaces of both digging portions 12A and 12C, and electrodes 13B and 13D are formed on the bottom surfaces of the digging portions 12B and 12D, respectively, facing the electrodes 13A and 13C. The electrodes 13A to 13D have the same shape (radius) at the same facing position, and are connected to the external connection terminals 15A to 15D through the lead electrodes 14A to 14D, respectively.

掘り込み部12A,12Bの面形状は電極13A,13Bを形成できるだけの大きさ(半径)にされ、掘り込み部12C,12Dの形状は試料ガス又は試料溶液を流すための流路を確保できる面形状と深さをもつ構造にされる。掘り込み部12C,12Dは、図示では、中心部が電極13C,13Dの部位になるトラック形状平面とされ、一方のコーナ部が試料ガス又は試料溶液の注入部にされ、他方のコーナ部がそれらの排出部にされる。   The surface shape of the digging portions 12A and 12B is set to a size (radius) that can form the electrodes 13A and 13B, and the shape of the digging portions 12C and 12D is a surface that can secure a flow path for flowing the sample gas or the sample solution. A structure with shape and depth. In the drawing, the digging portions 12C and 12D have a track-shaped plane whose central portion is a part of the electrodes 13C and 13D, one corner portion is a sample gas or sample solution injection portion, and the other corner portion is a portion of them. To the discharge part.

以上の構造としたフローセル型マルチチャンネルQCMセンサによれば、フローセル構造による測定時間の短縮に加えて、2チャンネル化したセル構造によって試料の一度の注入で2項目の同時測定ができ、測定時間をほぼ半減できる。また、1つの水晶基板を2チャンネル化したセル構造によって、2つの水晶振動子を使って並列的に測定する場合に比べて水晶振動子の個体間のばらつきがなくなり安定性の高い計測が可能となるし、1つの水晶振動子を使って2回測定する場合に比べて試料溶液の調整によるばらつきもなくなり安定性の高い計測が可能となる。   According to the flow cell type multi-channel QCM sensor having the above-described structure, in addition to shortening the measurement time by the flow cell structure, the two-channel cell structure enables simultaneous measurement of two items with a single injection of the sample. Can be almost halved. In addition, the cell structure with two channels on one crystal substrate eliminates the variation between individual crystal units compared to the case of using two crystal units in parallel, and enables highly stable measurement. In addition, as compared with the case where the measurement is performed twice using one crystal resonator, there is no variation due to adjustment of the sample solution, and highly stable measurement is possible.

図5は、図4に示す水晶振動子を組み込んだフローセル型マルチチャンネルQCMセンサの組み立て構造を示す。水晶振動子20は、例えば、図4に示す水晶基板に振動子部を形成するとともに掘り込みによって流路部を形成した一体セル構造の2チャンネル構成とする。設置台(保持基板)21は、4隅にガイドピン21Aが植設され、内周部に電気的接続用スプリングピン21Bが植設される。デバイス位置決めスペーサ22は、中央部には水晶振動子20の外周部に嵌め合わせできる切り込み部22Aを有し、4隅にはガイドピン21Aに遊びを持たせて挿通させる孔22Bを有して設置台21に積層される。水晶振動子20は、スペーサ22の切り込み部22Aに合わせて設置台21に載せることで、その裏面に引き出した外部接続端子15A〜15Dがそれぞれスプリングピン21Bに圧接されて電気的接続が確保される。   FIG. 5 shows an assembly structure of a flow cell type multi-channel QCM sensor incorporating the crystal resonator shown in FIG. The crystal resonator 20 has, for example, a two-channel configuration of an integral cell structure in which a resonator portion is formed on a crystal substrate shown in FIG. 4 and a flow passage portion is formed by digging. The installation base (holding substrate) 21 is provided with guide pins 21A at the four corners, and with spring pins 21B for electrical connection at the inner periphery. The device positioning spacer 22 is provided with a notch 22A that can be fitted to the outer periphery of the crystal unit 20 at the center, and holes 22B that allow the guide pins 21A to be inserted with play at the four corners. It is stacked on the table 21. The quartz resonator 20 is placed on the installation base 21 in accordance with the notch 22A of the spacer 22, whereby the external connection terminals 15A to 15D drawn out on the back surface thereof are pressed against the spring pins 21B, respectively, to ensure electrical connection. .

シリコーンゴム製のパッキン23は、水晶振動子20の掘り込み部12C,12Dの両側位置にそれぞれ試料ガスまたは試料溶液を連通させるための孔23Aを有して水晶振動子20の上に載置される。試料2分割ブロック24は、4隅にガイドピン21に遊びを持たせて挿通させる孔24Aを有し、さらに水晶振動子20の2チャンネル分の試料注入口および排出口位置に開口部を有し、これら開口部に試料を一括注入および開口部から試料を一括排出する管路24B,24Cを形成し、パッキン23の上から水晶振動子20に被せられ、水晶振動子20に試料の一括注入と一括排出を可能にする。   The silicone rubber packing 23 is placed on the crystal unit 20 with holes 23A for communicating the sample gas or the sample solution respectively on both sides of the digging portions 12C and 12D of the crystal unit 20. The The sample two-divided block 24 has holes 24A through which guide pins 21 are allowed to be inserted at the four corners, and openings at the sample inlet and outlet positions for two channels of the crystal resonator 20. The pipes 24B and 24C for collectively injecting the sample into these openings and discharging the sample from the openings are formed, and are placed on the quartz vibrator 20 from above the packing 23. Enable collective discharge.

加圧ブロック25は、4隅にガイドピン21に遊びを持たせて挿通させる孔25Aを有し、ブロック24の上に載せることで、スペーサ22と水晶振動子20とパッキン23とブロック24の積層にその重量で加圧する。   The pressure block 25 has holes 25 </ b> A through which the guide pins 21 are inserted at the four corners, and the spacers 22, the crystal unit 20, the packing 23, and the block 24 are stacked on the block 24. Pressurize with the weight.

なお、図4は2チャンネル構造の場合を示すが、4チャンネルや9チャンネルのマルチチャンネル構造のQCMセンサも提案されている(例えば、特許文献2,3参照)
特開2005−331445号 特開2000−283905号 特開2000−338022号
4 shows a case of a two-channel structure, but a QCM sensor having a multi-channel structure of 4 channels or 9 channels has also been proposed (for example, see Patent Documents 2 and 3).
JP 2005-331445 A JP 2000-283905 A JP 2000-338022 A

従来のマルチチャンネルQCMセンサは、各チャンネルの水晶振動子と、これを共振素子として発振する発振回路の接続をある時聞間隔毎に切換え、チャンネル毎の発振周波数等を測定していた。これは、同一溶液中に浸漬されたQCMを同時に発振させると、溶液中を個々のQCMから発振された電磁波が伝播し干渉してしまうことを避ける目的であった。このように、個々のチャンネルをある時間間隔で測定する手法では、必要な測定データ間隔の制約からせいぜい8チャンネル程度のマルチ化が限界であった。   In a conventional multi-channel QCM sensor, the connection between a crystal resonator of each channel and an oscillation circuit that oscillates using the crystal resonator as a resonant element is switched at certain intervals to measure the oscillation frequency and the like for each channel. The purpose of this is to prevent the electromagnetic waves oscillated from the individual QCMs from propagating through and interfering with each other when the QCMs immersed in the same solution are simultaneously oscillated. As described above, in the method of measuring individual channels at a certain time interval, there is a limit to multi-channeling of about 8 channels at most due to the restriction of the necessary measurement data interval.

また、QCMセンサは質量付加以外にも、(6)式に示したように溶液の粘性変化や溶液のpH変化などの影響を受けることも知られており、この影響をキャンセルするには参照用のQCMセルを設ける必要があり、この場合は多チャンネル化がますます難しくなる。   In addition to mass addition, the QCM sensor is also known to be affected by changes in the viscosity of the solution and changes in the pH of the solution as shown in equation (6). QCM cells must be provided, and in this case, it becomes more difficult to increase the number of channels.

本発明の目的は、チャンネル間の相互干渉を抑制し、安定した同時測定ができるマルチチャンネルQCMセンサを提供することにある。   An object of the present invention is to provide a multi-channel QCM sensor capable of suppressing mutual interference between channels and performing stable simultaneous measurement.

本発明は、振動子を組み込んで発振動作を得る発振回路を、振動子の一方の電極を接地して発振動作を得る接地型発振回路とすることで、複数チャンネルで同時に発振動作させるも電磁波が他のチャンネルに伝播し干渉するのを抑制し、安定した同時測定ができるようにしたもので、以下の構成を特徴とする。   According to the present invention, an oscillation circuit that incorporates a vibrator and obtains an oscillation operation is a grounded oscillation circuit that obtains an oscillation operation by grounding one electrode of the vibrator. Suppresses propagation and interference with other channels and enables stable simultaneous measurement, and has the following configuration.

(1)圧電基板とこの基板面に形成した振動子電極によって構成する振動子を、1つの圧電基板上に複数チャンネル分設け、各振動子の一方の電極を試料ガスまたは試料溶液で晒したときの各振動子の共振周波数の変化またはインピーダンスの変化から試料成分を検知・定量するマルチチャンネルQCMセンサにおいて、
前記各チャンネルの振動子を共振素子として発振する発振回路を複数設け、かつ各発振回路は振動子の一方の電極を接地させた接地型発振回路に構成し、複数の振動子と発振回路を同時に発振動作させて複数のチャンネル別に試料成分を同時に検知・定量することを特徴とする。
(1) When a vibrator composed of a piezoelectric substrate and a vibrator electrode formed on the substrate surface is provided for a plurality of channels on one piezoelectric substrate, and one electrode of each vibrator is exposed to a sample gas or a sample solution In a multi-channel QCM sensor that detects and quantifies sample components from changes in the resonance frequency or impedance of each transducer
A plurality of oscillation circuits that oscillate using the vibrator of each channel as a resonance element are provided, and each oscillation circuit is configured as a grounded oscillation circuit in which one electrode of the vibrator is grounded. It is characterized by oscillating and detecting and quantifying sample components simultaneously for a plurality of channels.

(2)前記各振動子は、試料成分に晒される電極を接地させて接地型発振回路に接続する構成を特徴とする。   (2) Each vibrator is characterized in that an electrode exposed to a sample component is grounded and connected to a grounded oscillation circuit.

(3)前記複数のチャンネルのうち、1つのチャンネルを測定チャンネルとし、1つのチャンネルを参照チャンネルとし、測定チャンネルの発振周波数と参照チャンネルの発振周波数との差を試料成分の検知・定量周波数信号とする構成を特徴とする。   (3) Among the plurality of channels, one channel is a measurement channel, one channel is a reference channel, and the difference between the oscillation frequency of the measurement channel and the oscillation frequency of the reference channel is detected as a sample component detection / quantification frequency signal. It is characterized by the configuration.

(4)前記複数の振動子に対して、1つの発振回路を時間的に切り替えて発振動作させる構成を特徴とする。   (4) The oscillator is configured to oscillate by switching one oscillation circuit in time with respect to the plurality of vibrators.

(5)前記振動子は、電極面に試料成分を流すフローセル型構造にしたことを特徴とする。   (5) The vibrator has a flow cell structure in which a sample component is allowed to flow on an electrode surface.

以上のとおり、本発明によれば、振動子を組み込んで発振動作を得る発振回路を、振動子の一方の電極を接地して発振動作を得る接地型発振回路とするため、多チャンネルの各チャンネルを同時に発振動作させるも電磁波が他のチャンネルに伝播し干渉するのを抑制し、安定した同時測定ができる。   As described above, according to the present invention, since an oscillation circuit that incorporates a vibrator and obtains an oscillation operation is a grounded oscillation circuit that obtains an oscillation operation by grounding one electrode of the vibrator, Simultaneously oscillates and suppresses electromagnetic waves from propagating to other channels and interfering with each other, enabling stable simultaneous measurement.

また、複数のチャンネルのうち、1つのチャンネルを測定チャンネルとし、1つのチャンネルを参照チャンネルとし、チャンネル間の周波数変化量として取り出すことで、測定精度を高めることができる。   Moreover, measurement accuracy can be improved by taking out one channel as a measurement channel and using one channel as a reference channel among a plurality of channels as a frequency change amount between channels.

図1は、本発明のマルチチャンネルQCMセンサに適用する発振回路図であり、1チャンネル分の発振回路を示す。   FIG. 1 is an oscillation circuit diagram applied to the multi-channel QCM sensor of the present invention, and shows an oscillation circuit for one channel.

図1の(a)〜(c)に示す発振回路中、TRは増幅素子としてのトランジスタであり、Xは水晶振動子であり、これらと回路素子(抵抗、コンデンサ、インダクタ)によって発振回路を形成し、水晶振動子Xの負性抵抗を利用して発振動作を得る。   In the oscillation circuit shown in FIGS. 1A to 1C, TR is a transistor as an amplifying element, X is a crystal resonator, and an oscillation circuit is formed by these and circuit elements (resistance, capacitor, inductor). Then, an oscillation operation is obtained using the negative resistance of the crystal unit X.

水晶振動子Xと発振部(増幅素子としてのトランジスタとインピーダンス素子としてのコンデンサやインダクタ)との接続は、一体的に最短距離で接続した構成とする。例えば、発振部はプリント基板上に回路形成され、このプリント基板面に水晶振動子Xが取り付ける。   The crystal resonator X and the oscillating portion (a transistor as an amplifying element and a capacitor or an inductor as an impedance element) are integrally connected at the shortest distance. For example, the oscillation unit is formed on a printed circuit board, and the crystal unit X is attached to the surface of the printed circuit board.

さらに、発振回路は、水晶振動子Xの一方の電極を接地できる接地型発振回路に構成する。例えば、図1では、水晶振動子Xの外部接続端子のうち、試料溶液に晒される電極(溶液暴露電極面)につながる外部接続端子を接地側端子とする。   Furthermore, the oscillation circuit is configured as a grounded oscillation circuit that can ground one electrode of the crystal unit X. For example, in FIG. 1, among the external connection terminals of the crystal unit X, an external connection terminal connected to an electrode (solution exposed electrode surface) exposed to the sample solution is defined as a ground side terminal.

このような接地型発振回路を採用することで、接地側の電極とその接地点までの接続線からの高周波分の放射/伝播を抑制し、チャンネル間の相互干渉を抑制する。これにより、各チャンネルを同時に連続して発振させるも、各チャンネルでの発振動作に影響を受けることなく、安定した発振および周波数測定ができる。   By adopting such a grounded oscillation circuit, radiation / propagation of high frequency components from the ground side electrode and the connection line to the ground point is suppressed, and mutual interference between channels is suppressed. Thereby, even if each channel is oscillated continuously at the same time, stable oscillation and frequency measurement can be performed without being affected by the oscillation operation in each channel.

なお、図1に示す接地型発振回路に対して、水晶振動子の両電極をフロート状態にしたフロート型発振回路は、図2の(a)または(b)に示す回路構成になり、水晶振動子Xの両電極間において交流成分が伝播するため、電解液などの導電性溶液中に浸漬した場合、各チャンネル間で相互干渉が発生する。   Note that a float type oscillation circuit in which both electrodes of the crystal resonator are floated with respect to the ground type oscillation circuit shown in FIG. 1 has a circuit configuration shown in FIG. Since an alternating current component propagates between both electrodes of the child X, mutual interference occurs between the channels when immersed in a conductive solution such as an electrolytic solution.

図3は、2チャンネル構成のQCMセンサにおいて、一方のチャンネルを参照チャンネルとする場合の実施形態を示す。水晶振動子X1が接続される接地型発振回路1Aは、測定チャンネルとし、その水晶振動子X1の電極が試料溶液に晒され、試料成分により周波数シフトした発振出力を得る。水晶振動子X2が接続される接地型発振回路1Bは、参照チャンネルとし、その水晶振動子X2の電極が試料溶液に晒されるが、試料成分による質量変化を伴うことなく、水晶振動子X2が試料溶液に晒された状態での振動周波数の発振出力を得る。   FIG. 3 shows an embodiment in which one channel is used as a reference channel in a QCM sensor having a two-channel configuration. The grounded oscillation circuit 1A to which the crystal resonator X1 is connected serves as a measurement channel, and the electrode of the crystal resonator X1 is exposed to the sample solution to obtain an oscillation output whose frequency is shifted by the sample component. The grounded oscillation circuit 1B to which the crystal resonator X2 is connected is used as a reference channel, and the electrode of the crystal resonator X2 is exposed to the sample solution. An oscillation output having an oscillation frequency when exposed to a solution is obtained.

これら接地型発振回路1A、1Bの両発振出力は、ヘテロダイン検波器2によって参照チャンネルと測定チャンネルの周波数差を試料成分の検知・定量周波数信号とする。これにより、溶液の粘性変化や溶液のpH変化などの影響をキャンセルした高精度の測定ができる。   Both oscillation outputs of the grounded oscillation circuits 1A and 1B are detected by the heterodyne detector 2 so that the frequency difference between the reference channel and the measurement channel is a sample component detection / quantitative frequency signal. Thereby, highly accurate measurement which canceled the influence of the viscosity change of a solution, the pH change of a solution, etc. can be performed.

なお、以上までの実施形態では2チャンネル構成の水晶振動子と接地型発振回路によるマルチチャンネルQCMセンサを示すが、4チャンネルや9チャンネルにした多チャンネルQCMセンサ構成とし、相互干渉を抑制しながら、連続した同時測定ができる。   In the above embodiments, a multi-channel QCM sensor using a crystal oscillator having a two-channel configuration and a grounded oscillation circuit is shown. However, a multi-channel QCM sensor configuration having four or nine channels is used to suppress mutual interference. Continuous simultaneous measurement is possible.

また、振動子毎に発振回路を設ける構成に限らず、複数の振動子に対して1つの発振回路を時間的に切り替える構成、例えば8チャンネル構成に対して4つの発振回路を設けた構成とすることもできる。   Further, the configuration is not limited to a configuration in which an oscillation circuit is provided for each transducer, but a configuration in which one oscillation circuit is switched over time for a plurality of transducers, for example, a configuration in which four oscillation circuits are provided for an 8-channel configuration You can also.

本発明の実施形態を示す発振回路図。The oscillation circuit diagram which shows embodiment of this invention. フロート型発振回路図。Float type oscillation circuit diagram. 他の実施形態を示す2チャンネルQCMの構成図。The block diagram of 2 channel QCM which shows other embodiment. フローセル型マルチチャンネルQCMセンサのセル構造。Flow cell type multi-channel QCM sensor cell structure. フローセル型マルチチャンネルQCMセンサの分解斜視図。The disassembled perspective view of a flow cell type multi-channel QCM sensor.

符号の説明Explanation of symbols

X、X1、X2 水晶振動子
1A、1B 接地型発振回路
2 ヘテロダイン検波器
X, X1, X2 Crystal resonator 1A, 1B Grounded oscillation circuit 2 Heterodyne detector

Claims (5)

圧電基板とこの基板面に形成した振動子電極によって構成する振動子を、1つの圧電基板上に複数チャンネル分設け、各振動子の一方の電極を試料ガスまたは試料溶液で晒したときの各振動子の共振周波数の変化またはインピーダンスの変化から試料成分を検知・定量するマルチチャンネルQCMセンサにおいて、
前記各チャンネルの振動子を共振素子として発振する発振回路を複数設け、かつ各発振回路は振動子の一方の電極を接地させた接地型発振回路に構成し、複数の振動子と発振回路を同時に発振動作させて複数のチャンネル別に試料成分を同時に検知・定量することを特徴とするマルチチャンネルQCMセンサ。
Vibrators composed of a piezoelectric substrate and vibrator electrodes formed on the substrate surface are provided for a plurality of channels on one piezoelectric substrate, and each vibration when one electrode of each vibrator is exposed to a sample gas or a sample solution In a multi-channel QCM sensor that detects and quantifies sample components from changes in the resonance frequency or impedance of the child,
A plurality of oscillation circuits that oscillate using the vibrator of each channel as a resonance element are provided, and each oscillation circuit is configured as a grounded oscillation circuit in which one electrode of the vibrator is grounded. A multi-channel QCM sensor that oscillates and simultaneously detects and quantifies sample components for a plurality of channels.
前記各振動子は、試料成分に晒される電極を接地させて接地型発振回路に接続する構成を特徴とする請求項1に記載のマルチチャンネルQCMセンサ。   2. The multichannel QCM sensor according to claim 1, wherein each of the vibrators is connected to a grounded oscillation circuit by grounding an electrode exposed to a sample component. 3. 前記複数のチャンネルのうち、1つのチャンネルを測定チャンネルとし、1つのチャンネルを参照チャンネルとし、測定チャンネルの発振周波数と参照チャンネルの発振周波数との差を試料成分の検知・定量周波数信号とする構成を特徴とする請求項1または2に記載のマルチチャンネルQCMセンサ。   Of the plurality of channels, one channel is a measurement channel, one channel is a reference channel, and the difference between the oscillation frequency of the measurement channel and the oscillation frequency of the reference channel is used as a sample component detection / quantification frequency signal. The multi-channel QCM sensor according to claim 1 or 2, characterized by the above. 前記複数の振動子に対して、1つの発振回路を時間的に切り替えて発振動作させる構成を特徴とする請求項1または2に記載のマルチチャンネルQCMセンサ。   3. The multi-channel QCM sensor according to claim 1, wherein the multi-channel QCM sensor is configured to oscillate by switching one oscillation circuit in time with respect to the plurality of vibrators. 前記振動子は、電極面に試料成分を流すフローセル型構造にしたことを特徴とする請求項1〜4のいずれか1項に記載のマルチチャンネルQCMセンサ。   The multi-channel QCM sensor according to claim 1, wherein the vibrator has a flow cell type structure in which a sample component is allowed to flow on an electrode surface.
JP2007198243A 2007-07-31 2007-07-31 Multi-channel qcm sensor Pending JP2009031233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007198243A JP2009031233A (en) 2007-07-31 2007-07-31 Multi-channel qcm sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007198243A JP2009031233A (en) 2007-07-31 2007-07-31 Multi-channel qcm sensor

Publications (1)

Publication Number Publication Date
JP2009031233A true JP2009031233A (en) 2009-02-12

Family

ID=40401877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007198243A Pending JP2009031233A (en) 2007-07-31 2007-07-31 Multi-channel qcm sensor

Country Status (1)

Country Link
JP (1) JP2009031233A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137639A (en) * 2009-12-25 2011-07-14 Ulvac Japan Ltd Flow-through cell and measuring instrument using the same
WO2011121859A1 (en) * 2010-03-29 2011-10-06 独立行政法人科学技術振興機構 Detection element
JP2013250066A (en) * 2012-05-30 2013-12-12 Niigata Univ Multichannel sensor
KR101936349B1 (en) * 2017-04-28 2019-01-08 연세대학교 산학협력단 The gas sensor using the principle of skin resonance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137639A (en) * 2009-12-25 2011-07-14 Ulvac Japan Ltd Flow-through cell and measuring instrument using the same
WO2011121859A1 (en) * 2010-03-29 2011-10-06 独立行政法人科学技術振興機構 Detection element
JP4981998B2 (en) * 2010-03-29 2012-07-25 独立行政法人科学技術振興機構 Detection element
US8438912B2 (en) 2010-03-29 2013-05-14 Japan Science And Technology Agency Detection device
JP2013250066A (en) * 2012-05-30 2013-12-12 Niigata Univ Multichannel sensor
KR101936349B1 (en) * 2017-04-28 2019-01-08 연세대학교 산학협력단 The gas sensor using the principle of skin resonance

Similar Documents

Publication Publication Date Title
Liu et al. Surface acoustic wave devices for sensor applications
US7287431B2 (en) Wireless oil filter sensor
KR100708223B1 (en) Sensor array and method for determining the density and viscosity of a liquid
CN109374729B (en) Acoustic micro-mass sensor and detection method
JP2008502911A (en) Analytical instrument with an array of sensors and calibration elements
JP2013148572A (en) Instrument for measuring characteristics of measured object
Mirea et al. Impact of FBAR design on its sensitivity as in-liquid gravimetric sensor
JP2009031233A (en) Multi-channel qcm sensor
Mirea et al. Influence of liquid properties on the performance of S0-mode Lamb wave sensors: A theoretical analysis
JP2011232264A (en) Piezoelectric sensor, piezoelectric sensor element and piezoelectric vibration chip
JP4228993B2 (en) Flow cell type QCM sensor
Fernández et al. High Fundamental Frequency (HFF) Monolithic Resonator Arrays for Biosensing Applications: Design, Simulations, and Experimental Characterization
JP4403078B2 (en) Chip-type piezoelectric resonator and liquid phase sensor
JP2006003267A (en) Elastic wave element and biosensor device equipped therewith
JP4628075B2 (en) Sensor
Liu et al. Dependence of the Lamb wave viscosity sensor on the liquid morphology
US7331232B2 (en) Measurement method and biosensor apparatus using resonator
Borodina et al. Array of piezoelectric lateral electric field excited resonators
JP6154570B2 (en) Surface acoustic wave sensor
JP5195926B2 (en) Elastic wave sensor
RU2533692C1 (en) Multiplexer acoustic array for &#34;electronic nose&#34; and &#34;electronic tongue&#34; analytical instruments
JP2004534222A (en) Piezoelectric resonant element of crystal point group 32
JP2008180668A (en) Lamb wave type high-frequency sensor device
JP4811106B2 (en) QCM sensor device
JP4865002B2 (en) Quartz sensor and sensing device