JP6604238B2 - Elastic wave sensor - Google Patents

Elastic wave sensor Download PDF

Info

Publication number
JP6604238B2
JP6604238B2 JP2016040585A JP2016040585A JP6604238B2 JP 6604238 B2 JP6604238 B2 JP 6604238B2 JP 2016040585 A JP2016040585 A JP 2016040585A JP 2016040585 A JP2016040585 A JP 2016040585A JP 6604238 B2 JP6604238 B2 JP 6604238B2
Authority
JP
Japan
Prior art keywords
elastic wave
substrate
wave
elastic
propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016040585A
Other languages
Japanese (ja)
Other versions
JP2017156253A (en
Inventor
智浩 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2016040585A priority Critical patent/JP6604238B2/en
Publication of JP2017156253A publication Critical patent/JP2017156253A/en
Application granted granted Critical
Publication of JP6604238B2 publication Critical patent/JP6604238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、弾性波センサに関し、詳しくは、被検出物による弾性表面波デバイスへの導電性の変化または質量負荷の変化に基づいて被検出物を検出する弾性波センサに関する。 The present invention relates to an acoustic wave sensor, and more particularly, to an acoustic wave sensor that detects an object to be detected based on a change in conductivity or a change in mass load applied to the surface acoustic wave device by the object to be detected.

従来、環境、食品、医療等の様々な分野において、各種物質の検出や、該物質の量や濃度の測定を行うため構造が簡単で且つ小型化が期待できる弾性波デバイスを用いたセンサが研究されている。 Conventionally, in various fields such as environment, food, and medicine, research has been conducted on sensors using acoustic wave devices that are simple in structure and can be miniaturized to detect various substances and measure the amount and concentration of the substances. Has been.

弾性波センサのうち弾性表面波(Surface Acoustic Wave, 以下SAWと略す)デバイスを用いたセンサは、弾性波伝搬手段として、例えば図5のように圧電基板2上に、櫛歯状電極(Interdigital Transducer , 以下IDTと略す)からなる表面検出用入力電極3及び表面検出用出力電極4が形成された構成となっている。そして、IDTの表面検出用入力電極3に電気信号が印加されると、電極間に電界が発生し、圧電効果によりSAWが励振され、SAWが表面検出用出力電極4に到達すると、再び電気信号に変換される。 Among acoustic wave sensors, a sensor using a surface acoustic wave (hereinafter abbreviated as SAW) device is used as an acoustic wave propagating means, for example, on a piezoelectric substrate 2 as shown in FIG. 5 on a piezoelectric substrate 2 (Interdigital Transducer). The surface detection input electrode 3 and the surface detection output electrode 4 are formed. When an electric signal is applied to the surface detection input electrode 3 of the IDT, an electric field is generated between the electrodes, the SAW is excited by the piezoelectric effect, and when the SAW reaches the surface detection output electrode 4, the electric signal again. Is converted to

弾性表面波デバイスを用いたセンサは、表面検出用入力電極3と表面検出用出力電極4との間の領域に反応膜層5が形成されており、質量が大きな検出対象物質の反応膜層への吸着により質量が増加し、それに伴いSAWの共振周波数が低下するため、この検出対象物質の質量をSAWの周波数変化として定量的に測定することが可能となる。 In a sensor using a surface acoustic wave device, a reaction film layer 5 is formed in a region between the surface detection input electrode 3 and the surface detection output electrode 4, and the reaction film layer of the detection target substance having a large mass is formed. Since the mass increases due to the adsorption of the SAW and the SAW resonance frequency decreases accordingly, the mass of the substance to be detected can be quantitatively measured as the frequency change of the SAW.

更には、検出対象物質の質量変化のみならず、検出対象物質の反応膜層への吸着による反応膜層の導電性変化をSAWの周波数変化として量的に測定することも可能である。 Furthermore, it is possible to quantitatively measure not only the mass change of the detection target substance but also the change in conductivity of the reaction film layer due to the adsorption of the detection target substance to the reaction film layer as a change in the frequency of the SAW.

ここで反応膜層とは、表面近傍が特定の気体分子が優勢的に物理吸着や化学吸着を起こしやすい物質を塗布した層のことである。 Here, the reaction film layer is a layer coated with a substance near the surface on which specific gas molecules are likely to cause physical adsorption or chemical adsorption.

また、弾性表面波デバイスを用いた検出センサの多くは、圧電基板上を伝搬する弾性表面波(レイリー波)を利用して検出対象物質の質量等の検出を行っている。 Many of the detection sensors using the surface acoustic wave device detect the mass of the detection target substance by using the surface acoustic wave (Rayleigh wave) propagating on the piezoelectric substrate.

また、弾性表面波デバイスを用いたセンサは、例えば図6のように圧電基板2表面に2対の表面検出用入力電極3と表面検出用出力電極4及び表面補正用入力電極8と表面補正用出力電極9を備えた弾性表面波デバイスが並んで配置されている。一方の弾性表面波デバイスには、表面検出用入力電極3及び表面検出用出力電極4の間に反応物質層5が配置されており、もう一方は補償用弾性表面波デバイスとして配置されている。 Further, a sensor using a surface acoustic wave device has two pairs of surface detection input electrodes 3, a surface detection output electrode 4, a surface correction input electrode 8, and a surface correction for the surface of the piezoelectric substrate 2 as shown in FIG. Surface acoustic wave devices including output electrodes 9 are arranged side by side. In one surface acoustic wave device, a reactive substance layer 5 is disposed between the surface detection input electrode 3 and the surface detection output electrode 4, and the other is disposed as a compensation surface acoustic wave device.

そして、反応物質層5の質量変化を基板表面を伝搬する弾性表面波の周波数変化と補償用弾性表面波の周波数変化の差を検出するように接続され、測定精度を向上させている。
尚、上記弾性表面波デバイスを用いたセンサ等については、下記先行技術文献に開示されている。
The mass change of the reactant layer 5 is connected to detect the difference between the frequency change of the surface acoustic wave propagating on the substrate surface and the frequency change of the surface acoustic wave for compensation, thereby improving the measurement accuracy.
The sensor using the surface acoustic wave device is disclosed in the following prior art documents.

特開2005−331326JP-A-2005-331326 WO2010/073484WO2010 / 073484 特表2008−518201Special table 2008-518201

弾性表面波デバイスを用いたセンサは、化学センサやバイオセンサなど広く検討されているが、実用に供するためには小型化が重要である。取り分け携帯電話器に搭載するためには占有体積を抑える必要があるが、センサが小さくなればなるほどセンサの感度は低下するというトレードオフの関係にある。 Sensors using surface acoustic wave devices are widely studied such as chemical sensors and biosensors, but miniaturization is important for practical use. In particular, it is necessary to reduce the occupied volume in order to be mounted on a mobile phone, but there is a trade-off relationship that the sensitivity of the sensor decreases as the sensor becomes smaller.

更に、弾性表面波デバイスは周囲の温度、湿度、雰囲気の影響を受けやすく、これらの影響を補正するための補償用弾性表面波デバイスも必要であるが、補償用弾性表面波デバイスを配置した場合、図6のように専有面積は倍近くになり、小型化が困難である。 Furthermore, surface acoustic wave devices are easily affected by ambient temperature, humidity, and atmosphere, and a surface acoustic wave device for compensation is required to correct these effects. As shown in FIG. 6, the occupied area is nearly doubled and it is difficult to reduce the size.

本発明は、上記課題を解決するために、以下のように構成した弾性波センサを提供する。
上記目的を達成するため、本発明の弾性波センサは、弾性波を励振し、該弾性波を基板表面及び表面近傍に伝搬させる弾性波伝搬手段と、前記弾性波の伝搬経路上に配置され、検出対象の特定物質と反応する反応物質層と、を有し、前記特定物質による前記反応物質層の変化に伴って生じる前記弾性波の伝搬特性の変化により、前記特定物質を検出する弾性波センサであって、前記弾性波伝搬手段が前記基板の表裏の両面に配置されたものである。
In order to solve the above-described problems, the present invention provides an elastic wave sensor configured as follows.
In order to achieve the above object, an elastic wave sensor of the present invention is disposed on an elastic wave propagation means for exciting an elastic wave and propagating the elastic wave to the substrate surface and the vicinity of the surface, and on the propagation path of the elastic wave, An elastic wave sensor having a reactive substance layer that reacts with a specific substance to be detected, and detecting the specific substance by a change in propagation characteristics of the elastic wave caused by the change of the reactive substance layer by the specific substance The elastic wave propagation means is disposed on both the front and back surfaces of the substrate.

また、本発明の弾性波センサは、弾性波センサの表裏の両面に配置されている前記弾性波伝搬手段が、同位相で励振するものである。   In the elastic wave sensor of the present invention, the elastic wave propagation means disposed on both the front and back surfaces of the elastic wave sensor excites in the same phase.

また、前記弾性波伝搬手段は、櫛歯電極を含み、前記櫛歯電極が、表裏どちらか一方から見た場合、重なり部分を有するものである。 The elastic wave propagation means includes a comb-tooth electrode, and the comb-tooth electrode has an overlapping portion when viewed from either the front or the back.

また、本発明の弾性波センサは、前記弾性波を、基板表面に平行で且つ前記弾性波の伝搬方向と直交する方向の変位が主となる横波弾性波としたものである。   In the elastic wave sensor according to the present invention, the elastic wave is a transverse elastic wave mainly including displacement in a direction parallel to the substrate surface and orthogonal to the propagation direction of the elastic wave.

ここで、前記反応物質層は酸化グラフェン、グラフェン、グラファイトの何れか一つ以上を含んでいるものである。 Here, the reactant layer includes one or more of graphene oxide, graphene, and graphite.

また、前記反応物質層は、前記基板の表裏どちらか一方の面に配置されているものである。 The reactive substance layer is disposed on either the front or back surface of the substrate.

また、前記基板は、LiTaO、LiNbO、水晶のうちの何れか一つからなるものである。 The substrate is made of any one of LiTaO 3 , LiNbO 3 , and quartz.

本発明の弾性波センサでは、弾性波伝搬手段が弾性波センサの表裏の両面に配置されており、その一方を補償用弾性表面波デバイスとするため、周囲の温度、湿度、雰囲気の影響を補正することができ、尚かつ、その専有面積を小さくすることができ、小型化が可能である。 In the elastic wave sensor of the present invention, the elastic wave propagation means is arranged on both the front and back surfaces of the elastic wave sensor, and one of them is a surface acoustic wave device for compensation, so the influence of ambient temperature, humidity and atmosphere is corrected. In addition, it is possible to reduce the area occupied by the device and to reduce the size.

また、横波弾性波を利用しているため、形成された反応膜層による伝搬損失が少なく、効率良く表面波を伝搬、検出することができる。また、横波弾性波は周波数温度特性に優れ且つ伝搬速度が速いため、高周波化に適している。従って、従来の水晶振動子や弾性表面波デバイスを用いたセンサでは実現が困難であったセンサの小型化、高感度化を達成することができる。 In addition, since transverse elastic waves are used, the propagation loss due to the formed reaction film layer is small, and surface waves can be efficiently propagated and detected. In addition, the transverse elastic wave is excellent in frequency temperature characteristics and has a high propagation speed, and is therefore suitable for high frequency. Therefore, it is possible to achieve downsizing and high sensitivity of the sensor, which has been difficult to realize with a conventional sensor using a crystal resonator or a surface acoustic wave device.

更に横波弾性波の場合、弾性表面波(レイリー波)のような厚み方向への励振が無いため、極めて薄い圧電基板を用いることが可能である。 Further, in the case of a transverse acoustic wave, since there is no excitation in the thickness direction like a surface acoustic wave (Rayleigh wave), it is possible to use an extremely thin piezoelectric substrate.

また、励振電極の表面に反応膜層を配置することにより、この反応膜層と特定検出物質とが反応した際に生じる反応膜層の質量変化(質量増加)や導電率変化(表面抵抗増加)に伴う弾性波の周波数変化率が向上する(大きくなる)ため、センサの一層の高感度化を達成することができる。   In addition, by arranging a reaction film layer on the surface of the excitation electrode, mass change (mass increase) and conductivity change (surface resistance increase) of the reaction film layer that occurs when this reaction film layer reacts with a specific detection substance. Since the frequency change rate of the elastic wave accompanying this is improved (increased), it is possible to achieve higher sensitivity of the sensor.

図1は、本発明の実施形態に係る弾性波センサの概略斜視図である。FIG. 1 is a schematic perspective view of an elastic wave sensor according to an embodiment of the present invention. 図2は、本発明の実施形態の弾性波センサの横波弾性波(リーキー波)を示した概念図である。FIG. 2 is a conceptual diagram showing a transverse elastic wave (leaky wave) of the elastic wave sensor according to the embodiment of the present invention. 図3は、弾性表面波(レイリー波)を示した概念図である。FIG. 3 is a conceptual diagram showing surface acoustic waves (Rayleigh waves). 図4は、本発明の第1の実施形態に係る弾性波センサを用いた発振回路の一例を示す図である。FIG. 4 is a diagram illustrating an example of an oscillation circuit using the elastic wave sensor according to the first embodiment of the present invention. 図5は、従来の弾性波センサの概略斜視図である。FIG. 5 is a schematic perspective view of a conventional acoustic wave sensor. 図6は、従来の弾性波センサの概略斜視図である。FIG. 6 is a schematic perspective view of a conventional elastic wave sensor.

次に、本発明に係る実施形態を挙げ、図面に基づき詳細に説明する。まず、本実施形態に係る弾性波センサの構成について、図1ないし図4を参照して説明する。 Next, an embodiment according to the present invention will be given and described in detail with reference to the drawings. First, the configuration of the elastic wave sensor according to the present embodiment will be described with reference to FIGS. 1 to 4.

本実施形態に係る弾性波センサ1は、図1に示すように、基板2と、表面検出用入力電極3と、表面検出用出力電極4と、反応膜層5と、裏面補正用入力電極6と、裏面補正用出力電極7と、を有する構成となっている。 As shown in FIG. 1, the acoustic wave sensor 1 according to the present embodiment includes a substrate 2, a surface detection input electrode 3, a surface detection output electrode 4, a reaction film layer 5, and a back surface correction input electrode 6. And a back surface correcting output electrode 7.

前記基板2は、基板表面に平行で且つ伝搬方向と直交する方向に変位を持つ横波弾性波を伝搬させることができる材料であれば良く、例えばタンタル酸リチウム(LiTaO)、ニオブ酸リチウム(LiNbO)、水晶等がある。タンタル酸リチウム(LiTaO)では、カット角が36度回転Yカットで、ニオブ酸リチウム(LiNbO)では、カット角が64度回転Yカットで、水晶では、カット角が−7.5度回転Yカットで、弾性波の伝搬方向がX方向に垂直な方向である横波弾性波となる。 The substrate 2 may be any material that can propagate a transverse acoustic wave having a displacement in a direction parallel to the substrate surface and perpendicular to the propagation direction. For example, lithium tantalate (LiTaO 3 ), lithium niobate (LiNbO) 3 ) There are crystals, etc. For lithium tantalate (LiTaO 3 ), the cut angle is 36 ° rotated Y-cut, for lithium niobate (LiNbO 3 ), the cut angle is 64 ° rotated Y-cut, and for quartz, the cut angle is −7.5 ° rotated. In the Y cut, the elastic wave propagation direction is a transverse elastic wave whose direction is perpendicular to the X direction.

本実施形態では、伝搬する弾性波の周波数温度特性が優れているという点から、基板材料としてタンタル酸リチウム(LiTaO)を選定した。また、タンタル酸リチウム(LiTaO)基板には、高い機械結合係数を有し、横波弾性波の伝搬速度が速い点も選定した理由である。 In the present embodiment, lithium tantalate (LiTaO 3 ) is selected as the substrate material because the frequency temperature characteristics of the propagating elastic wave are excellent. In addition, the lithium tantalate (LiTaO 3 ) substrate is selected because it has a high mechanical coupling coefficient and a high propagation speed of the transverse acoustic wave.

前記表面検出用入力電極3は、弾性波を励振させる電極として櫛型電極を用いており、弾性波の伝搬方向がX方向に垂直な方向となるように基板2の表面に配置されている。また、前記表面検出用出力電極4は、前記表面検出用入力電極3にて励振され伝搬してきた弾性波を受信する櫛型電極である。 The surface detection input electrode 3 uses a comb electrode as an electrode for exciting an elastic wave, and is arranged on the surface of the substrate 2 so that the propagation direction of the elastic wave is perpendicular to the X direction. The surface detection output electrode 4 is a comb-shaped electrode that receives the elastic wave excited and propagated by the surface detection input electrode 3.

また、前記裏面補正用入力電極6は、基板裏面の弾性波を励振させる電極として櫛型電極を用いており、表面と同じ弾性波の伝搬方向が、X方向に垂直な方向となるように基板2の裏面に配置されている。また、前記裏面補正用出力電極7は、前記裏面補正用入力電極6にて励振され伝搬してきた弾性波を受信する櫛型電極である。 In addition, the back surface correction input electrode 6 uses a comb electrode as an electrode for exciting the elastic wave on the back surface of the substrate, and the substrate is arranged so that the propagation direction of the same elastic wave as the front surface is perpendicular to the X direction. 2 is arranged on the back surface. The back surface correction output electrode 7 is a comb electrode that receives the elastic wave excited and propagated by the back surface correction input electrode 6.

尚、本実施形態では、各電極はAuで作製されている。また、Au電極膜と基板2との密着強化のために、Au電極膜と基板2との間にTi膜を形成してもよい。 In the present embodiment, each electrode is made of Au. Further, a Ti film may be formed between the Au electrode film and the substrate 2 in order to enhance the adhesion between the Au electrode film and the substrate 2.

以上のように基板2の表面の横波弾性波の励振条件を設定し、且つ、この基板2の表面の横波弾性波の励振条件に合致するように前記表面検出用入力電極3と、前記表面検出用出力電極4及び前記裏面補正用入力電極6と前記裏面補正用出力電極7を配置しているため、基板2の表面及び裏面に平行で且つ伝搬方向に対し垂直な変位を持つ横波弾性波が、前記表面検出用入力電極3及び前記裏面補正用入力電極6から前記表面検出用出力電極4及び前記裏面補正用出力電極7に向けて伝搬することとなる。 As described above, the excitation condition of the surface acoustic wave on the surface of the substrate 2 is set, and the surface detection input electrode 3 and the surface detection are matched with the excitation condition of the surface acoustic wave on the surface of the substrate 2. Since the output electrode 4 for backside and the input electrode 6 for backside correction and the output electrode 7 for backside correction are arranged, a transverse acoustic wave having a displacement parallel to the front and back surfaces of the substrate 2 and perpendicular to the propagation direction is generated. Then, the light propagates from the front surface detection input electrode 3 and the back surface correction input electrode 6 toward the front surface detection output electrode 4 and the back surface correction output electrode 7.

表裏に配置された前記弾性波伝搬手段は同位相で励振する様に配置されているため、周囲の温度、湿度、雰囲気が変化した場合でも、表裏の弾性波伝搬手段は同位相で励振することができる。 Since the elastic wave propagation means arranged on the front and back sides are arranged to excite in the same phase, the front and back elastic wave propagation means should excite in the same phase even when the ambient temperature, humidity and atmosphere change. Can do.

また、前記弾性波は、基板表面に平行で且つ前記弾性波の伝搬方向と直交する方向の変位が主となる横波弾性波としたものである。図2は、本発明の実施形態の弾性波センサの横波弾性波(リーキー波)を示した概念図である。図2のように横波弾性波は水平方向の波(SH波)のみの励振である。図3は、弾性表面波(レイリー波)を示した概念図である。弾性表面波(レイリー波)は垂直方向の波(SV波)と進行方向の波(P波)の合成した励振波である。従って横波弾性波(リーキー波)は弾性表面波(レイリー波)のような基板の厚み方向への励振は無く、そのため、表裏に配置された前記弾性波伝搬手段が同位相で励振が可能となる。
更に横波弾性波(リーキー波)を用いた場合は、極めて薄い基板においても表裏の励振の伝搬損失が影響を考慮することなく前記弾性波伝搬手段を配置することができる。
The elastic wave is a transverse elastic wave whose displacement is mainly parallel to the substrate surface and orthogonal to the propagation direction of the elastic wave. FIG. 2 is a conceptual diagram showing a transverse elastic wave (leaky wave) of the elastic wave sensor according to the embodiment of the present invention. As shown in FIG. 2, the transverse elastic wave is an excitation of only a horizontal wave (SH wave). FIG. 3 is a conceptual diagram showing surface acoustic waves (Rayleigh waves). A surface acoustic wave (Rayleigh wave) is an excitation wave composed of a vertical wave (SV wave) and a traveling wave (P wave). Accordingly, the transverse acoustic wave (Leaky wave) is not excited in the thickness direction of the substrate like the surface acoustic wave (Rayleigh wave). Therefore, the elastic wave propagation means arranged on the front and back sides can be excited in the same phase. .
Furthermore, when a transverse elastic wave (leaky wave) is used, the elastic wave propagation means can be arranged even in an extremely thin substrate without considering the influence of the propagation loss of excitation on the front and back sides.

また、前記反応膜層5は、検出対象の特定物質と反応する性質を有するものであり、前記表面検出用入力電極3と前記表面検出用出力電極4との間の横波弾性波の伝搬路上に配置される。また、この反応膜層5は、酸化グラフェン、グラフェン、グラファイトの何れか一つ以上を含んでいる。 Further, the reaction film layer 5 has a property of reacting with a specific substance to be detected, and is on a propagation path of a transverse acoustic wave between the surface detection input electrode 3 and the surface detection output electrode 4. Be placed. The reaction film layer 5 includes one or more of graphene oxide, graphene, and graphite.

そして、例えば図4のように、上記構成の弾性波センサ1の表面の前記弾性波伝搬手段と増幅器15と上記構成の弾性波センサ1の裏面の前記弾性波伝搬手段と増幅器15とを混合器16で接続されており、伝搬波の和周波数を測定する周波数カウンタ(図示せず)への出力を行う帰還型の発振回路を構成し、特定物質の検出を行うと、検出対象の特定物質との反応による反応膜5の質量変化(質量増加)や導電率変化(表面抵抗増加)に伴って基板表面を伝搬する横波弾性波の伝搬速度が変化することから、上記反応による質量変化や導電率変化が、横波弾性波の伝搬速度変化に基づく周波数変化として出力される。従って、この弾性波センサ1によれば、質量変化や導電率変化を周波数変化として測定することが可能となるため、この測定結果に基づいて、検出対象の特定物質の有無、質量、あるいは濃度等の検出を行うことが可能となる。 Then, for example, as shown in FIG. 4, the elastic wave propagation means and the amplifier 15 on the surface of the elastic wave sensor 1 having the above configuration and the elastic wave propagation means and the amplifier 15 on the back surface of the elastic wave sensor 1 having the above configuration are mixed. 16, a feedback type oscillation circuit that outputs to a frequency counter (not shown) that measures the sum frequency of the propagating wave is configured, and when a specific substance is detected, a specific substance to be detected and Since the propagation speed of the transverse elastic wave propagating on the substrate surface changes with the mass change (mass increase) and the conductivity change (surface resistance increase) of the reaction film 5 due to the reaction of the above, the mass change and conductivity due to the above reaction change. The change is output as a frequency change based on a change in the propagation speed of the transverse elastic wave. Therefore, according to the acoustic wave sensor 1, it is possible to measure a change in mass or a change in conductivity as a change in frequency. Based on the measurement result, the presence / absence, mass, concentration, or the like of the specific substance to be detected Can be detected.

具体的には、質量が大きな検出対象物質、例えば、CO、COの反応膜層への吸着によりの質量が増加し、それに伴いSAWの共振周波数が低下するため、この検出対象物質の質量をSAWの周波数変化として定量的に測定することが可能となる。
一方、質量が小さな検出対象物質、例えば、Hの反応膜層への吸着による質量が増加よりも、反応膜層との反応による反応層の導電性の減少によって、SAWの共振周波数が増加する作用の影響がより大きいため、共振周波数が増加し、この検出対象物質の濃度をSAWの周波数の増加として定量的に測定することが可能となる。
Specifically, the mass of the detection target substance having a large mass, for example, the mass due to adsorption of CO and CO 2 to the reaction membrane layer increases, and the resonance frequency of the SAW decreases accordingly. It becomes possible to measure quantitatively as the SAW frequency change.
On the other hand, the resonance frequency of the SAW increases due to the decrease in the conductivity of the reaction layer due to the reaction with the reaction film layer, rather than the increase in the mass due to the adsorption of the detection target substance having a small mass, for example, H 2 to the reaction film layer. Since the influence of the action is larger, the resonance frequency increases, and the concentration of the detection target substance can be quantitatively measured as an increase in the SAW frequency.

また、本実施形態に係る弾性波センサ1では横波弾性波を利用しているため、基板2の表面に抗体膜等が存在していても伝搬損失が少なくなり、効率良く表面波を伝搬、検出することができる。さらに、横波弾性波は周波数温度特性に優れ且つ伝搬速度が速いことから高周波化に適しているため、センサの高感度化を達成することができる。 In addition, since the elastic wave sensor 1 according to the present embodiment uses a transverse elastic wave, even if an antibody film or the like is present on the surface of the substrate 2, the propagation loss is reduced, and the surface wave is efficiently propagated and detected. can do. Furthermore, since the transverse acoustic wave is excellent in frequency temperature characteristics and has a high propagation speed, it is suitable for high frequency, so that high sensitivity of the sensor can be achieved.

以上のように、本発明に係る弾性波センサは、ガスセンサをはじめ、他の各種用途におけるバイオセンサや化学センサに有用である。 As described above, the acoustic wave sensor according to the present invention is useful for biosensors and chemical sensors in various other applications including gas sensors.

1 弾性表面波デバイス
2 圧電基板
3 表面検出用入力電極
4 表面検出用出力電極
5 反応膜層
6 裏面補正用入力電極
7 裏面補正用出力電極
8 表面補正用入力電極
9 表面補正用出力電極
10 横波弾性波(リーキー波)概念図の圧電基板
11 SH波(リーキー波)
12 弾性表面波(レイリー波)概念図の圧電基板
13 SV波(レイリー波)
14 P波(レイリー波)
15 増幅器
16 混合器
DESCRIPTION OF SYMBOLS 1 Surface acoustic wave device 2 Piezoelectric substrate 3 Surface detection input electrode 4 Surface detection output electrode 5 Reaction film layer 6 Back surface correction input electrode 7 Back surface correction output electrode 8 Surface correction input electrode 9 Surface correction output electrode 10 Transverse wave Piezoelectric substrate 11 with conceptual diagram of elastic wave (leaky wave) SH wave (leaky wave)
12 Surface acoustic wave (Rayleigh wave) conceptual diagram of piezoelectric substrate 13 SV wave (Rayleigh wave)
14 P wave (Rayleigh wave)
15 Amplifier 16 Mixer

Claims (7)

弾性波を励振し、該弾性波を基板表面及び表面近傍に伝搬させる弾性波伝搬手段と、前記弾性波の伝搬経路上に配置され、検出対象の特定物質と反応する反応物質層と、を有し、前記特定物質による前記反応物質層の変化に伴って生じる前記弾性波の伝搬特性の変化により、前記特定物質を検出する弾性波センサであって、前記弾性波伝搬手段が前記基板の表裏の両面に配置されていることを特徴とする弾性波センサ。 An elastic wave propagating means for exciting an elastic wave and propagating the elastic wave to and near the substrate surface, and a reactive substance layer disposed on the elastic wave propagation path and reacting with a specific substance to be detected are provided. An elastic wave sensor for detecting the specific material by a change in propagation characteristics of the elastic wave caused by a change in the reactive material layer due to the specific material, wherein the elastic wave propagation means is provided on the front and back sides of the substrate. An elastic wave sensor characterized by being arranged on both sides. 前記弾性波伝搬手段が、同位相で励振することを特徴とする請求項1に記載の弾性波センサ。 The elastic wave sensor according to claim 1, wherein the elastic wave propagation means excites in the same phase. 前記弾性波伝搬手段は、櫛歯状電極を含み、前記櫛歯状電極が、表裏どちらか一方から見た場合、重なり部分を有することを特徴とする請求項1または2に記載の弾性波センサ。 The elastic wave sensor according to claim 1 or 2, wherein the elastic wave propagation means includes a comb-like electrode, and the comb-like electrode has an overlapping portion when viewed from either the front or back side. . 前記弾性波を、基板表面に平行で且つ前記弾性波の伝搬方向と直交する方向の変位が主となる横波弾性波とすることを特徴とする請求項1から3の何れか一項に記載の弾性波センサ。 4. The elastic wave according to claim 1, wherein the elastic wave is a transverse elastic wave that is mainly displaced in a direction parallel to the surface of the substrate and perpendicular to the propagation direction of the elastic wave. 5. Elastic wave sensor. 前記反応物質層は酸化グラフェン、グラフェン、グラファイトの何れか一つ以上を含んでいる、ことを特徴とする請求項1から4の何れか一項に記載の弾性波センサ。 5. The acoustic wave sensor according to claim 1, wherein the reactant layer includes one or more of graphene oxide, graphene, and graphite. 6. 前記反応物質層は、前記基板の表裏どちらか一方の面に配置されている、ことを特徴とする請求項1から5の何れか一項に記載の弾性波センサ。 6. The acoustic wave sensor according to claim 1, wherein the reactive substance layer is disposed on one of the front and back surfaces of the substrate. 前記基板は、LiTaO、LiNbO、水晶のうちの何れか一つであることを特徴とする請求項1から6の何れか一項に記載の弾性波センサ。
The elastic substrate according to claim 1, wherein the substrate is one of LiTaO 3 , LiNbO 3 , and quartz.
JP2016040585A 2016-03-03 2016-03-03 Elastic wave sensor Active JP6604238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016040585A JP6604238B2 (en) 2016-03-03 2016-03-03 Elastic wave sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016040585A JP6604238B2 (en) 2016-03-03 2016-03-03 Elastic wave sensor

Publications (2)

Publication Number Publication Date
JP2017156253A JP2017156253A (en) 2017-09-07
JP6604238B2 true JP6604238B2 (en) 2019-11-13

Family

ID=59808588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016040585A Active JP6604238B2 (en) 2016-03-03 2016-03-03 Elastic wave sensor

Country Status (1)

Country Link
JP (1) JP6604238B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102079659B1 (en) * 2018-04-05 2020-02-20 해성디에스 주식회사 Optical sensor device and Package including the same
KR102069660B1 (en) * 2018-04-05 2020-01-23 해성디에스 주식회사 Proximity sensor
JP7345763B2 (en) * 2018-10-05 2023-09-19 株式会社カネカ Carbon-based material oscillator, sensor element and biological material detection device equipped with the same
WO2020179894A1 (en) * 2019-03-06 2020-09-10 京セラ株式会社 Measurement device, measurement method, and computation device
WO2020209189A1 (en) * 2019-04-08 2020-10-15 株式会社村田製作所 Elastic wave device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2697887B2 (en) * 1989-03-02 1998-01-14 株式会社トキメック External force sensor using surface acoustic waves
JP3017344B2 (en) * 1991-11-26 2000-03-06 株式会社トキメック Tilt sensor
JP3911628B2 (en) * 2001-03-23 2007-05-09 富士フイルム株式会社 Vibration or viscosity measurement sensor and inspection apparatus using the same
US7205701B2 (en) * 2004-09-03 2007-04-17 Honeywell International Inc. Passive wireless acoustic wave chemical sensor
JP2008122105A (en) * 2006-11-08 2008-05-29 Japan Radio Co Ltd Elastic wave sensor and detection method
JP4950752B2 (en) * 2007-05-01 2012-06-13 日本無線株式会社 Density measuring device
US20100058834A1 (en) * 2008-09-09 2010-03-11 Honeywell International Inc. Method and apparatus for low drift chemical sensor array
JP2010066194A (en) * 2008-09-12 2010-03-25 River Eletec Kk Dissolved hydrogen sensor

Also Published As

Publication number Publication date
JP2017156253A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6604238B2 (en) Elastic wave sensor
US7482732B2 (en) Layered surface acoustic wave sensor
US9322809B2 (en) Elastic wave sensor
EP2543996B1 (en) Surface acoustic wave sensor system and measurement method using multiple-transit-echo wave
Lee et al. Love wave SAW biosensors for detection of antigen-antibody binding and comparison with SPR biosensor
JP2006313092A (en) Surface acoustic wave sensor and surface acoustic wave sensor system
US8695428B2 (en) Single input multi-output surface acoustic wave device
JP6043061B2 (en) Surface acoustic wave sensor
JP5170311B2 (en) Surface acoustic wave sensor
JP2007225546A (en) Elastic surface wave sensor
JP4714885B2 (en) Elastic wave sensor
JP2006003267A (en) Elastic wave element and biosensor device equipped therewith
JP2007078428A (en) Surface acoustic wave sensor, and surface acoustic wave sensor system
JP2008180668A (en) Lamb wave type high-frequency sensor device
RU2533692C1 (en) Multiplexer acoustic array for "electronic nose" and "electronic tongue" analytical instruments
WO2010082266A1 (en) Acoustic wave sensor
JP6154570B2 (en) Surface acoustic wave sensor
JP5709254B2 (en) Sensor
JP2005331326A (en) Elastic wave sensor
JP2005315646A (en) Surface acoustic wave sensor and surface acoustic wave sensor system
JP2018155723A (en) Elastic wave sensor
WO2010021100A1 (en) Elastic surface wave sensor device
US7193352B1 (en) Thin film bulk acoustic wave sensor suite
JP6300145B2 (en) Surface acoustic wave sensor and measuring apparatus
KR102314169B1 (en) Apparatus for chemosensing and Method for measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190930

R150 Certificate of patent or registration of utility model

Ref document number: 6604238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150