JPH06164306A - Surface acoustic wave resonator - Google Patents
Surface acoustic wave resonatorInfo
- Publication number
- JPH06164306A JPH06164306A JP5723192A JP5723192A JPH06164306A JP H06164306 A JPH06164306 A JP H06164306A JP 5723192 A JP5723192 A JP 5723192A JP 5723192 A JP5723192 A JP 5723192A JP H06164306 A JPH06164306 A JP H06164306A
- Authority
- JP
- Japan
- Prior art keywords
- surface acoustic
- acoustic wave
- piezoelectric substrate
- cut
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子機器、特に通信機
器の電圧制御発振器(VCO)に共振素子として用いら
れるエネルギ閉じ込め型弾性表面波共振子に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy trap type surface acoustic wave resonator used as a resonance element in a voltage controlled oscillator (VCO) of electronic equipment, especially communication equipment.
【0002】[0002]
【従来の技術】通信機に周波数シンセサイザを利用する
場合、電圧制御発振器(VCO)に周波数可変範囲の広
いことが要求される。従って電圧制御発振器の共振素子
として弾性表面波共振子を用いる場合には、弾性表面波
共振子に容量比(共振周波数と反共振周波数の差の逆数
に比例する値)が小さく、かつ電気機械結合係数
(k2)の大きいことが要求される。このような要求に
応える弾性表面波共振子として、タンタル酸リチウム
(LiTaO3 )の圧電基板を用いたエネルギ閉じ込め
型弾性表面波共振子(以下SAW共振子と略記する)が
挙げられる。従来のタンタル酸リチウム(LiTa
O3 )の圧電基板を用いたSAW共振子は次の2種類の
ものがある。その1つは、Xカット−112°回転Y方
向伝搬の圧電基板上に存在するレイリー(Rayleigh) 波
型の表面波を利用したものであり、もう1つは、36°
Yカット−X方向伝搬の圧電基板上に存在する擬似弾性
表面波(リーキ波型の表面波)を利用したものである。
レイリー波型の表面波を利用したSAW共振子は、電気
機械結合係数k2 が比較的小さく0.7%程度であるた
めSAW共振子を構成した場合には容量比が250程度
となりあまり小さくできない。結合係数k2 が小さいた
めグレーティング反射器の電極本数やIDTの電極対数
を多くする必要があり小型化には不利である。一方、擬
似弾性表面波を利用したSAW共振子は、圧電基板中に
バルク波を放射しながら伝搬するリーキ(Leaky)波であ
るため一般に伝搬減衰量が大きいが、切断回転角が36
°の36°Yカット−X伝搬LiTaO3 の圧電基板の
場合は伝搬減衰量がほぼ0になり、結合係数k2 も4.
7%と比較的大きいので実用化されて用いられている。
しかしながら、この形の波は本質的にリーキ波であるた
めカット回転角が36°からずれると減衰を生ずる欠点
がある。2. Description of the Related Art When a frequency synthesizer is used in a communication device, a voltage controlled oscillator (VCO) is required to have a wide frequency variable range. Therefore, when a surface acoustic wave resonator is used as the resonance element of the voltage controlled oscillator, the surface acoustic wave resonator has a small capacitance ratio (a value proportional to the reciprocal of the difference between the resonance frequency and the anti-resonance frequency) and the electromechanical coupling is small. A large coefficient (k 2 ) is required. An example of a surface acoustic wave resonator that meets such requirements is an energy trap type surface acoustic wave resonator (hereinafter abbreviated as SAW resonator) using a lithium tantalate (LiTaO 3 ) piezoelectric substrate. Conventional lithium tantalate (LiTa
There are the following two types of SAW resonators using a piezoelectric substrate of O 3 ). One is a Rayleigh wave type surface wave existing on a piezoelectric substrate propagating in an X-cut-112 ° rotation Y direction, and the other is a 36 ° angle.
It utilizes a pseudo surface acoustic wave (leaky wave type surface acoustic wave) existing on a piezoelectric substrate propagating in the Y-cut-X direction.
Since the SAW resonator using the Rayleigh wave type surface wave has a relatively small electromechanical coupling coefficient k 2 of about 0.7%, when the SAW resonator is constructed, the capacitance ratio is about 250 and cannot be reduced so much. . Since the coupling coefficient k 2 is small, it is necessary to increase the number of electrodes of the grating reflector and the number of electrode pairs of the IDT, which is disadvantageous for downsizing. On the other hand, the SAW resonator using the pseudo surface acoustic wave is a leaky wave propagating while radiating a bulk wave in the piezoelectric substrate, and thus generally has a large propagation attenuation amount, but has a cutting rotation angle of 36.
In the case of a 36 ° Y-cut X-propagating LiTaO 3 piezoelectric substrate at 0 °, the propagation attenuation is almost 0, and the coupling coefficient k 2 is also 4.
Since it is relatively large at 7%, it has been put to practical use.
However, since this type of wave is essentially a leaky wave, there is a drawback that attenuation occurs when the cut rotation angle deviates from 36 °.
【0003】図3(A)はLiTaO3 基板の切断回転
角に対する表面波速度の特性図である。図3(B)に示
すように、横軸はY−Z面内のY軸からの切断回転角θ
を示し、表面波はX軸方向に伝搬する。図3に示すよう
に、回転YカットLiTaO3 圧電基板上には、表面波
速度の遅い破線で示したレイリー波と表面波速度の速い
擬似弾性表面波(リーキ波)が存在することが知られて
いる。また、電気機械結合係数k2 は次式で定義され
る。FIG. 3A is a characteristic diagram of the surface wave velocity with respect to the cutting rotation angle of the LiTaO 3 substrate. As shown in FIG. 3B, the horizontal axis represents the cutting rotation angle θ from the Y axis in the YZ plane.
And the surface wave propagates in the X-axis direction. As shown in FIG. 3, it is known that a Rayleigh wave indicated by a broken line having a slow surface wave velocity and a pseudo surface acoustic wave (leaky wave) having a high surface wave velocity are present on the rotating Y-cut LiTaO 3 piezoelectric substrate. ing. Further, the electromechanical coupling coefficient k 2 is defined by the following equation.
【数1】 但し、 Vf :表面自由(Free Surface)の表面波速度 Vm :表面短絡(Metalized Surface )の表面波速度[Equation 1] However, V f : Surface wave velocity of free surface V m : Surface wave velocity of surface short circuit (Metalized Surface)
【0004】[0004]
【発明が解決しようとする課題】上式から、電気機械結
合係数k2 は、表面自由の表面波速度Vf と表面短絡の
表面波速度Vm の差が大きい程その値は大きくなる。従
ってレイリー波の場合はほとんど両者が重なっているた
め結合係数k2 は極めて小さい。一方擬似弾性表面波は
切断回転角が0°(通称Y板ともいう)の場合に表面波
速度の差が最も大きく、切断回転角度が36°(通称3
6°Y板)の場合の約1.3倍である。すなわち36°
Y板に比べ0°Y板の方がk2 が大きく容量比を小さく
できることがわかる。しかしながら擬似弾性表面波はリ
ーキ波であるため、36°Y近傍は表面波の伝搬減衰量
が0となるが、切断回転角の精度が問題であり、回転角
を0°にすると伝搬減衰量が大きくなりそのままでは実
用することはできないという問題点がある。また、Li
TaO3 を圧電基板として利用したラブ波型弾性表面波
共振子はまだ実用化されていない。本発明の目的は、上
記の従来のLiTaO3 圧電基板を利用した弾性表面波
共振子よりさらに小形で、容量比が小さく切断回転角の
精度に大きく依存しないラブ波型の弾性表面波共振子を
提供することにある。From the above equation, the electromechanical coupling coefficient k 2 becomes larger as the difference between the surface free surface wave velocity V f and the surface short circuit surface velocity V m becomes larger. Therefore, in the case of Rayleigh waves, the coupling coefficient k 2 is extremely small because they almost overlap. On the other hand, the pseudo surface acoustic wave has the largest difference in surface wave velocity when the cutting rotation angle is 0 ° (also called Y plate), and the cutting rotation angle is 36 ° (commonly called 3 plate).
This is about 1.3 times that of a 6 ° Y plate). Ie 36 °
It can be seen that the 0 ° Y plate has a larger k 2 and a smaller capacity ratio than the Y plate. However, since the pseudo surface acoustic wave is a leaky wave, the propagation attenuation amount of the surface wave becomes 0 near 36 ° Y, but the accuracy of the cutting rotation angle is a problem, and the propagation attenuation amount becomes 0 ° when the rotation angle is 0 °. There is a problem that it becomes large and cannot be used as it is. Also, Li
A Love-wave type surface acoustic wave resonator using TaO 3 as a piezoelectric substrate has not yet been put into practical use. An object of the present invention is to provide a Love wave type surface acoustic wave resonator that is smaller than the conventional surface acoustic wave resonator using a LiTaO 3 piezoelectric substrate, has a small capacitance ratio and does not largely depend on the accuracy of the cutting rotation angle. To provide.
【0005】[0005]
【課題を解決するための手段】本発明の弾性表面波共振
子は、Y軸を法線としYーZ平面上でY軸からの回転角
が−10°乃至+50°の範囲の所定の角度で切断され
た回転YカットLiTaO3 圧電基板の表面上に、比重
の大きい金属で形成されたすだれ状変換器が配設され、
前記圧電基板のX軸方向にラブ波型弾性表面波が励起さ
れるように構成したものを基本構成とし、さらに、前記
すだれ状変換器の両側の表面波伝搬路上に該すだれ状変
換器と同じ比重の大きい金属で形成されたグレーティン
グ反射器が配設され、前記圧電基板のX軸方向にラブ波
型弾性表面波が励起されるように構成したことを特徴と
するものである。The surface acoustic wave resonator of the present invention has a predetermined angle in the range of −10 ° to + 50 ° from the Y axis on the YZ plane with the Y axis as the normal line. On the surface of the rotary Y-cut LiTaO 3 piezoelectric substrate cut by the above, a interdigital transducer formed of a metal having a large specific gravity is arranged.
The piezoelectric substrate has a basic structure configured to excite a Love wave type surface acoustic wave in the X-axis direction, and is the same as the interdigital transducer on the surface wave propagation paths on both sides of the interdigital transducer. A grating reflector formed of a metal having a large specific gravity is provided so that a Love wave type surface acoustic wave is excited in the X-axis direction of the piezoelectric substrate.
【0006】すなわち、従来実現されていなかったラブ
波型弾性表面波共振子を実用化するために、LiTaO
3 圧電基板上に音速の遅い重い物質を付着させて表面弾
性波速度を低下させ、図3に示す遅い横波よりも遅くす
ることにより結合係数k2 がほぼそのままもしくはそれ
以上で擬似弾性表面波を伝搬減衰のないラブ波型表面波
に変えたものである。このとき、すだれ状変換器(ID
T:Interdigital Transducer)の電極を一様な薄膜の電
極でなくても、金(Au),白金(Pt),銀(Ag)
等の比重の大きい金属で十分厚くすることで等価的に一
様膜(但し膜厚は等価的にほぼ1/2とみなされる)と
同等な効果が得られ、擬似弾性表面波をラブ波型表面波
に変換することができる。さらに、回転Yカットの切断
角度の範囲が−10°〜+50°(図3の 170°〜 180
°および0°〜50°)であれば、図3より明らかな如
く、36°Yカット−X伝搬LiTaO3 の場合と同等
もしくはそれ以上の結合係数k2 が得られることは明白
であり、回転カット角の精度の伝搬減衰量に対する影響
がなくなるという利点がある。That is, in order to put into practical use a Love wave type surface acoustic wave resonator which has not been realized so far, LiTaO
3 By attaching a heavy substance with a slow sound velocity on the piezoelectric substrate to lower the surface acoustic wave velocity and making it slower than the slow transverse wave shown in Fig. 3, the coupling coefficient k 2 is almost the same or higher, and the pseudo surface acoustic wave is generated. This is a change to a Love wave type surface wave with no propagation attenuation. At this time, the interdigital transducer (ID
Even if the electrode of T: Interdigital Transducer is not a uniform thin film electrode, gold (Au), platinum (Pt), silver (Ag)
An equivalent effect to a uniform film (though the film thickness is considered to be equivalent to approximately 1/2) can be obtained by thickening a metal with a large specific gravity such as It can be converted into surface waves. Furthermore, the range of the cutting angle of the rotary Y-cut is -10 ° to + 50 ° (170 ° to 180 ° in Fig. 3).
° and 0 ° to 50 °), as is clear from FIG. 3, it is clear that a coupling coefficient k 2 equal to or higher than that of the case of 36 ° Y-cut-X propagation LiTaO 3 can be obtained, and rotation There is an advantage that the influence of the precision of the cut angle on the propagation attenuation amount is eliminated.
【0007】[0007]
【実施例】図1は本発明の第1の実施例を示す基本構成
図であり、図2は第2の実施例を示す構成図である。図
1の第1の実施例は、回転Yカットの切断角度の範囲が
−10°〜+50°(図3の 170°〜 180°および0°
〜50°)の圧電基板1の表面上に端子4,4’を有す
るすだれ状変換器(IDT)2を配設した基本構成を示
すものであり、IDT2の対数を比較的多くしたIDT
2のみにより構成した弾性表面波共振子である。また、
図2の第2の実施例は、図1の基本構成のIDT2の両
側にIDT2と同じ重い金属の電極材料よりなるグレー
ティング反射器3を配置した構造のラブ波型弾性表面波
共振子である。この構成のものは、36°Yカット−X
方向伝搬LiTaO3 圧電基板上に図2と同様な電極構
造をアルミニウム等の軽い金属で形成した従来の擬似弾
性表面波共振子に比べて、電気機械結合係数k2 が大き
い分だけ反射器3の電極指の本数を少なく(1/2以下
に)することができるため、小型化が可能となると同時
に容量比の小さな弾性表面波共振子を実現することがで
きる。電気機械結合係数k2 の実測値としては、従来の
4.7%に比べて約11%以上の値が得られた。以上の
実施例では、図1に示したIDT2のみの基本構成と、
図2に示したIDT2の両側にグレーティング反射器3
を配置した構成について説明したが、スプリアス応答を
改善するために、IDT2の電極指に断点を設けて全体
が菱形になるような重み付けを行った弾性表面波共振子
についても本発明を適用することができるのはいうまで
もない。1 is a basic configuration diagram showing a first embodiment of the present invention, and FIG. 2 is a configuration diagram showing a second embodiment. In the first embodiment of FIG. 1, the range of the cutting angle of the rotary Y-cut is −10 ° to + 50 ° (170 ° to 180 ° and 0 ° in FIG. 3).
1 to 50 °) shows a basic configuration in which a interdigital transducer (IDT) 2 having terminals 4 and 4 ′ is arranged on the surface of a piezoelectric substrate 1 having an IDT 2 having a relatively large number of logarithms.
This is a surface acoustic wave resonator configured by only 2. Also,
The second embodiment of FIG. 2 is a Love wave type surface acoustic wave resonator having a structure in which a grating reflector 3 made of the same heavy metal electrode material as the IDT 2 is arranged on both sides of the IDT 2 of the basic configuration of FIG. 36 ° Y cut-X
As compared with a conventional quasi surface acoustic wave resonator in which an electrode structure similar to that shown in FIG. 2 is formed of a light metal such as aluminum on a directional propagation LiTaO 3 piezoelectric substrate, the reflector 3 has a larger electromechanical coupling coefficient k 2 . Since the number of electrode fingers can be reduced (to 1/2 or less), the size can be reduced, and at the same time, a surface acoustic wave resonator having a small capacitance ratio can be realized. As the measured value of the electromechanical coupling coefficient k 2, a value of about 11% or more was obtained as compared with the conventional value of 4.7%. In the above embodiment, the basic configuration of only the IDT 2 shown in FIG.
The grating reflectors 3 are provided on both sides of the IDT 2 shown in FIG.
In the above description, the present invention is also applied to a surface acoustic wave resonator in which the electrode fingers of the IDT 2 are provided with break points and weighted so as to form a rhombus in order to improve the spurious response. It goes without saying that you can do it.
【0008】[0008]
【発明の効果】本発明を実施することにより、従来の擬
似弾性表面波を利用した弾性表面波共振子に比べてチッ
プサイズを小さくすることができ小型化を図ることがで
きる。さらに、容量比を小さくすることができるため、
電圧制御発振器等に利用した場合、周波数可変範囲の広
帯域化を図ることができるため実用上の効果は極めて大
きい。By implementing the present invention, the chip size can be made smaller and the size can be reduced as compared with the conventional surface acoustic wave resonator using the pseudo surface acoustic wave. Furthermore, since the capacity ratio can be reduced,
When it is used for a voltage controlled oscillator or the like, the frequency variable range can be broadened, and the practical effect is extremely large.
【図1】本発明の第1の実施例を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
【図2】本発明の第2の実施例を示す構成図である。FIG. 2 is a configuration diagram showing a second embodiment of the present invention.
【図3】回転YカットLiTaO3 基板における回転カ
ット角と表面波速度の関係図である。FIG. 3 is a relationship diagram of a rotation cut angle and a surface wave velocity in a rotation Y-cut LiTaO 3 substrate.
1 圧電基板 2 すだれ状変換器(IDT) 3 グレーティング反射器 4,4’ 端子 1 Piezoelectric substrate 2 Interdigital transducer (IDT) 3 Grating reflector 4 and 4'terminal
───────────────────────────────────────────────────── フロントページの続き (72)発明者 会田 勉 東京都港区虎ノ門二丁目3番13号 国際電 気株式会社内 (72)発明者 清水 洋 宮城県仙台市太白区八木山本町一丁目22番 12号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutomu Aida 2-3-13 Toranomon, Minato-ku, Tokyo Kokusai Electric Co., Ltd. (72) Inventor Hiroshi Shimizu 1-22, Yagiyamahonmachi, Taihaku-ku, Sendai-shi, Miyagi Number 12
Claims (2)
の回転角が−10°乃至+50°の範囲の所定の角度で
切断された回転YカットLiTaO3 圧電基板の表面上
に、比重の大きい金属で形成されたすだれ状変換器が配
設され、前記圧電基板のX軸方向にラブ波型弾性表面波
が励起されるように構成した弾性表面波共振子。1. A surface of a rotary Y-cut LiTaO 3 piezoelectric substrate, which is cut at a predetermined angle in the range of −10 ° to + 50 ° from the Y-axis on the YZ plane with the Y-axis as a normal line. A surface acoustic wave resonator in which a comb-shaped transducer formed of a metal having a large specific gravity is provided in the piezoelectric substrate and a Love wave type surface acoustic wave is excited in the X-axis direction of the piezoelectric substrate.
の回転角が−10°乃至+50°の範囲の所定の角度で
切断された回転YカットLiTaO3 圧電基板の表面上
に、比重の大きい金属で形成されたすだれ状変換器と該
すだれ状変換器の両側の表面波伝搬路上に該すだれ状変
換器と同じ比重の重い金属で形成されたグレーティング
反射器とが配設され、前記圧電基板のX軸方向にラブ波
型弾性表面波が励起されるように構成した弾性表面波共
振子。2. A surface of a rotary Y-cut LiTaO 3 piezoelectric substrate, which is cut at a predetermined angle in the range of −10 ° to + 50 ° from the Y-axis on the Y-Z plane with the Y-axis as a normal line. In addition, the interdigital transducer formed of a metal having a large specific gravity and the grating reflector formed of a heavy metal having the same specific gravity as the interdigital transducer are disposed on the surface wave propagation paths on both sides of the interdigital transducer. And a surface acoustic wave resonator configured to excite a Love wave type surface acoustic wave in the X-axis direction of the piezoelectric substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5723192A JPH06164306A (en) | 1992-02-12 | 1992-02-12 | Surface acoustic wave resonator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5723192A JPH06164306A (en) | 1992-02-12 | 1992-02-12 | Surface acoustic wave resonator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06164306A true JPH06164306A (en) | 1994-06-10 |
Family
ID=13049761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5723192A Pending JPH06164306A (en) | 1992-02-12 | 1992-02-12 | Surface acoustic wave resonator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06164306A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5874869A (en) * | 1996-11-28 | 1999-02-23 | Fujitsu Limited | Surface acoustic wave filter device on 40° to 42° rotated Y-X LITAO3 |
US6037847A (en) * | 1995-10-13 | 2000-03-14 | Fujitsu Limited | Surface acoustic wave device using a leaky surface acoustic wave with an optimized cut angle of a piezoelectric substrate |
GB2356306A (en) * | 1999-09-02 | 2001-05-16 | Murata Manufacturing Co | Surface acoustic wave device |
US6437668B1 (en) * | 1999-05-07 | 2002-08-20 | Murata Manufacturing Co., Ltd. | Surface acoustic wave resonator, surface acoustic wave device, and communication device using shear horizontal waves |
US6836196B2 (en) | 2001-12-28 | 2004-12-28 | Murata Manufacturing Co., Ltd. | Surface acoustic wave apparatus utilizing a leaky surface acoustic wave |
US6914498B2 (en) | 2002-01-18 | 2005-07-05 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device on LiTaO3 substrate using primarily silver electrodes covered with SiO2 film |
US7034433B2 (en) | 2001-10-12 | 2006-04-25 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
US7230365B2 (en) | 2002-07-24 | 2007-06-12 | Murata Manufacturing Co., Ltd. | Surface acoustic wave apparatus and manufacturing method therefor |
US7425788B2 (en) | 2004-07-26 | 2008-09-16 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
JP2008270904A (en) * | 2007-04-16 | 2008-11-06 | Fujitsu Media Device Kk | Surface acoustic wave apparatus and branching filter |
JP2009284554A (en) * | 2009-09-03 | 2009-12-03 | Hitachi Media Electoronics Co Ltd | Surface acoustic wave device, communication filter and mobile communication apparatus |
JP2016131349A (en) * | 2015-01-15 | 2016-07-21 | 信越化学工業株式会社 | Lithium tantalate single crystal substrate for surface acoustic wave element, and device using the same and manufacturing method and inspection method therefor |
JP2019129508A (en) * | 2018-01-26 | 2019-08-01 | 太陽誘電株式会社 | Elastic wave device, filter and multiplexer |
-
1992
- 1992-02-12 JP JP5723192A patent/JPH06164306A/en active Pending
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6037847A (en) * | 1995-10-13 | 2000-03-14 | Fujitsu Limited | Surface acoustic wave device using a leaky surface acoustic wave with an optimized cut angle of a piezoelectric substrate |
KR100346805B1 (en) * | 1995-10-13 | 2002-11-18 | 후지쯔 가부시끼가이샤 | Surface acoustic wave device |
US6317015B1 (en) | 1995-10-13 | 2001-11-13 | Fujitsu Limited | Surface acoustic wave device using a leaky surface acoustic wave with an optimized cut angle of a piezoelectric substrate |
US5874869A (en) * | 1996-11-28 | 1999-02-23 | Fujitsu Limited | Surface acoustic wave filter device on 40° to 42° rotated Y-X LITAO3 |
US6437668B1 (en) * | 1999-05-07 | 2002-08-20 | Murata Manufacturing Co., Ltd. | Surface acoustic wave resonator, surface acoustic wave device, and communication device using shear horizontal waves |
GB2356306B (en) * | 1999-09-02 | 2001-10-17 | Murata Manufacturing Co | Surface acoustic wave device and communication device |
US6366002B1 (en) | 1999-09-02 | 2002-04-02 | Murata Manufacturing Co., Ltd | Surface acoustic wave device and communication device |
GB2356306A (en) * | 1999-09-02 | 2001-05-16 | Murata Manufacturing Co | Surface acoustic wave device |
USRE39975E1 (en) | 1999-09-02 | 2008-01-01 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device and communication device |
US7034433B2 (en) | 2001-10-12 | 2006-04-25 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
US7208860B2 (en) | 2001-10-12 | 2007-04-24 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
US7730596B2 (en) | 2001-10-12 | 2010-06-08 | Murata Manufacturing Co., Ltd. | Method for manufacturing a surface acoustic wave device |
US6836196B2 (en) | 2001-12-28 | 2004-12-28 | Murata Manufacturing Co., Ltd. | Surface acoustic wave apparatus utilizing a leaky surface acoustic wave |
US6914498B2 (en) | 2002-01-18 | 2005-07-05 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device on LiTaO3 substrate using primarily silver electrodes covered with SiO2 film |
US7411334B2 (en) | 2002-07-24 | 2008-08-12 | Murata Manufacturing Co., Ltd. | Surface acoustic wave apparatus and manufacturing method therefor |
US7230365B2 (en) | 2002-07-24 | 2007-06-12 | Murata Manufacturing Co., Ltd. | Surface acoustic wave apparatus and manufacturing method therefor |
EP2288024A1 (en) | 2002-07-24 | 2011-02-23 | Murata Manufacturing Co., Ltd. | Surface acoustic wave apparatus and manufacturing method therefor |
EP2288025A1 (en) | 2002-07-24 | 2011-02-23 | Murata Manufacturing Co., Ltd. | Surface acoustic wave apparatus and manufacturing method therefor |
US7418772B2 (en) | 2002-07-24 | 2008-09-02 | Murata Manufacturing Co., Ltd. | Method for manufacturing a surface acoustic wave |
EP2288026A1 (en) | 2002-07-24 | 2011-02-23 | Murata Manufacturing Co., Ltd. | Surface acoustic wave apparatus and manufacturing method therefor |
DE112005001677B4 (en) * | 2004-07-26 | 2009-11-12 | Murata Manufacturing Co., Ltd., Nagaokakyo | Surface acoustic wave device |
US7425788B2 (en) | 2004-07-26 | 2008-09-16 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
US7800464B2 (en) | 2007-04-16 | 2010-09-21 | Fujitsu Media Devices Limited | Surface acoustic wave device and duplexer |
JP2008270904A (en) * | 2007-04-16 | 2008-11-06 | Fujitsu Media Device Kk | Surface acoustic wave apparatus and branching filter |
EP1983647A3 (en) * | 2007-04-16 | 2012-11-28 | Taiyo Yuden Co., Ltd. | Surface acoustic wave device and duplexer |
JP2009284554A (en) * | 2009-09-03 | 2009-12-03 | Hitachi Media Electoronics Co Ltd | Surface acoustic wave device, communication filter and mobile communication apparatus |
JP2016131349A (en) * | 2015-01-15 | 2016-07-21 | 信越化学工業株式会社 | Lithium tantalate single crystal substrate for surface acoustic wave element, and device using the same and manufacturing method and inspection method therefor |
WO2016114056A1 (en) * | 2015-01-15 | 2016-07-21 | 信越化学工業株式会社 | Lithium tantalate single crystal substrate for surface acoustic wave elements, device using same and production method and inspection method therefor |
US10707829B2 (en) | 2015-01-15 | 2020-07-07 | Shin-Etsu Chemical Co., Ltd. | Lithium tantalate single crystal substrate for a surface acoustic wave device and a device using the same, and a manufacturing method thereof and an inspection method thereof |
JP2019129508A (en) * | 2018-01-26 | 2019-08-01 | 太陽誘電株式会社 | Elastic wave device, filter and multiplexer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4757860B2 (en) | Surface acoustic wave functional element | |
KR100349558B1 (en) | Surface acoustic wave apparatus | |
KR100232753B1 (en) | Love-wave device including a thin film of ta or w | |
JP3897229B2 (en) | Surface wave filter | |
JP4109877B2 (en) | Surface acoustic wave functional element | |
JPH06164306A (en) | Surface acoustic wave resonator | |
JP3358688B2 (en) | Surface acoustic wave device | |
JP3568025B2 (en) | Surface wave device and communication device | |
JP2001077662A (en) | Surface wave device and communication device | |
JP2002330052A (en) | Surface acoustic wave unit and device thereof using the same | |
JP3126416B2 (en) | Surface acoustic wave device | |
JP2000286663A (en) | Surface acoustic wave element | |
JPS63260213A (en) | Resonator using high coupling love wave type saw substrate | |
US20010013739A1 (en) | Elastic wave device | |
US5532538A (en) | Sensing and signal processing devices using quasi-SH (shear horizontal) acoustic waves | |
JPH06232684A (en) | Surface acoustic wave device | |
WO2000067374A1 (en) | Transverse double mode saw filter | |
JPH09121136A (en) | Ladder surface acoustic wave filter for resonator | |
JP2008092610A (en) | Surface acoustic wave substrate and surface acoustic wave functional element | |
US6847154B2 (en) | Surface acoustic wave device and communication device | |
JP3307284B2 (en) | 2-port SAW resonator | |
JP3597483B2 (en) | Surface acoustic wave device | |
JP2004165879A (en) | Surface acoustic wave element | |
JP3597454B2 (en) | Surface acoustic wave device | |
JPH09266431A (en) | Volume ultrasonic wave transducer and surface acoustic wave device |