JP2007078428A - Surface acoustic wave sensor, and surface acoustic wave sensor system - Google Patents

Surface acoustic wave sensor, and surface acoustic wave sensor system Download PDF

Info

Publication number
JP2007078428A
JP2007078428A JP2005264448A JP2005264448A JP2007078428A JP 2007078428 A JP2007078428 A JP 2007078428A JP 2005264448 A JP2005264448 A JP 2005264448A JP 2005264448 A JP2005264448 A JP 2005264448A JP 2007078428 A JP2007078428 A JP 2007078428A
Authority
JP
Japan
Prior art keywords
saw
idt
acoustic wave
surface acoustic
piezoelectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005264448A
Other languages
Japanese (ja)
Inventor
Takashi Yamazaki
隆 山崎
Takuya Owaki
卓弥 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005264448A priority Critical patent/JP2007078428A/en
Publication of JP2007078428A publication Critical patent/JP2007078428A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave (SAW) sensor of a high Q-value, which can be small-sized, exhibits an excellent frequency temperature characteristic, and has high sensitivity, in particular, suitable for a liquid phase system. <P>SOLUTION: This SAW sensor 1 uses a piezoelectric substrate 1 of a rotary Y-cut quartz plate of which the cut face and the propagation direction of the SAW are formed into (0°, -64 to -49.3°, +90°, 90±5°)=(0°, 26 to 40.7°, 90±5°) in Eulerian angle display. IDTs 12, 13 are formed of an electrode film comprising Al or an alloy containing Al as a main component, on a surface of the piezoelectric substrate, and a film thickness H of the electrode film is set in 0.04<H/λ<0.12, where λ is a wavelength of the SAW. A receptor 5 for recognizing an objective substance is provided on a propagation face of the SAW. A pair of reflectors 15, 15 is provided further in both sides of the IDTs. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、特定の化学物質を検出しかつ/又はその物性を測定するために、トランスデューサとして弾性表面波(SAW:surface acoustic wave)素子を利用した弾性表面波センサ、及び弾性表面波センサシステムに関する。   The present invention relates to a surface acoustic wave sensor and a surface acoustic wave sensor system that use a surface acoustic wave (SAW) element as a transducer to detect a specific chemical substance and / or measure its physical properties. .

最近、特にバイオテクノロジや医療などの技術分野において、測定対象の化学物質を認識する受容体の化学的又は物理的変化を検出するために、SAW素子をトランスデューサとして利用したSAWセンサが開発されている(例えば、非特許文献1,2を参照)。一般にSAWセンサは、圧電基板のSAW伝搬面に検出物質反応膜などの受容体を有する。受容体に目的の化学物質が結合してその重量が変化すると、SAWの伝搬速度が変化するので、これを発振周波数の変化として測定することにより、目的物質及び/又はその物性を高精度に検出することができる。   Recently, particularly in technical fields such as biotechnology and medicine, a SAW sensor using a SAW element as a transducer has been developed to detect a chemical or physical change in a receptor that recognizes a chemical substance to be measured. (For example, refer nonpatent literatures 1 and 2.). In general, a SAW sensor has a receptor such as a detection substance reaction film on the SAW propagation surface of a piezoelectric substrate. When the target chemical substance is bound to the receptor and its weight changes, the SAW propagation speed changes. By measuring this as a change in oscillation frequency, the target substance and / or its physical properties can be detected with high accuracy. can do.

例えば、圧電基板上に受容体としてガス吸着体をIDT(すだれ状トランスデューサ)からなる励振電極と受信電極との間に配置したSAWデバイスが知られている(例えば、特許文献1を参照)。また、圧電基板のSH−SAW(横波型弾性表面波)伝搬面に電気的短絡と電気的開放及び試料セルとを設け、同一液体を負荷した場合に電気的短絡と電気的開放間に生じるSAW伝搬速度の変化からpH、導電性などの物性を検出する弾性表面波バイオセンサが知られている(特許文献2を参照)。更に、単一の圧電基板に、それぞれIDTからなる送信電極と受信電極間にセンサセルを有する3つのSAWセンサを並設し、測定液の力学量と電気量とを同時に計測できるようにしたマルチチャネル型の溶液センサシステムが知られている(例えば、特許文献3を参照)。   For example, a SAW device is known in which a gas adsorber as a receptor is disposed on a piezoelectric substrate between an excitation electrode made of IDT (interdigital transducer) and a reception electrode (see, for example, Patent Document 1). In addition, an electrical short circuit, an electrical release, and a sample cell are provided on the SH-SAW (transverse surface acoustic wave) propagation surface of the piezoelectric substrate, and the SAW generated between the electrical short circuit and the electrical release when the same liquid is loaded. A surface acoustic wave biosensor that detects physical properties such as pH and conductivity from a change in propagation speed is known (see Patent Document 2). In addition, three SAW sensors each having a sensor cell between a transmitting electrode and a receiving electrode each made of IDT are arranged side by side on a single piezoelectric substrate, so that the dynamic quantity and the electric quantity of the measurement liquid can be measured simultaneously. A type of solution sensor system is known (see, for example, Patent Document 3).

他方、通信・情報機器などの電子機器に広く使用されているSAWデバイスは、一般に小型化、高いQ値(共振尖鋭度)、及び優れた周波数安定性が要求されている。これらの要求を満足するSAWデバイスとして、STカット水晶基板を用いたSAWデバイスがある。STカット水晶基板は、結晶X軸を回転軸としてXZ面を結晶Z軸より反時計方向に42.75°回転した平面(XZ’面)を主面として切り出した水晶板であり、結晶X軸方向に伝搬するレイリー波と呼ばれる(P+SV)波であるSAWを利用する。   On the other hand, SAW devices widely used in electronic equipment such as communication / information equipment are generally required to be small in size, high Q value (resonance sharpness), and excellent frequency stability. As a SAW device that satisfies these requirements, there is a SAW device using an ST cut quartz substrate. The ST-cut quartz substrate is a quartz plate that is cut out using a plane (XZ ′ plane) obtained by rotating the XZ plane 42.75 ° counterclockwise from the crystal Z axis with the crystal X axis as the rotation axis. A SAW which is a (P + SV) wave called a Rayleigh wave propagating in the direction is used.

ところが、レイリー波は、SAW伝搬面上に液体を負荷すると、縦波が液体中に放射されて減衰するため、特に液相系のSAWセンサには使用できない。そこで、液相系のSAWセンサには、36°回転Y板X伝搬LiTaO を圧電基板に用いたSH−SAWが広く採用されている(例えば、非特許文献2を参照)。この圧電基板は、目的とするSAW以外の不要SAW(縦波等のスプリアス振動)が発生せず、電気機械結合係数が大きいので、高感度のセンサを実現できる(例えば、特許文献3を参照)。 However, when a liquid is loaded on the SAW propagation surface, the Rayleigh wave is radiated into the liquid and attenuates, so that it cannot be used particularly for a liquid phase SAW sensor. Therefore, SH-SAW using 36 ° rotated Y-plate X-propagating LiTaO 3 as a piezoelectric substrate is widely adopted as a liquid-phase SAW sensor (see, for example, Non-Patent Document 2). Since this piezoelectric substrate does not generate unnecessary SAW (spurious vibration such as longitudinal waves) other than the intended SAW and has a large electromechanical coupling coefficient, a highly sensitive sensor can be realized (for example, see Patent Document 3). .

また、回転Yカット水晶板のカット角θを結晶Z軸より反時計方向に−50°回転させた付近に設定し、かつ弾性波の伝搬方向を結晶X軸に対して垂直方向にした、オイラー角(0°,θ+90°,90°)=(0°,40°,90°)の水晶平板を圧電基板とする弾性波素子が知られている(例えば、非特許文献3、特許文献4を参照)。この弾性波素子は、変位の主成分が基板面に平行(SH成分)な表面進行体積波(SSBW)をIDTにより励起し、その振動エネルギを電極直下に閉じ込めることを特徴とする。   Also, the Euler is set so that the cut angle θ of the rotated Y-cut quartz plate is set in the vicinity of −50 ° rotated counterclockwise from the crystal Z axis, and the elastic wave propagation direction is perpendicular to the crystal X axis. 2. Description of the Related Art An acoustic wave device using a quartz crystal plate with an angle (0 °, θ + 90 °, 90 °) = (0 °, 40 °, 90 °) as a piezoelectric substrate is known (for example, Non-Patent Document 3 and Patent Document 4). reference). This acoustic wave element is characterized in that a surface traveling volume wave (SSBW) whose main component of displacement is parallel to the substrate surface (SH component) is excited by IDT and its vibration energy is confined immediately below the electrode.

更に、この回転Yカット水晶板からなる圧電基板上に800±200対もの多数対のIDTを形成し、かつ該IDTにより励振される弾性波の波長をλとしたとき、IDTの電極膜厚を2%λ以上、好ましくは4%λ以下にした多対IDT型の弾性波共振器が知られている(例えば、特許文献5を参照)。これにより、グレーティング反射器を利用せずに、IDT自体の反射だけでSAWエネルギを閉じ込め、Q値を高めることができる。   Further, when 800 ± 200 pairs of IDTs are formed on a piezoelectric substrate made of this rotated Y-cut quartz plate and the wavelength of the elastic wave excited by the IDT is λ, the electrode film thickness of the IDT is A multi-pair IDT type acoustic wave resonator having a wavelength of 2% λ or more, preferably 4% λ or less is known (see, for example, Patent Document 5). Thereby, without using a grating reflector, SAW energy can be confined only by reflection of IDT itself, and Q value can be raised.

工業所有権総合情報館編,「特許流通支援チャート・化学2・バイオセンサ」,社団法人発明協会,2002年6月29日,p.3〜5及び16〜18Industrial Property General Information Center, “Patent Distribution Support Chart / Chemical 2 / Biosensor”, Invention Association of Japan, June 29, 2002, p. 3-5 and 16-18 日本学術振興会弾性波素子技術第150委員会編,「弾性波デバイス技術」,オーム社,2004年8月20日,p.405〜412Japan Society for the Promotion of Science Elastic Wave Device Technology 150th Edition, “Acoustic Wave Device Technology”, Ohmsha, August 20, 2004, p. 405-412 Meirion Lewis,"Surface Skimming Bulk Wave, SSBW",IEEE Ultrasonics Symp. Proc.,1977,p.744〜752Meirion Lewis, “Surface Skimming Bulk Wave, SSBW”, IEEE Ultrasonics Symp. Proc., 1977, p. 744-752 特開平8−68781号公報JP-A-8-68781 特開平6−133759号公報JP-A-6-133759 特開平9−80035号公報Japanese Patent Laid-Open No. 9-80035 特公昭62−016050号Japanese Examined Sho 62-016050 特公平01−034411号Japanese Patent Publication No. 01-034411

しかしながら、36°回転Y板X伝搬LiTaO には、次のような問題がある。第一に、図10に破線で示すように、温度に対する周波数変動が−20ppm/℃で、非常に大きいという問題がある。そのため、温度変化によるノイズが大きく、S/N比が低下する虞がある。これを解消するためには、例えば使用温度に関して発振周波数を調節する特別な回路を付加しなければならないなど、難しい温度管理が必要になる。 However, the 36 ° rotated Y-plate X propagation LiTaO 3 has the following problems. First, as shown by the broken line in FIG. 10, there is a problem that the frequency variation with respect to the temperature is −20 ppm / ° C., which is very large. Therefore, noise due to temperature change is large, and the S / N ratio may be reduced. In order to solve this problem, difficult temperature management is required, for example, a special circuit for adjusting the oscillation frequency with respect to the operating temperature must be added.

また、図11に示すように、中心周波数f に関して或る程度の帯域幅をもった周波数特性を有し、伝送特性がブロードでQ値が小さい、という問題がある。そのため、これを用いたSAWセンサは、測定周波数の所謂ゆらぎが大きく、測定精度を低下させる虞がある。従って、測定精度を確保するためには、このゆらぎ成分を除去するなどの余分な信号処理やデータ処理が必要になる。 Further, as shown in FIG. 11, there is a problem that the center frequency f 0 has a frequency characteristic having a certain bandwidth, the transmission characteristic is broad, and the Q value is small. For this reason, the SAW sensor using this has a large so-called fluctuation of the measurement frequency, and there is a risk of reducing the measurement accuracy. Therefore, in order to ensure measurement accuracy, extra signal processing and data processing such as removal of the fluctuation component are required.

これに対し、水晶は、図10に実線で示すように、温度に対する周波数安定性が優れており、温度管理が容易である。しかしながら、STカット水晶基板は、小型で高いQ値、優れた周波数安定性を実現できる反面、上述したように、使用するSAWがレイリー波であるため、液相系のセンサには使用できないという問題がある。   On the other hand, as shown by the solid line in FIG. 10, the crystal has excellent frequency stability with respect to temperature, and temperature management is easy. However, the ST-cut quartz substrate is small in size and can realize a high Q value and excellent frequency stability. However, as described above, since the SAW used is a Rayleigh wave, it cannot be used for a liquid phase sensor. There is.

また、上述した特許文献5,6に記載の回転Yカット水晶板は、SSBW波が基本的に基板内部に潜って進んでいく波であるため、効率的なエネルギ閉じ込め効果が得られず、SAWの反射効率が悪い、という問題がある。従って、小型で高いQ値のSAWデバイスを実現することは困難である。特に特許文献6に記載の多対IDT型SAW共振子は、高いQ値を得るのに必要なIDT対数が非常に多いので、それだけデバイスサイズが大きくなり、小型化の要求を満足できない、という問題がある。   In addition, the rotating Y-cut quartz plate described in Patent Documents 5 and 6 described above is a wave in which the SSBW wave basically goes under the substrate, so that an efficient energy confinement effect cannot be obtained. There is a problem that the reflection efficiency is poor. Therefore, it is difficult to realize a SAW device having a small size and a high Q value. In particular, the multi-pair IDT type SAW resonator described in Patent Document 6 has a problem that the device size becomes so large that the requirement for miniaturization cannot be satisfied because the number of IDT pairs necessary for obtaining a high Q value is very large. There is.

そこで本発明は、上述した従来の問題点に鑑みてなされたものであり、その目的は、小型化可能で高いQ値及び優れた周波数温度特性を発揮し、特に液相系に適した高感度なSAWセンサ、及びかかるSAWセンサからなる複数のチャネルを単一の圧電基板上に有するマルチチャネル型のSAWセンサシステムを提供することにある。   Therefore, the present invention has been made in view of the above-described conventional problems, and its purpose is to be able to be miniaturized, exhibiting a high Q value and excellent frequency temperature characteristics, and particularly high sensitivity suitable for a liquid phase system. Another object of the present invention is to provide a multi-channel SAW sensor system having a single SAW sensor and a plurality of channels composed of such SAW sensors on a single piezoelectric substrate.

本願発明者らは、図1に示すように、回転Yカット水晶板からなりかつSAWの伝搬方向を結晶X軸に関して90±5°とした圧電基板と、該圧電基板の表面に形成したAl又はAlを主成分とする合金からなるIDTとを備え、該IDTにより励振されるSAWをSH波としたSAWデバイスについて、様々な実験を行い、そのカット角θ、励振するSAWの波長λで基準化したIDTの電極膜厚H/λ、Q値、及び周波数温度特性の関係を詳細に検討した。その結果、前記回転Yカット水晶板のカット角θを結晶Z軸より反時計方向に−64°<θ<−49.3°の範囲に設定し、かつ電極膜厚H/λを0.04<H/λ<0.12の範囲に設定することにより、励振波を基板表面に集中させてSAWの反射効率を向上させ、小型でQ値が高くかつ周波数安定性が優れたSAWデバイスを提供し得ることを見い出した。   As shown in FIG. 1, the inventors of the present application have a piezoelectric substrate made of a rotated Y-cut quartz plate and having a SAW propagation direction of 90 ± 5 ° with respect to the crystal X axis, and Al or A variety of experiments were conducted on SAW devices including an IDT made of an alloy containing Al as a main component and the SAW excited by the IDT being an SH wave, and normalized by the cut angle θ and the wavelength λ of the excited SAW. The relationship between the electrode thickness H / λ, Q value, and frequency temperature characteristics of the IDT was examined in detail. As a result, the cut angle θ of the rotated Y-cut quartz plate is set in the range of −64 ° <θ <−49.3 ° counterclockwise from the crystal Z axis, and the electrode film thickness H / λ is 0.04. By setting it in the range of <H / λ <0.12, the SAW device is focused on the substrate surface to improve the SAW reflection efficiency and provide a small SAW device with high Q value and excellent frequency stability. I found out that I could do it.

本発明は、本願発明者らのかかる知見に基づいてなされたものである。
本発明によれば、上記目的を達成するために、圧電基板と、該圧電基板の表面に形成したIDTと、該IDTにより励振されるSAWの伝搬面に固定され、目的の物質を認識するための受容体とを備え、圧電基板が回転Yカット水晶板であり、そのカット面及びSAWの伝搬方向をオイラー角表示で(0°,−64〜−49.3°+90°,90±5°)=(0°,26〜40.7°,90±5°)とした水晶平板からなり、IDTが、Al又はAlを主成分とする合金からなる電極膜で形成され、かつ、該電極膜の膜厚Hが、SAWの波長をλとして、0.04<H/λ<0.12であるSAWセンサが提供される。
This invention is made | formed based on this knowledge of this inventor.
According to the present invention, in order to achieve the above object, the piezoelectric substrate, the IDT formed on the surface of the piezoelectric substrate, and the SAW excited by the IDT are fixed to the propagation surface to recognize the target substance. The piezoelectric substrate is a rotating Y-cut quartz plate, and the cut surface and SAW propagation direction are displayed in Euler angles (0 °, −64 to −49.3 ° + 90 °, 90 ± 5 °). ) = (0 °, 26-40.7 °, 90 ± 5 °), the IDT is formed of an electrode film made of Al or an alloy containing Al as a main component, and the electrode film A SAW sensor having a thickness H of 0.04 <H / λ <0.12 is provided where the wavelength of SAW is λ.

このように圧電基板及びIDTを構成することにより、本発明のSAWセンサは、SH波が励振されるので、液相系のセンサにも使用することができ、かつ、良好な温度特性及び高いQ値が得られるので、CI値を低く抑制でき、高感度かつ高い測定精度のセンサを実現することができる。   By configuring the piezoelectric substrate and the IDT in this way, the SAW sensor of the present invention excites the SH wave, so that it can be used for a liquid phase sensor, and has good temperature characteristics and high Q. Since the value is obtained, the CI value can be suppressed low, and a sensor with high sensitivity and high measurement accuracy can be realized.

或る実施例では、SAWの伝搬方向に沿ってIDT及び受容体を挟むようにそれらの両側に配置される1対の反射器を更に備えることにより、それらの間にSAWエネルギを閉じ込める効果を高め、圧電基板端面からの反射波を少なくしかつ損失を少なくしてQ値を高め、CI値を小さくし、より優れた共振特性が得られるので、SAWセンサの感度を向上させることができる。   In some embodiments, a pair of reflectors disposed on both sides of the IDT and the receiver along the SAW propagation direction further comprises a pair of reflectors to enhance the effect of confining SAW energy between them. Since the reflected wave from the end face of the piezoelectric substrate is reduced and the loss is reduced, the Q value is increased, the CI value is reduced, and more excellent resonance characteristics can be obtained, so that the sensitivity of the SAW sensor can be improved.

別の実施例では、SAWセンサのIDTが励振用IDTと受信用IDTとからなり、かつ受容体が励振用IDTと受信用IDTとの間に配置された2ポート共振子型である。   In another embodiment, the SAW sensor IDT is a two-port resonator type in which the IDT includes an excitation IDT and a reception IDT, and the receptor is disposed between the excitation IDT and the reception IDT.

また、或る実施例では、SAWセンサのIDTが1組の交差指電極を有する1つのIDTからなる1ポート共振子型であり、トランスバーサル型に比して1個のIDTを省略できるので、小型化及び製造コストの低減を図ることができる。この場合、受容体は、交差指電極の電極指と電極指との間に配置することができ、またはIDTと一方の反射器との間に配置することができる。   In one embodiment, the IDT of the SAW sensor is a one-port resonator type consisting of one IDT having a pair of cross finger electrodes, and one IDT can be omitted as compared to the transversal type. It is possible to reduce the size and the manufacturing cost. In this case, the receptor can be placed between the electrode fingers of the interdigitated electrode, or can be placed between the IDT and one reflector.

本発明の別の側面によれば、上述した本発明のSAWセンサを複数個有し、それらSAWセンサがSAWの伝搬方向に関して直列にかつ/又は並列に配置されると共に、各SAWセンサを単一の共通の圧電基板に設けることにより、各チャネルの感度及び測定精度を向上させたマルチチャネル型のSAWセンサシステムが提供される。特に、各チャネルのSAWセンサが1対の反射器を有する場合には、それらを同時に発振させても、隣接するチャネルから励振されたSAWの影響及び圧電基板端面によるSAW反射波の影響を有効に排除することができる。   According to another aspect of the present invention, a plurality of the above-described SAW sensors of the present invention are provided, the SAW sensors are arranged in series and / or in parallel with respect to the propagation direction of the SAW, and each SAW sensor is a single unit. By providing them on a common piezoelectric substrate, a multi-channel SAW sensor system with improved sensitivity and measurement accuracy of each channel is provided. In particular, when the SAW sensor of each channel has a pair of reflectors, the effect of the SAW excited from the adjacent channel and the effect of the SAW reflected wave from the end face of the piezoelectric substrate are effectively obtained even if they are simultaneously oscillated. Can be eliminated.

以下に、添付図面を参照しつつ、本発明の好適な実施例について詳細に説明する。
先ず、本発明のSAWセンサを構成するSAW共振子について説明する。このSAW共振子は、図1に示すように、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64〜−49.3°回転した付近に設定し、かつSAWの伝搬方向を結晶X軸に対して略垂直方向(90±5°)にした水晶平板である。この圧電基板において励振されるSAWは、SH波である。圧電基板の表面に形成するIDTの電極材料は、Al又はAlを主成分とする合金である。尚、本実施例において、IDTの電極膜厚Hは、それにより励振されるSAWの波長λで基準化した値H/λで表わすこととする。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
First, the SAW resonator constituting the SAW sensor of the present invention will be described. In this SAW resonator, as shown in FIG. 1, the cut angle θ of the rotated Y-cut quartz substrate is set in the vicinity of being rotated −64 to −49.3 ° counterclockwise from the crystal Z axis, and SAW propagation is performed. It is a quartz plate whose direction is substantially perpendicular to the crystal X axis (90 ± 5 °). The SAW excited in this piezoelectric substrate is an SH wave. The electrode material of IDT formed on the surface of the piezoelectric substrate is Al or an alloy containing Al as a main component. In this embodiment, the electrode film thickness H of the IDT is represented by a value H / λ normalized by the wavelength λ of the SAW excited thereby.

図1に示す圧電基板にカット角θ=−51°の回転Yカット90°X伝搬水晶基板(オイラー角表示で(0°,39°,90°))を用い、共振周波数を315MHz、電極膜厚H/λを0.06、IDTの対数を100とし、更に本数100のグレーティング反射器を設けたSAW共振子を試作し、その特性を測定した。また、SAWの伝搬方向に沿って、IDTを構成する電極指のピッチ(=電極指の幅+電極指間のスペース)に対する電極指の幅をライン占有率mrとし、mr=0.60に設定した。比較例として、STカット水晶板を圧電基板としかつ同じ設計条件で従来のSAW共振子を製作し、その諸特性を測定した。   The piezoelectric substrate shown in FIG. 1 uses a rotating Y-cut 90 ° X propagation quartz substrate (Euler angle display (0 °, 39 °, 90 °)) with a cut angle θ = −51 °, a resonance frequency of 315 MHz, and an electrode film A SAW resonator having a thickness H / λ of 0.06, a logarithm of IDT of 100, and further provided with 100 grating reflectors was fabricated, and its characteristics were measured. Further, along the SAW propagation direction, the electrode finger width with respect to the pitch of the electrode fingers constituting the IDT (= the width of the electrode fingers + the space between the electrode fingers) is defined as the line occupation ratio mr, and mr = 0.60 is set. did. As a comparative example, a conventional SAW resonator was manufactured using an ST cut quartz plate as a piezoelectric substrate and under the same design conditions, and various characteristics were measured.

図2は、それらの周波数温度特性を示している。同図から分かるように、本発明のSAW共振子は、頂点温度Tpが約25℃であり、温度による周波数変動量が、従来のSTカット水晶SAW共振子に比してその約0.6倍程度に小さくなった。このように、本発明においては、優れた周波数安定性が得られる。   FIG. 2 shows their frequency temperature characteristics. As can be seen from the figure, the SAW resonator of the present invention has an apex temperature Tp of about 25 ° C., and the frequency variation due to temperature is about 0.6 times that of the conventional ST-cut quartz SAW resonator. It became small to the extent. Thus, in the present invention, excellent frequency stability can be obtained.

また、一般にSAW共振子の最適設計において重要なことは、周波数温度特性が優れ、Qが高くかつ容量比γが小さい、即ち良感度(figure of merit=Q/γ)が大きいことである。本発明のSAW共振子は、Q値が27500、良感度(Q/γ)が21.2、2次温度係数が−0.020(ppm/℃ )であった。これに対し、従来のSTカット水晶SAW共振子は、Q値が15000、良感度(Q/γ)が10.7、2次温度係数が−0.034(ppm/℃)であった。これらを比較すると、本発明のSAW共振子は、従来のSTカット水晶SAW共振子に比して、Q値が1.8倍強、良感度(Q/γ)が約2倍も大きい値を得られていることが分かる。 In general, what is important in the optimum design of the SAW resonator is that the frequency temperature characteristic is excellent, the Q is high, and the capacitance ratio γ is small, that is, the sensitivity (figure of merit = Q / γ) is large. The SAW resonator of the present invention had a Q value of 27500, a good sensitivity (Q / γ) of 21.2, and a secondary temperature coefficient of −0.020 (ppm / ° C. 2 ). In contrast, the conventional ST-cut quartz SAW resonator had a Q value of 15000, a good sensitivity (Q / γ) of 10.7, and a secondary temperature coefficient of −0.034 (ppm / ° C. 2 ). Comparing these, the SAW resonator of the present invention has a Q value slightly higher than 1.8 times and a good sensitivity (Q / γ) approximately twice as large as those of the conventional ST-cut quartz crystal SAW resonator. You can see that it is obtained.

更に、本発明のSAW共振子における電極膜厚H/λとQ値の関係を図3に示す。同図から、本発明のSAW共振子は、0.04<H/λ<0.12の範囲において、STカット水晶SAW共振子よりも高いQ値を得られることが分かる。更に、本発明のSAW共振子における電極膜厚を0.05<H/λ<0.10の範囲に設定することにより、20000以上のより高いQ値を得ることができる。   Further, FIG. 3 shows the relationship between the electrode film thickness H / λ and the Q value in the SAW resonator of the present invention. From the figure, it can be seen that the SAW resonator of the present invention can obtain a higher Q value than the ST cut quartz SAW resonator in the range of 0.04 <H / λ <0.12. Furthermore, a higher Q value of 20000 or more can be obtained by setting the electrode film thickness in the SAW resonator of the present invention in the range of 0.05 <H / λ <0.10.

このように、本発明においては、電極膜厚H/λを大きく設定することにより、SAWを圧電基板表面に集中させてSAWの反射効率を良くし、SAWエネルギの閉じ込め効果を高めることができる。従って、従来よりも高いQ値を実現しつつ、圧電基板を小型化することができる。   As described above, in the present invention, by setting the electrode film thickness H / λ to be large, the SAW can be concentrated on the surface of the piezoelectric substrate to improve the SAW reflection efficiency and enhance the confinement effect of the SAW energy. Therefore, it is possible to reduce the size of the piezoelectric substrate while realizing a higher Q value than before.

更に、実用的な使用温度範囲(−50℃〜+125℃)において優れた周波数安定性を実現するために、2次温度係数だけでなく、頂点温度Tpについても詳細に検討した。その結果、本発明のSAW共振子において、カット角θを−50.5°としたとき、電極膜厚H/λと頂点温度Tpとの関係は、次の近似式で表わされる。
Tp(H/λ)=−41825×(H/λ)+2855.4×(H/λ)−26.42 …(1)
これから、電極膜厚H/λを大きくすると、頂点温度Tpは下がることが分かる。
Furthermore, in order to realize excellent frequency stability in a practical use temperature range (−50 ° C. to + 125 ° C.), not only the secondary temperature coefficient but also the apex temperature Tp was examined in detail. As a result, in the SAW resonator of the present invention, when the cut angle θ is −50.5 °, the relationship between the electrode film thickness H / λ and the apex temperature Tp is expressed by the following approximate expression.
Tp (H / λ) = − 41825 × (H / λ) 2 + 2855.4 × (H / λ) −26.42 (1)
From this, it can be seen that the vertex temperature Tp decreases as the electrode film thickness H / λ is increased.

また、本発明のSAW共振子において、電極膜厚H/λを0.06としたとき、カット角θと頂点温度Tpとの関係は、次の近似式で表わされる。
Tp(θ)=−43.5372×θ−2197.14 …(2)
これから、カット角θの絶対値を小さくすると、頂点温度Tpは下がることが分かる。
In the SAW resonator of the present invention, when the electrode film thickness H / λ is 0.06, the relationship between the cut angle θ and the vertex temperature Tp is expressed by the following approximate expression.
Tp (θ) = − 43.5372 × θ−2197.14 (2)
From this, it can be seen that the vertex temperature Tp decreases as the absolute value of the cut angle θ decreases.

上記式(1)及び式(2)から、電極膜厚H/λを0.04<H/λ<0.12としたとき、頂点温度Tpを実用的な使用温度範囲(−50〜+125℃)に設定するには、カット角θを−59.9°≦θ≦−48.9°の範囲に設定すれば良いことが分かる。   From the above formulas (1) and (2), when the electrode film thickness H / λ is 0.04 <H / λ <0.12, the apex temperature Tp is set to a practical operating temperature range (−50 to + 125 ° C. It can be seen that the cut angle θ should be set in the range of −59.9 ° ≦ θ ≦ −48.9 °.

また、電極膜厚H/λ及びカット角θの双方を考慮したとき、頂点温度Tpは、上記式(1)及び式(2)から次の近似式で表わされる。
Tp(H/λ,θ)=Tp(H/λ)+Tp(θ)=−41825×(H/λ)+2855.4×(H/λ)−43.5372×θ−2223.56 …(3)
この式(3)から、頂点温度Tpを使用温度範囲(−50〜+125℃)に設定するためには、次式(4)で表される範囲に電極膜厚H/λ及びカット角θを設定すれば良いことが分かる。
0.9613≦−18.498×(H/λ)+1.2629×(H/λ)−0.019255×θ≦1.0387 …(4)
Further, when considering both the electrode film thickness H / λ and the cut angle θ, the apex temperature Tp is expressed by the following approximate expression from the above expressions (1) and (2).
Tp (H / λ, θ) = Tp (H / λ) + Tp (θ) = − 41825 × (H / λ) 2 + 2855.4 × (H / λ) −43.5372 × θ−2223.56 (3)
From this equation (3), in order to set the apex temperature Tp within the operating temperature range (−50 to + 125 ° C.), the electrode film thickness H / λ and the cut angle θ are set within the range represented by the following equation (4). You can see that it should be set.
0.9613 ≦ −18.498 × (H / λ) 2 + 1.2629 × (H / λ) −0.019255 × θ ≦ 1.0387 (4)

このようにカット角θを−59.9゜≦θ≦−48.9゜の範囲に、かつIDTの電極膜厚H/λを0.04<H/λ<0.12とすることにより、実用的な使用温度範囲(−50℃〜+125℃)において、従来より小型で、高いQ値及び優れた周波数安定性のSAWセンサを実現できる。   Thus, by setting the cut angle θ in the range of −59.9 ° ≦ θ ≦ −48.9 ° and the electrode film thickness H / λ of the IDT to 0.04 <H / λ <0.12, In a practical operating temperature range (−50 ° C. to + 125 ° C.), it is possible to realize a SAW sensor that is smaller than the conventional one, and has a high Q value and excellent frequency stability.

更に、より最適な設計条件について検討すると、電極膜厚H/λは図3から、20000以上のQ値が得られる0.05<H/λ<0.10の範囲に設定するのが好ましい。また、頂点温度Tpをより実用的な使用温度範囲(0°〜70℃)に設定するためには、カット角θは、−55.7°≦θ≦−50.2°の範囲に設定するのが好ましく、更に、上記式(3)から得られる次式(5)の範囲に、カット角θ及び電極膜厚H/λを設定するのが好ましい。
0.9845≦−18.518×(H/λ)+1.2643×(H/λ)−0.019277×θ≦1.0155 …(5)
Further, considering more optimal design conditions, it is preferable that the electrode film thickness H / λ is set in the range of 0.05 <H / λ <0.10 in which a Q value of 20000 or more can be obtained from FIG. Further, in order to set the vertex temperature Tp to a more practical use temperature range (0 ° to 70 ° C.), the cut angle θ is set to a range of −55.7 ° ≦ θ ≦ −50.2 °. Further, it is preferable to set the cut angle θ and the electrode film thickness H / λ within the range of the following equation (5) obtained from the equation (3).
0.9845 ≦ −18.518 × (H / λ) 2 + 1.2643 × (H / λ) −0.019277 × θ ≦ 1.0155 (5)

更に、広い範囲のカット角θについて実験を行ったところ、以下に説明するように、より詳細な条件を見い出すことができた。上述した本発明のSAW共振子において、頂点温度Tpが−50℃,0℃,70℃,125℃であるとき、水晶基板のカット角θと電極膜厚H/λとの関係は、Tp特性を示す次の近似式で表される。
Tp=−50(℃)の場合:
H/λ≒−1.02586×10−4×θ −1.73238×10−2×θ−0.977607×θ−18.3420
Tp=0(℃)の場合:
H/λ≒−9.87591×10−5×θ−1.70304×10−2×θ−0.981173×θ−18.7946
Tp=+70(℃)の場合:
H/λ≒−1.44605×10−4×θ−2.50690×10−2×θ−1.45086×θ−27.9464
Tp=+125(℃)の場合:
H/λ≒−1.34082×10−4×θ−2.34969×10−2×θ−1.37506×θ−26.7895
Furthermore, when an experiment was conducted for a wide range of cut angles θ, more detailed conditions could be found as will be described below. In the above-described SAW resonator of the present invention, when the apex temperature Tp is −50 ° C., 0 ° C., 70 ° C., 125 ° C., the relationship between the cut angle θ of the quartz substrate and the electrode film thickness H / λ is the Tp characteristic. Is expressed by the following approximate expression.
When Tp = −50 (° C.):
H / λ≈−1.02586 × 10 −4 × θ 3 −1.73238 × 10 −2 × θ 2 −0.977607 × θ−18.3420
When Tp = 0 (° C.):
H / λ≈−9.875991 × 10 −5 × θ 3 −1.70304 × 10 −2 × θ 2 −0.981173 × θ−18.7946
When Tp = + 70 (° C.):
H / λ≈−1.44605 × 10 −4 × θ 3 −2.50690 × 10 −2 × θ 2 −1.45086 × θ−27.9464
When Tp = + 125 (° C.):
H / λ ≒ −1.34082 × 10 −4 × θ 3 −2.34969 × 10 −2 × θ 2 −1.37506 × θ−26.7895

これらのTp特性を示す近似式から、頂点温度Tpを実用的使用温度範囲−50≦Tp≦125に設定するためには、Tp=−50℃及びTp=125℃における近似式の曲線に囲まれた領域、即ち、
−1.34082×10−4×θ−2.34969×10−2×θ−1.37506×θ−26.7895<H/λ<−1.02586×10−4×θ−1.73238×10−2×θ−0.977607×θ−18.3420
となるように、カット角θ及び電極膜厚H/λを設定すれば良いことが分かる。また、このときの電極膜厚H/λの範囲を、上述したように従来よりも優れた特性が得られる0.04<H/λ<0.12とし、その範囲に対応して、カット角θの範囲を−64.0<θ<−49.3とすることが好ましい。
In order to set the apex temperature Tp to the practical use temperature range −50 ≦ Tp ≦ 125 from the approximate expression showing these Tp characteristics, it is surrounded by the curve of the approximate expression at Tp = −50 ° C. and Tp = 125 ° C. Area, ie
−1.34082 × 10 −4 × θ 3 −2.34969 × 10 −2 × θ 2 −1.37506 × θ−26.7895 <H / λ <−1.02586 × 10 −4 × θ 3 −1.73238 × 10 −2 × θ 2 −0.977607 × θ-18.3420
It can be seen that the cut angle θ and the electrode film thickness H / λ may be set so that In addition, the range of the electrode film thickness H / λ at this time is set to 0.04 <H / λ <0.12 in which characteristics superior to those of the prior art can be obtained as described above, and the cut angle corresponding to the range is obtained. The range of θ is preferably −64.0 <θ <−49.3.

更に、より最適な条件について検討すると、頂点温度Tp(℃)は、より実用的な使用温度範囲0≦Tp≦70に設定することが望ましい。そのためには、Tp特性を示す上記近似式から、Tp=0℃及びTp=70℃における近似式の曲線に囲まれた領域、即ち、
−1.44605×10−4×θ−2.50690×10−2×θ−1.45086×θ−27.9464<H/λ<−9.87591×10−5×θ−1.70304×10−2×θ−0.981173×θ−18.7946
となるように、カット角θ及び電極膜厚H/λを設定すれば良い。このとき、電極膜厚H/λは、上述したように20000以上のQ値が得られる0.05<H/λ<0.10の範囲にするのが望ましく、その電極膜厚の範囲に対応して、カット角θを−61.4<θ<−51.1に設定することが好ましい。
Further, considering more optimal conditions, it is desirable that the vertex temperature Tp (° C.) is set to a more practical use temperature range 0 ≦ Tp ≦ 70. For that purpose, from the above approximate expression showing the Tp characteristics, a region surrounded by the curve of the approximate expression at Tp = 0 ° C. and Tp = 70 ° C., that is,
−1.44605 × 10 −4 × θ 3 −2.50690 × 10 −2 × θ 2 −1.45086 × θ−27.9464 <H / λ <−9.87591 × 10 −5 × θ 3 −1.70304 × 10 −2 × θ 2 −0.981173 × θ-18.7946
The cut angle θ and the electrode film thickness H / λ may be set so that At this time, the electrode film thickness H / λ is desirably in the range of 0.05 <H / λ <0.10, where a Q value of 20000 or more can be obtained as described above, and corresponds to the range of the electrode film thickness. Thus, the cut angle θ is preferably set to −61.4 <θ <−51.1.

以上の詳細な検討結果から、本発明のSAW共振子は、カット角θが−64.0゜<θ<−49.3゜、好ましくは−61.4°<θ<−51.1°の範囲にある回転Yカット水晶基板を圧電基板として、SAWの伝搬方向がX軸に対して略垂直方向に励振されるSH波を用い、IDTをAlまたはAlを主とした合金の電極材料で形成し、その電極膜厚H/λを0.04<H/λ<0.12、好ましくは0.05<H/λ<0.10とすることが好ましい。これにより、従来のSTカット水晶SAW共振子よりも高いQ値及び優れた温度特性が得られると共に、頂点温度Tpを上述した実用的な使用温度範囲内に設定することができる。   From the above detailed examination results, the SAW resonator of the present invention has a cut angle θ of −64.0 ° <θ <−49.3 °, preferably −61.4 ° <θ <−51.1 °. Using a rotating Y-cut quartz substrate in the range as a piezoelectric substrate, and using SH waves excited in a SAW propagation direction substantially perpendicular to the X axis, IDT is made of an electrode material of Al or an alloy mainly composed of Al. The electrode film thickness H / λ is 0.04 <H / λ <0.12, preferably 0.05 <H / λ <0.10. As a result, a higher Q value and superior temperature characteristics than the conventional ST-cut quartz SAW resonator can be obtained, and the apex temperature Tp can be set within the practical operating temperature range described above.

更に、IDTのライン占有率mrを上述した値0.60に固定せず、変化させた場合のTp特性について検討した。その結果、電極膜厚とライン占有率との積H/λ×mrは、その値を大きくする程、頂点温度Tpは下がることが分かった。   Further, the Tp characteristic when the IDT line occupancy mr was changed without being fixed to the above-described value 0.60 was examined. As a result, it was found that the product H / λ × mr of the electrode film thickness and the line occupancy rate increases the vertex temperature Tp as the value is increased.

次に、頂点温度Tpが−50℃,0℃,70℃,125℃であるとき、電極膜厚とライン占有率との積H/λ×mrと水晶基板のカット角θとの関係は、Tp特性を示す次の近似式で表される。
Tp=−50(℃)の場合:
H/λ×mr≒−6.15517×10−5×θ−1.03943×10−2×θ−0.586564×θ−11.0052
Tp=0(℃)の場合:
H/λ×mr≒−5.92554×10−5×θ−1.02183×10−2×θ−0.588704×θ−11.2768
Tp=70(℃)の場合:
H/λ×mr≒−8.67632×10−5×θ−1.50414×10−2×θ−0.870514×θ−16.7678
Tp=125(℃)の場合:
H/λ×mr≒−8.04489×10−5×θ−1.40981×10−2×θ−0.825038×θ−16.0737
Next, when the apex temperature Tp is −50 ° C., 0 ° C., 70 ° C., 125 ° C., the relationship between the product H / λ × mr of the electrode film thickness and the line occupation rate and the cut angle θ of the quartz substrate is It is represented by the following approximate expression indicating the Tp characteristic.
When Tp = −50 (° C.):
H / λ × mr≈−6.115517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ−11.0052
When Tp = 0 (° C.):
H / λ × mr≈−5.92554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 −0.588704 × θ−11.2768
When Tp = 70 (° C.):
H / λ × mr≈−8.67632 × 10 −5 × θ 3 −1.50414 × 10 −2 × θ 2 −0.870514 × θ−16.7678
When Tp = 125 (° C.):
H / λ × mr≈−8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737

これらのTp特性を示す近似式から、頂点温度Tpを実用的使用温度範囲−50≦Tp≦125に設定するためには、Tp=−50℃及びTp=125℃における近似式の曲線に囲まれた領域、即ち、
−8.04489×10−5×θ−1.40981×10−2×θ−0.825038×θ−16.0737<H/λ×mr<−6.15517×10−5×θ−1.03943×10−2×θ−0.586564×θ−11.0052
となるように、カット角θ及び電極膜厚とライン占有率との積H/λ×mrを設定すれば良いことが分かる。また、このときの電極膜厚H/λの範囲を、上述したように従来よりも優れた特性が得られる0.04<H/λ<0.12とし、その範囲に対応して、カット角θの範囲を−64.0<θ<−49.3とすることが好ましい。
In order to set the apex temperature Tp to the practical use temperature range −50 ≦ Tp ≦ 125 from the approximate expression showing these Tp characteristics, it is surrounded by the curve of the approximate expression at Tp = −50 ° C. and Tp = 125 ° C. Area, ie
−8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <−6.15517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 − 0.586564 × θ-11.0052
It can be seen that the cut angle θ and the product H / λ × mr of the electrode film thickness and the line occupancy should be set so that In addition, the range of the electrode film thickness H / λ at this time is set to 0.04 <H / λ <0.12 in which characteristics superior to those of the prior art can be obtained as described above, and the cut angle corresponding to the range is obtained. The range of θ is preferably −64.0 <θ <−49.3.

更に、より最適な条件について検討すると、頂点温度Tp(℃)は、より実用的な使用温度範囲0≦Tp≦70に設定することが望ましい。そのためには、Tp特性を示す上記近似式から、Tp=0℃及びTp=70℃における近似式の曲線に囲まれた領域、即ち、
−8.67632×10−5×θ−1.50414×10−2×θ−0.870514×θ−16.7678<H/λ×mr<−5.92554×10−5×θ−1.02183×10−2×θ−0.588704×θ−11.2768
となるように、カット角θ及び電極膜厚とライン占有率との積H/λ×mrを設定すれば良い。このとき、電極膜厚H/λは、上述したように20000以上のQ値が得られる0.05<H/λ<0.10とするのが望ましく、その電極膜厚の範囲に対応して、カット角θを−61.4<θ<−51.1に設定することが好ましい。
Further, considering more optimal conditions, it is desirable that the vertex temperature Tp (° C.) is set to a more practical use temperature range 0 ≦ Tp ≦ 70. For that purpose, from the above approximate expression showing the Tp characteristics, a region surrounded by the curve of the approximate expression at Tp = 0 ° C. and Tp = 70 ° C., that is,
−8.67632 × 10 −5 × θ 3 −1.50414 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.92554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 − 0.588704 × θ−11.2768
The product H / λ × mr of the cut angle θ and the electrode film thickness and the line occupation ratio may be set so that At this time, it is desirable that the electrode film thickness H / λ is 0.05 <H / λ <0.10, which can obtain a Q value of 20000 or more as described above, and corresponds to the range of the electrode film thickness. The cut angle θ is preferably set to −61.4 <θ <−51.1.

図4は、本発明によるSAWセンサの第1実施例を示している。このSAWセンサは、所謂トランスバーサル型構造で、圧電基板1の表面には、励振用IDT2と受信用IDT3とそれらの間のSAW伝搬面に配置した検出物質反応膜などの受容体4とを有する。受容体4は、検出対象となる化学物質の性状・特質などに対応して、例えばガス吸着体、酵素、微生物、抗体、DNAなど従来公知の様々なものを用いることができ、それらを固定した膜、セルなど従来公知の様々な形態で使用される。前記受容体に目的の化学物質が化学的に結合してその重量が変化すると、励振用IDT2により励振されたSAW5の伝搬速度が変化し、これを受信用IDT3が発振周波数の変化として測定することにより、目的物質及び/又はその物性を高精度に検出することができる。   FIG. 4 shows a first embodiment of a SAW sensor according to the present invention. This SAW sensor has a so-called transversal structure, and has an excitation IDT 2, a reception IDT 3, and a receptor 4 such as a detection substance reaction film disposed on a SAW propagation surface therebetween on the surface of the piezoelectric substrate 1. . As the receptor 4, various conventionally known substances such as a gas adsorbent, an enzyme, a microorganism, an antibody, and DNA can be used in accordance with the properties and characteristics of the chemical substance to be detected. It is used in various conventionally known forms such as a membrane and a cell. When the target chemical substance is chemically bound to the receptor and its weight changes, the propagation speed of the SAW 5 excited by the excitation IDT 2 changes, and this is measured by the reception IDT 3 as a change in oscillation frequency. Thus, the target substance and / or its physical properties can be detected with high accuracy.

圧電基板1は、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64〜−49.3°回転した付近に設定し、かつSAWの伝搬方向を結晶X軸に対して略垂直方向(90±5°)にした水晶平板である。この回転Yカット水晶基板は、カット面及びSAWの伝搬方向を(0°,26〜40.7°,90±5°)のオイラー角で表示することができる。各IDT2,3は、Al又はAlを主成分とする合金の電極材料で、フォトリソグラフィ、蒸着、スパッタリングなどの従来方法を用いて形成されている。各IDT2,3の電極膜厚Hは、該IDTにより励振されるSAWの波長をλとして、0.04<H/λ<0.12に設定される。   The piezoelectric substrate 1 sets the cut angle θ of the rotated Y-cut quartz substrate in the vicinity of the rotation of −64 to −49.3 ° counterclockwise from the crystal Z axis, and the SAW propagation direction with respect to the crystal X axis. It is a quartz plate in a substantially vertical direction (90 ± 5 °). This rotated Y-cut quartz substrate can display the cut surface and the SAW propagation direction with an Euler angle of (0 °, 26-40.7 °, 90 ± 5 °). Each IDT 2 and 3 is an electrode material made of Al or an alloy containing Al as a main component, and is formed using a conventional method such as photolithography, vapor deposition, or sputtering. The electrode film thickness H of each IDT 2 and 3 is set to 0.04 <H / λ <0.12 where λ is the wavelength of the SAW excited by the IDT.

本実施例のSAWセンサは、このように設定した回転Yカット水晶基板を圧電基板1に用いかつIDT2,3を形成することによって、SH波を励振する。そのため、優れた表面波エネルギの閉じ込め効果が得られ、それにより伝搬損失を少なくしてQ値を高くし、CI値を小さくして、図5に示すように優れた共振特性を得ることかできる。また、SH波を励振するので、本実施例のSAWセンサは、液相系のセンサにも使用することができる。更に、良好な温度特性及び高いQ値が得られるので、CI値を低く抑制でき、高感度かつ高い測定精度のセンサを実現することができる。   The SAW sensor of this embodiment excites the SH wave by using the rotary Y-cut quartz substrate set in this way as the piezoelectric substrate 1 and forming IDTs 2 and 3. Therefore, an excellent confinement effect of surface wave energy can be obtained, thereby reducing the propagation loss, increasing the Q value, and decreasing the CI value, thereby obtaining excellent resonance characteristics as shown in FIG. . Further, since the SH wave is excited, the SAW sensor of this embodiment can also be used for a liquid phase sensor. Furthermore, since a good temperature characteristic and a high Q value can be obtained, the CI value can be suppressed low, and a sensor with high sensitivity and high measurement accuracy can be realized.

図6は、本発明によるSAWセンサの第2実施例を示している。このSAWセンサ10は、同様に回転Yカット水晶板のカット面及びSAWの伝搬方向をオイラー角表示で(0°,26〜40.7°,90±5°)とした水晶平板からなる圧電基板11の表面略中央に、1組の交差指電極12a、12bからなるIDT13が形成されている。IDT13の略中央には、前記交差指電極を構成する電極指と電極指間のSAW伝搬面に受容体14が配置されている。IDT13は、Al又はAlを主成分とする合金の電極材料で形成され、かつその電極膜厚Hは、励振されるSAWの波長をλとして、0.04<H/λ<0.12に設定されている。   FIG. 6 shows a second embodiment of the SAW sensor according to the present invention. Similarly, the SAW sensor 10 is a piezoelectric substrate made of a quartz plate having a cut surface of a rotating Y-cut quartz plate and a SAW propagation direction represented by Euler angles (0 °, 26 to 40.7 °, 90 ± 5 °). An IDT 13 composed of a pair of crossed finger electrodes 12a and 12b is formed at approximately the center of the surface of the electrode 11. In the approximate center of the IDT 13, a receptor 14 is disposed on the SAW propagation surface between the electrode fingers constituting the cross finger electrode. The IDT 13 is made of electrode material of Al or an alloy containing Al as a main component, and the electrode film thickness H is set to 0.04 <H / λ <0.12 where λ is the wavelength of the excited SAW. Has been.

IDT13及び受容体14の左右両側には、それぞれ格子構造の反射器15、15が配置されている。前記反射器は、IDT13と同様に、かつそれと同時にAl又はAlを主成分とする合金で形成することができる。この1ポート共振子型のSAWセンサ10において、入力側交差指電極12aと出力側交差指電極12b間に所定の高周波信号電圧を印加すると、圧電基板11の表面に入力信号と同じ周波数のSAWが励振される。SAWはIDT13の左右両側に伝搬し、左右の反射器15、15に反射されてIDT13の中心に向けて戻る結果、前記両反射器間にSAWの定在波が発生する。このように両反射器15、15間に表面波エネルギが閉じ込められることによって、SAWの圧電基板11の端面による反射波の影響を有効に排除することができる。   On the left and right sides of the IDT 13 and the receiver 14, reflectors 15 and 15 having a lattice structure are arranged, respectively. The reflector can be formed of Al or an alloy containing Al as a main component at the same time as IDT13. In this one-port resonator type SAW sensor 10, when a predetermined high-frequency signal voltage is applied between the input-side cross finger electrode 12a and the output-side cross finger electrode 12b, a SAW having the same frequency as the input signal is generated on the surface of the piezoelectric substrate 11. Excited. The SAW propagates to the left and right sides of the IDT 13 and is reflected by the left and right reflectors 15, 15 and returns toward the center of the IDT 13. As a result, a SAW standing wave is generated between the two reflectors. By confining the surface wave energy between the reflectors 15 and 15 in this way, the influence of the reflected wave due to the end face of the SAW piezoelectric substrate 11 can be effectively eliminated.

受容体14が検出対象の化学物質を吸着するなどしてその重量が増加すると、SAWの伝搬速度が変化し、その周波数が変化する。この周波数変化を測定することによって、目的の化学物質を検出しかつ/又はその濃度、pHなど物性を測定することができる。前記反射器による表面波エネルギの閉じ込め効果により、圧電基板11端面によるSAW反射波の影響を排除できるだけでなく、伝搬損失を少なくしてQ値を高くし、CI値を小さくして、より優れた共振特性が得られるので、SAWセンサの感度が向上し、高精度な検出・測定が可能になる。   When the weight of the receptor 14 increases, for example, by adsorbing a chemical substance to be detected, the propagation speed of the SAW changes and the frequency changes. By measuring this frequency change, the target chemical substance can be detected and / or its physical properties such as its concentration and pH can be measured. Due to the confinement effect of the surface wave energy by the reflector, not only the influence of the SAW reflected wave by the end face of the piezoelectric substrate 11 can be eliminated, but also the propagation loss is reduced, the Q value is increased, the CI value is decreased, and more excellent. Since the resonance characteristic is obtained, the sensitivity of the SAW sensor is improved, and highly accurate detection / measurement is possible.

図7は、図6に示す第2実施例のSAWセンサの変形例を示している。この変形例のSAWセンサ20は、第2実施例と同じ1ポート共振子型の構成を有するが、圧電基板21表面に、入力側及び出力側交差指電極22a,22bからなるIDT23と受容体24とをSAWの伝搬方向に沿って並置し、それらの両側に反射器25、25を配置した点において、第1実施例と異なる。   FIG. 7 shows a modification of the SAW sensor of the second embodiment shown in FIG. The SAW sensor 20 of this modification has the same 1-port resonator type configuration as that of the second embodiment, but the IDT 23 and the receptor 24 formed on the surface of the piezoelectric substrate 21 are composed of input side and output side cross finger electrodes 22a and 22b. Are different from the first embodiment in that the reflectors 25 and 25 are arranged in parallel along the SAW propagation direction.

この変形例においても、IDT23の前記両交差指電極間に所定の高周波信号電圧を印加すると、それと同じ周波数のSAWが圧電基板21表面に励振され、IDT23の左右両側に伝搬しかつ左右の反射器25、25に反射され、前記両反射器間にSAWの定在波が発生する。この表面波エネルギの閉じ込め効果によって、SAWの圧電基板21端面による反射波の影響を有効に排除できる。   Also in this modified example, when a predetermined high-frequency signal voltage is applied between the two crossed finger electrodes of the IDT 23, SAW of the same frequency is excited on the surface of the piezoelectric substrate 21, propagates to the left and right sides of the IDT 23, and the left and right reflectors. The SAW standing wave is generated between the two reflectors. Due to the confinement effect of the surface wave energy, the influence of the reflected wave from the end face of the piezoelectric substrate 21 of SAW can be effectively eliminated.

IDT23と一方の反射器25間のSAW伝搬面に配置された受容体24が検出対象の化学物質を吸着すると、それによる重量の変化がSAW伝搬速度の変化となり、周波数変化として検出する。これにより、同様に目的の化学物質の検出及び/又は物性の測定を高精度に行うことができる。   When the receptor 24 arranged on the SAW propagation surface between the IDT 23 and the one reflector 25 adsorbs the chemical substance to be detected, a change in weight due to this changes into a change in SAW propagation speed, which is detected as a change in frequency. Thereby, the detection of the target chemical substance and / or the measurement of physical properties can be performed with high accuracy.

図8は、本発明によるSAWセンサの第3実施例を示している。このSAWセンサ30は2ポート共振子型で、同様に回転Yカット水晶板のカット面及びSAWの伝搬方向をオイラー角表示で(0°,26〜40.7°,90±5°)とした水晶平板からなる圧電基板31を有する。圧電基板31表面には、第1実施例と同様に励振用IDT32及び受信用IDT33と、前記両IDT間のSAW伝搬面に配置された受容体34とを備え、更にそれらを挟むように左右両側にそれぞれ配置された格子構造の反射器35、35が設けられている。励振用IDT32及び受信用IDT33は、それぞれAl又はAlを主成分とする合金の電極材料で形成され、かつその電極膜厚Hは、励振されるSAWの波長をλとして、0.04<H/λ<0.12に設定されている。   FIG. 8 shows a third embodiment of the SAW sensor according to the present invention. This SAW sensor 30 is a two-port resonator type. Similarly, the cut surface of the rotating Y-cut quartz plate and the SAW propagation direction are set to Euler angles (0 °, 26 to 40.7 °, 90 ± 5 °). It has a piezoelectric substrate 31 made of a quartz plate. The surface of the piezoelectric substrate 31 is provided with the excitation IDT 32 and the reception IDT 33 as in the first embodiment, and the receptor 34 disposed on the SAW propagation surface between the two IDTs, and both left and right sides so as to sandwich them. Are provided with reflectors 35 and 35 having a lattice structure. Each of the excitation IDT 32 and the reception IDT 33 is formed of an electrode material of Al or an alloy containing Al as a main component, and the electrode film thickness H is 0.04 <H / λ <0.12 is set.

励振用IDT32に所定の高周波信号電圧を印加すると、それと同じ周波数のSAWが圧電基板31表面に励振され、第2実施例の場合と同様にIDT32の左右両側に伝搬しかつ左右の反射器35、35に反射されるので、前記両反射器間にSAWの定在波が発生する。この表面波エネルギの閉じ込め効果によって、同様にSAWの圧電基板31端面による反射波の影響を有効に排除できる。   When a predetermined high-frequency signal voltage is applied to the excitation IDT 32, a SAW having the same frequency is excited on the surface of the piezoelectric substrate 31 and propagates to both the left and right sides of the IDT 32 and the left and right reflectors 35, as in the second embodiment. Therefore, a SAW standing wave is generated between the two reflectors. Similarly, due to the confinement effect of the surface wave energy, the influence of the reflected wave from the end face of the SAW piezoelectric substrate 31 can be effectively eliminated.

励振用IDT32により励振されたSAWは受信用IDT33により受信され、その周波数が測定される。このとき、受容体34が検出対象の化学物質を吸着することによりその重量が変化していると、SAW伝搬速度の変化が周波数変化として検出されるので、同様に目的の化学物質の検出及び/又は物性の測定を高精度に行うことができる。   The SAW excited by the excitation IDT 32 is received by the reception IDT 33 and its frequency is measured. At this time, if the weight of the receptor 34 is changed by adsorbing the chemical substance to be detected, a change in the SAW propagation speed is detected as a frequency change. Alternatively, physical properties can be measured with high accuracy.

_ 図9は、本発明によるマルチチャネル型SAWセンサシステムの実施例を示している。このSAWセンサシステム40は、単一かつ共通の圧電基板41の表面に多数のSAWセンサ42がSAWの伝搬方向に関して直列かつ並列に、本実施例では4×4のマトリクス状に配列されている。本実施例の各SAWセンサ42は、図6に示す第2実施例のSAWセンサと同じ構成を有し、圧電基板41表面に1組の交差指電極からなるIDT43と、その略中央に前記交差指電極間のSAW伝搬面に配置された受容体44と、それらの左右両側にそれぞれ配置された格子構造の反射器45、45とを備える。 FIG. 9 shows an embodiment of a multi-channel SAW sensor system according to the present invention. In this SAW sensor system 40, a large number of SAW sensors 42 are arranged in series and in parallel in the SAW propagation direction on the surface of a single and common piezoelectric substrate 41, in this embodiment, in a 4 × 4 matrix. Each SAW sensor 42 of the present embodiment has the same configuration as the SAW sensor of the second embodiment shown in FIG. 6, the IDT 43 consisting of a pair of cross finger electrodes on the surface of the piezoelectric substrate 41, and the cross at the approximate center thereof. It includes a receptor 44 disposed on the SAW propagation surface between the finger electrodes, and reflectors 45 and 45 having a lattice structure respectively disposed on the left and right sides thereof.

圧電基板41は、同様に回転Yカット水晶板のカット面及びSAWの伝搬方向をオイラー角表示で(0°,26〜40.7°,90±5°)とした水晶平板である。また、各SAWセンサ42のIDT43は、それぞれAl又はAlを主成分とする合金の電極材料で形成され、かつその電極膜厚Hは、励振されるSAWの波長をλとして、0.04<H/λ<0.12に設定されている。   Similarly, the piezoelectric substrate 41 is a crystal flat plate in which the cut surface of the rotating Y-cut quartz plate and the SAW propagation direction are expressed by Euler angles (0 °, 26 to 40.7 °, 90 ± 5 °). The IDT 43 of each SAW sensor 42 is formed of an electrode material of Al or an alloy containing Al as a main component, and the electrode film thickness H is 0.04 <H, where the wavelength of the excited SAW is λ. /Λ<0.12.

各SAWセンサ42において、IDT43に所定の高周波信号電圧を印加すると、それと同じ周波数のSAWが圧電基板41表面に励振され、該IDTの左右両側に伝搬しかつ左右の反射器45、45に反射される。これにより、各チャネル毎にそれぞれ左右の反射器間でSAWの定在波が発生する。このように各SAWセンサ42においてそれぞれ両反射器45、45間に表面波エネルギが閉じ込められる結果、各チャネルの感度が向上することに加えて、各チャネルのSAWセンサを同時に発振させた場合でも、SAWがその伝搬方向に隣接する別のチャネルのSAWセンサまで伝搬するのを有効に防止することができる。また、上述した第1及び第2実施例のSAWセンサと同様に、圧電基板41端面による反射波の影響も有効に排除することができる。   In each SAW sensor 42, when a predetermined high-frequency signal voltage is applied to the IDT 43, a SAW having the same frequency is excited on the surface of the piezoelectric substrate 41, propagates to the left and right sides of the IDT, and is reflected by the left and right reflectors 45 and 45. The As a result, a SAW standing wave is generated between the left and right reflectors for each channel. As a result of the surface wave energy being confined between the reflectors 45 and 45 in each SAW sensor 42 in this way, in addition to improving the sensitivity of each channel, even when the SAW sensors of each channel are simultaneously oscillated, It is possible to effectively prevent the SAW from propagating to the SAW sensor of another channel adjacent in the propagation direction. Further, similarly to the SAW sensors of the first and second embodiments described above, the influence of the reflected wave from the end face of the piezoelectric substrate 41 can be effectively eliminated.

_ 以上、本発明についてその好適な実施例を用いて説明したが、本発明はその技術的範囲内において上記実施例に様々な変形・変更を加えることができる。例えば、図9のSAWセンサシステムにおいて、各SAWセンサ42を図6乃至図8のSAWセンサで置き換えることができ、また複数のSAWセンサ42をSAWの伝搬方向に関して直列又は並列に1列に配置したり、様々な形に配列することができる。また、図4のSAWセンサは、これをSAWの伝搬方向に関して複数個並列に配置することによって、同様にマルチチャネル型のSAWセンサシステムが得られる。 As described above, the present invention has been described with reference to the preferred embodiments. However, the present invention can be variously modified and changed within the technical scope thereof. For example, in the SAW sensor system of FIG. 9, each SAW sensor 42 can be replaced with the SAW sensor of FIGS. 6 to 8, and a plurality of SAW sensors 42 are arranged in a line in series or in parallel in the SAW propagation direction. Or can be arranged in various forms. Further, a plurality of SAW sensors shown in FIG. 4 are arranged in parallel with respect to the SAW propagation direction, whereby a multi-channel SAW sensor system can be obtained.

本発明に使用する回転Yカット90°X伝搬水晶板を示す説明図。Explanatory drawing which shows the rotation Y cut 90 degree X propagation quartz plate used for this invention. 本発明のSAWセンサを構成するSAW共振子の周波数温度特性を、従来のSTカット水晶板を用いた場合と比較して示す線図。The diagram which shows the frequency temperature characteristic of the SAW resonator which comprises the SAW sensor of this invention compared with the case where the conventional ST cut quartz plate is used. 本発明によるSAWセンサの電極膜厚H/λとQ値との関係を示す。The relationship between the electrode film thickness H / λ and the Q value of the SAW sensor according to the present invention is shown. 本発明によるSAWセンサの第1実施例を示す平面図。The top view which shows 1st Example of the SAW sensor by this invention. 図4に示すSAWセンサの伝送特性を示す波形図。FIG. 5 is a waveform diagram showing transmission characteristics of the SAW sensor shown in FIG. 4. 本発明によるSAWセンサの第2実施例を示す平面図。The top view which shows 2nd Example of the SAW sensor by this invention. 図5の第1実施例の変形例を示す平面図。The top view which shows the modification of 1st Example of FIG. 本発明によるSAWセンサの第3実施例を示す平面図。The top view which shows 3rd Example of the SAW sensor by this invention. 本発明によるマルチチャネル型のSAWセンサシステムの実施例を示す平面図。The top view which shows the Example of the multichannel type SAW sensor system by this invention. LiTaO 及び水晶の周波数温度特性を示す線図。Diagram showing a frequency-temperature characteristic of the LiTaO 3 and quartz. LiTaOの伝送特性を示す線図。Graph showing the transmission characteristics of LiTaO 3.

符号の説明Explanation of symbols

1,11,21,31,41…圧電基板、2,32…励振用IDT、3,33…受信用IDT、4,14,24,34,44…受容体、5…SAW、10,20,30,42…SAWセンサ、12a、12b,22a,22b…交差指電極、13,23,43…IDT、15,25,35,45…反射器、40…SAWセンサシステム。 DESCRIPTION OF SYMBOLS 1,11,21,31,41 ... Piezoelectric substrate, 2,32 ... Excitation IDT, 3,33 ... Reception IDT, 4,14,24,34,44 ... Receptor, 5 ... SAW 10,20, 30, 42 ... SAW sensor, 12a, 12b, 22a, 22b ... cross finger electrode, 13, 23, 43 ... IDT, 15, 25, 35, 45 ... reflector, 40 ... SAW sensor system.

Claims (6)

圧電基板と、前記圧電基板の表面に形成したIDTと、前記IDTにより励振される弾性表面波の伝搬面に固定され、目的の物質を認識するための受容体とを備え、前記圧電基板が回転Yカット水晶板であり、そのカット面及び前記弾性表面波の伝搬方向をオイラー角表示で(0°,26〜40.7°,90±5°)とした水晶平板からなり、前記IDTが、Al又はAlを主成分とする合金からなる電極膜で形成され、かつ、前記電極膜の膜厚Hが、前記弾性表面波の波長をλとして、0.04<H/λ<0.12であることを特徴とする弾性表面波センサ。   A piezoelectric substrate, an IDT formed on the surface of the piezoelectric substrate, and a receptor for recognizing a target substance fixed to a propagation surface of a surface acoustic wave excited by the IDT, the piezoelectric substrate rotating A Y-cut quartz plate, comprising a quartz plate whose cut surface and propagation direction of the surface acoustic wave are expressed in Euler angles (0 °, 26 to 40.7 °, 90 ± 5 °), and the IDT is The electrode film is made of Al or an alloy containing Al as a main component, and the thickness H of the electrode film is 0.04 <H / λ <0.12 where λ is the wavelength of the surface acoustic wave. There is provided a surface acoustic wave sensor. 前記弾性表面波の伝搬方向に沿って前記IDT及び前記受容体を挟むようにそれらの両側に配置される1対の反射器を更に備えることを特徴とする請求項1に記載の弾性表面波センサ。   The surface acoustic wave sensor according to claim 1, further comprising a pair of reflectors disposed on both sides of the IDT and the receptor so as to sandwich the IDT and the receptor along a propagation direction of the surface acoustic wave. . 前記IDTが励振用IDTと受信用IDTとからなり、前記受容体が前記励振用IDTと前記受信用IDTとの間に配置されていることを特徴とする請求項1又は2に記載の弾性表面波センサ。   The elastic surface according to claim 1 or 2, wherein the IDT includes an excitation IDT and a reception IDT, and the receptor is disposed between the excitation IDT and the reception IDT. Wave sensor. 前記IDTが1組の交差指電極を有する1つのIDTからなり、前記受容体が前記交差指電極の電極指と電極指との間に配置されていることを特徴とする請求項2に記載の弾性表面波センサ。   The IDT is composed of one IDT having a pair of cross finger electrodes, and the receptor is disposed between the electrode fingers of the cross finger electrodes. Surface acoustic wave sensor. 前記IDTが1つのIDTからなり、前記受容体が前記IDTと一方の前記反射器との間に配置されていることを特徴とする請求項2に記載の弾性表面波センサ。   3. The surface acoustic wave sensor according to claim 2, wherein the IDT includes one IDT, and the receptor is disposed between the IDT and one of the reflectors. 請求項1乃至5のいずれかに記載される複数の弾性表面波センサを有し、前記複数の弾性表面波センサが前記弾性表面波の伝搬方向に関して直列にかつ/又は並列に配置されると共に、前記各弾性表面波センサが単一の共通の圧電基板に設けられていることを特徴とする弾性表面波センサシステム。   A plurality of surface acoustic wave sensors according to any one of claims 1 to 5, wherein the plurality of surface acoustic wave sensors are arranged in series and / or in parallel with respect to the propagation direction of the surface acoustic wave, The surface acoustic wave sensor system, wherein each surface acoustic wave sensor is provided on a single common piezoelectric substrate.
JP2005264448A 2005-09-12 2005-09-12 Surface acoustic wave sensor, and surface acoustic wave sensor system Pending JP2007078428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005264448A JP2007078428A (en) 2005-09-12 2005-09-12 Surface acoustic wave sensor, and surface acoustic wave sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005264448A JP2007078428A (en) 2005-09-12 2005-09-12 Surface acoustic wave sensor, and surface acoustic wave sensor system

Publications (1)

Publication Number Publication Date
JP2007078428A true JP2007078428A (en) 2007-03-29

Family

ID=37938916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005264448A Pending JP2007078428A (en) 2005-09-12 2005-09-12 Surface acoustic wave sensor, and surface acoustic wave sensor system

Country Status (1)

Country Link
JP (1) JP2007078428A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288652A (en) * 2007-05-15 2008-11-27 Seiko Epson Corp Sh type bulk wave resonator
JP2010233210A (en) * 2009-03-03 2010-10-14 Nippon Dempa Kogyo Co Ltd Elastic wave device and electronic component
WO2010146923A1 (en) * 2009-06-18 2010-12-23 株式会社 村田製作所 Elastic surface wave sensor
WO2017150584A1 (en) * 2016-02-29 2017-09-08 京セラ株式会社 Sensor element and sensor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288652A (en) * 2007-05-15 2008-11-27 Seiko Epson Corp Sh type bulk wave resonator
JP2010233210A (en) * 2009-03-03 2010-10-14 Nippon Dempa Kogyo Co Ltd Elastic wave device and electronic component
WO2010146923A1 (en) * 2009-06-18 2010-12-23 株式会社 村田製作所 Elastic surface wave sensor
WO2017150584A1 (en) * 2016-02-29 2017-09-08 京セラ株式会社 Sensor element and sensor device

Similar Documents

Publication Publication Date Title
US7482732B2 (en) Layered surface acoustic wave sensor
US10361678B2 (en) Acoustic wave resonator, filter, and duplexer
WO2013108608A1 (en) Elastic wave sensor
JP2007010378A (en) Surface acoustic wave element, its manufacturing method, surface acoustic wave sensor and surface acoustic wave sensor system
JP2006313092A (en) Surface acoustic wave sensor and surface acoustic wave sensor system
JP2004030083A (en) Touch panel device
JP5170311B2 (en) Surface acoustic wave sensor
JP6604238B2 (en) Elastic wave sensor
JP2007225546A (en) Elastic surface wave sensor
JP2007078428A (en) Surface acoustic wave sensor, and surface acoustic wave sensor system
US9518863B2 (en) Elastic wave element and elastic wave sensor using same
JPH06164306A (en) Surface acoustic wave resonator
JP2013168864A (en) Elastic surface wave element and electronic component
US6384698B1 (en) Transverse double mode saw filter
WO2011142380A1 (en) Temperature sensor
JPWO2007004661A1 (en) Surface acoustic wave device
JP4714885B2 (en) Elastic wave sensor
JPH0746079A (en) Highly stable surface acoustic wave element
JP2005315646A (en) Surface acoustic wave sensor and surface acoustic wave sensor system
Hashimoto et al. Characterization of surface acoustic wave propagation in multi-layered structures using extended FEM/SDA software
JP2008180668A (en) Lamb wave type high-frequency sensor device
US7193352B1 (en) Thin film bulk acoustic wave sensor suite
JP2005331326A (en) Elastic wave sensor
JP2011171888A (en) Lamb wave resonator and oscillator
Ota et al. Study on 36YX-LiTaO 3/36Y90X-Quartz Structure for SH-SAWsensor Application