JP4109877B2 - Surface acoustic wave functional element - Google Patents

Surface acoustic wave functional element Download PDF

Info

Publication number
JP4109877B2
JP4109877B2 JP2002051053A JP2002051053A JP4109877B2 JP 4109877 B2 JP4109877 B2 JP 4109877B2 JP 2002051053 A JP2002051053 A JP 2002051053A JP 2002051053 A JP2002051053 A JP 2002051053A JP 4109877 B2 JP4109877 B2 JP 4109877B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
substrate
degrees
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002051053A
Other languages
Japanese (ja)
Other versions
JP2003209458A (en
Inventor
和彦 山之内
Original Assignee
和彦 山之内
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27670171&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4109877(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 和彦 山之内 filed Critical 和彦 山之内
Priority to JP2002051053A priority Critical patent/JP4109877B2/en
Publication of JP2003209458A publication Critical patent/JP2003209458A/en
Application granted granted Critical
Publication of JP4109877B2 publication Critical patent/JP4109877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、擬似弾性表面波が回転Y板のカット面上をX軸方向へ伝搬するLiNbO3基板の前記Yカット面にSiO2などの薄膜が形成された弾性表面波機能素子に係り、特に温度特性に優れた弾性表面波機能素子に関する。
【0002】
【従来の技術およびその課題】
圧電性基板表面にすだれ電極(Inter-Digital Electrode)を設けた弾性表面波機能素子は、テレビの中間周波数帯のフィルターや移動体通信用のフィルターなどとして広く応用されている。前記弾性表面波機能素子は、圧電作用を有する基板の表面に、弾性表面波を励起する電極と、前記弾性表面波を受信する電極とを有している。
【0003】
弾性表面波機能素子に使用される圧電体基板として、従来は、電気機械結合係数(electro mechanical coupling constant)k2の大きな材料が使用されている。しかし前記電気機械結合係数k2の大きい材料を基板として用いた弾性表面波機能素子は、一般に温度特性が悪く、即ち温度安定性に欠けるという問題がある。
【0004】
またST−カット水晶、LST−カット水晶などの単結晶の圧電体の基板を用いたものは、温度安定性に優れているが、その反面、電気機械結合係数k2が小さい。そのためフィルターとして使用されたときの挿入損失が大きく、また広い帯域幅をもつフィルターなどには使用することもできない。
【0005】
そこで、温度安定性に優れ、かつ大きな電気機械結合係数k2をもつ基板として、LiNbO3基板、LiTaO3基板を用い、その表面に線膨張係数の小さく、かつ逆の温度特性をもつSiO2膜を付着させたSiO2/LiNbO3基板、SiO2/LiTaO3基板などが考案されている。これらは、山之内、岩橋、柴山著「Wave Electronics,3,(1979−12)」や、山之内、端山著「IEEE,Trans.on Sonics and Ulrason.,Vol-SU-31,No.1,Jan.1984)」に好結果が得られるものとして記載されている。これらの基板は、高安定の発振器及び通常の両方向性のすだれ状電極を用いたフィルターとしての応用が提唱されている。
【0006】
しかし、上記従来のものよりも更に大きな電気機械結合係数k2をもち、かつ温度安定性に優れた基板が必要とされている。
【0007】
本発明は上記従来の課題を解決するためのものであり、従来以上に大きな電気機械結合係数k2をもち、かつ温度特性が良好な弾性表面波機能素子を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明は、圧電性あるいは電歪性基板上に、温度変化に対する弾性表面波の周波数の変動特性が前記基板と逆の特性である薄膜が積層された弾性表面波機能素子において、
前記基板は、回転Y板のカット角度が−10度以上で−5度以下の範囲で、レーレー型の弾性表面波よりも速い伝搬速度を有する擬似弾性表面波が、X軸方向あるいは前記X軸方向に対してプラス・マイナス5度の範囲で伝搬するLiNbO3基板であり、
前記薄膜の膜厚をH、前記擬似弾性表面波の動作中心周波数での波長をλとしたときに、H/λの値が0.13から0.31の範囲であることを特徴とするものである。
【0010】
回転Y板のカット角度とH/λを前記範囲内で選択すると、25℃で測定した周波数温度特性(TCF)を零にすることが可能になり、または前記周波数温度特性を小さくすることができる。
【0011】
本発明の弾性表面波基板の好ましい範囲は、周波数温度特性(TCF)が、25℃において、−30ppm/℃から+30ppm/℃である。さらには、前記擬似弾性表面波の電気機械結合係数k2が、0.155以上である。
【0012】
また本発明は、前記基板は、回転Y板のカット角度が−5度以上で0度未満の範囲で、レーレー型の弾性表面波よりも速い伝搬速度を有する擬似弾性表面波が、X軸方向あるいは前記X軸方向に対してプラス・マイナス5度の範囲で伝搬する LiNbO 3 基板であり、
前記薄膜の膜厚をH、前記擬似弾性表面波の動作中心周波数での波長をλとしたときに、H/λの値が0.13から0.31の範囲であり、且つ周波数温度特性(TCF)が、25℃において、−30 ppm /℃から+30 ppm /℃であることを特徴とするものである。
【0013】
また、本発明の弾性表面波機能素子は、前記いずれかに記載の弾性表面波基板を用い、
励振または受信領域では、前記基板の表面と前記薄膜との境界面に、擬似弾性表面波を励振または受信するための電極が、すだれ状電極(Inter-Digital Electrode)として形成されており、
伝搬領域では、前記基板の表面と前記薄膜との境界面が、電気的に短絡させる構造または短絡型のグレーティング電極構造を有することを特徴とするものである。
【0014】
さらに本発明は、前記基板は、回転Y板のカット角度が−5度以上で0度未満の範囲で、レーレー型の弾性表面波よりも速い伝搬速度を有する擬似弾性表面波が、X軸方向あるいは前記X軸方向に対してプラス・マイナス5度の範囲で伝搬する LiNbO 3 基板であり、
前記薄膜の膜厚をH、前記擬似弾性表面波の動作中心周波数での波長をλとしたときに、H/λの値が0.15から0.25の範囲であり、且つ周波数温度特性(TCF)が、25℃において、0 ppm /℃から+20 ppm /℃で、電気機械結合係数k 2 が0.215以上であることを特徴とするものである。
【0019】
よって、前記いずれかの弾性表面波機能素子をフィルターとして用いれば、周波数特性が広帯域で、且つ挿入損失の低いものとなる。
【0020】
【発明の実施の形態】
図1は、本発明の実施の形態である弾性表面波基板の構造を示す断面図である。
【0021】
異方性の圧電材料であるLiNbO3のX軸の種結晶で育成した単結晶においては、Y軸方向を零度として、前記Y軸方向を基準とした所定の回転Y板のカット面において弾性表面波がX軸方向または、X軸方向に対してプラス・マイナス5度の範囲内で伝搬する場合を考える。
【0022】
このような、回転Yカット面で弾性表面波がX軸方向へ伝搬するLiNbO3基板の解析と実験は山之内、柴山著「Journal of Applied Physics,Vol.43,N0.3,March1972、pp.856−862」によって、発表されている。
【0023】
LiNbO3基板においてX軸方向へ伝搬する横波の弾性波は、速い横波と遅い横波とを有する。前記文献では、前記遅い横波より遅いモードの波がレーレ一波(Rayleigh waves)とされている。従来のフィルターなどで使用されている弾性表面波のほとんどがレーレー波である。また、前記文献などには、レーレ一波より速い速度で且つ前記速い横波と前記遅い横波との間の速度を持つ擬似弾性表面波(piezo electric leaky surface waves)が存在すると記載されている。
【0024】
また、前記擬似弾性表面波は基板内部に放射されるために伝搬減衰する。LiNbO3の単結晶の場合、前記単結晶の回転Y板のYカット面を零度のカット面とし、前記零度のカット面を基準として回転させたときの回転角度が41度付近のカット面において、表面Openの場合の伝搬減衰がほぼ零となる。また、カット面において、LiNbO3基板上に導電層を配置して、電気的に短絡させた場合には、回転角度が64度付近のカット面において前記伝搬減衰が零となり、それ以外の回転角度のカット面では伝搬減衰が大きくなると記載されている。
【0025】
前記伝搬減衰とは、基板の内部に擬似弾性表面波がエネルギーの一部を基板中に放射することに起因して、前記擬似弾性表面波が基板の表面に沿って伝搬するときに減衰していく程度を意味する。これは単位波長(λ)あたりの振幅の減衰量(dB)によって、表され、その単位は(dB/λ)である。前記回転Y板のカット角度が−10度から+30度の範囲では、前記伝搬減衰が0.8(dB/λ)と大きな値となる領域が存在し、このような領域では、擬似弾性表面波基板として使用しにくい。
【0026】
さらに、前記文献では、回転角度が−10度から+30度の範囲にあるYカット面においては、25℃における周波数温度特性(TCF)が−80ppm/℃と大きい値を示す。
【0027】
前記周波数温度特性TCF(Temperature Coefficient of Frequency)とは、25℃における弾性表面波の伝搬速度をv(m/s)、温度変化に対する伝搬速度の変化量を(∂v/∂T)、線膨張係数をαとしたときに、周波数温度特性(TCF)は、{1/v・(∂v/∂T)−α}(1/℃)で表される。
【0028】
そこで、図1に示すように、この実施の形態の弾性表面波基板では、LiNbO3基板の表面に、温度変化に対する弾性表面波の周波数の変動特性が前記LiNbO3基板と逆の特性である薄膜としてSiO2膜を形成している。すなわち、圧電単結晶材料であるLiNbO3基板の上に熔融石英を蒸着やスパッター法などを用いて付着させることにより、SiO2の薄膜が形成されている。
【0029】
ここで、「温度変化に対する弾性表面波の周波数の変動特性が前記基板と逆の特性である」とは、前記LiNbO3基板は温度が高くなるにしたがって駆動中心周波数が低くなるが、SiO2は温度が高くなるにしたがって駆動中心周波数が高くなることを意味している。すなわちLiNbO3基板は、温度が高くなると弾性表面波の伝搬速度が遅くなると同時に線膨張係数が正のために波長が長くなるため、駆動中心周波数が低くなる。一方、SiO2は、線膨張がほとんど零であるが、温度が高くなると伝搬速度が速くなるため、波長が短くなって駆動中心周波数が高くなる。
【0030】
本発明の実施の形態は、前記のように、LiNbO3基板のYカット面に、温度変化に対する弾性表面波の周波数の変動特性が前記基板と逆の特性であるSiO2の薄膜を形成することにより、周波数温度特性(TCF)を零またはきわめて小さくできること(図9参照)に着目したものである。さらに、前記LiNbO3基板とSiO2の薄膜とを電気的に短絡すること、具体的には、前記基板と前記薄膜との界面に、図11に示すようなすだれ状電極3a,3bを形成すること、また伝搬路は電気的に短絡された構造または短絡型のグレーティング電極4,4を形成することにより、伝搬減衰を低減させることができること(図4)に着目したものである。
【0031】
ここで、基板と薄膜との間を電気的に短絡することとは、基板と薄膜との境界面に均一な膜厚で一定の面積を有する導電層が挟まれて形成されていること、または、前記すだれ状電極3a,3bや短絡型のグレーティング電極4,4が挟まれて形成されていることを意味する。
【0032】
また本明細書でのすだれ状電極とは、弾性表面波の伝搬方向(X軸方向)に直交する方向へ延びる複数の細長い電極(ストリップ電極)の一端どうしが交互に電気的に接続されているものであり、図11に示すように、励振または受信領域5では、一方のすだれ状電極3aの各ストリップ電極と他方のすだれ状電極3bの各ストリップ電極とが、交互に配置されている構造である。
【0033】
また、短絡型のグレーティング電極とは、図11に示すように、弾性表面波の伝搬方向(X軸方向)に直交する方向へ延びる複数の細長い電極(ストリップ電極)の両端どうしが互いに短絡されているものを意味する。図11に示す擬似弾性表面波機能素子では、伝搬領域に形成された前記短絡型のグレーティング電極4,4により反射器が形成されている。
【0034】
また、この実施の形態は、回転Y板のカット角度と、H/λ(HはSiO2の薄膜の膜厚、λは駆動中心周波数)とを選ぶことにより、レーレー波の電気機械結合係数kR 2を零または零に近い値にできること(図8)、擬似弾性表面波の電気機械結合係数k2を大きくできること(図3)に着目したものである。この弾性表面波基板は、レーレー波がほとんど励振されず、擬似弾性表面波の励振を高めることができ、スプリアス特性に優れ、さらに広帯域の特性を有するフィルターなどの使用に適したものとなる。
【0035】
以上の特性は、単結晶の回転Y板のY軸方向を0度のカット面としたときに回転Y板の回転角度が−10度以上で+30度以下のLiNbO3基板を用い、H/λを0.05〜0.35の範囲内とすることによって得ることができる。また、好ましくは、回転Y板のカット角度が0度以上で+20度以下であり、H/λの値が0.1から0.35の範囲である。あるいは、回転Y板のカット角度が+20度以上で+30度以下の場合、好ましくはH/λの値が0.15から0.35の範囲である。また、電気機械結合係数k2を高くし、レーレー波の電気機械結合係数kR 2を低くするためには、いずれの場合もH/λの上限が0.31であることが好ましい。
【0036】
以上の詳細な特性例として、回転角度が+10度の場合を用いて説明すると、図9に示すように、H/λ=0では、TCF=−80ppm/℃であり、図4に示すように前記基板と前記薄膜との界面が電気的に短絡されている界面短絡(SHORT)と、短絡されていない界面開放(OPEN)の双方において、伝搬減衰が0.8dB/λとなり、良好な特性は得られない。一方、H/λ=0.2では、図9に示すように界面短絡(SHORT)ではTCFが0ppm/℃に近い値であり、また図4に示すように、界面短絡(SHORT)の場合は、H/λ=0.2では伝搬減衰がほぼ0dB/λの擬似弾性表面波基板が得られる。
【0037】
ここで、前記基板と前記薄膜との界面に、弾性表面波を励振するためのすだれ状電極または受信のためのすだれ状電極を設けた場合、また弾性表面波伝搬経路に、短絡型のグレーティング電極を設けた場合には、前記界面短絡(SHORT)の条件に対応するので、前記電極上を伝搬する擬似弾性表面波の伝搬減衰を零にできまたは零に近くできる。
【0038】
なお、前記電極は、アルミニウム(Al)、銅(Cu)、あるいはアルミニウム(Al)と銅(Cu)、チタン(Ti)、タングステン(W)、モリブデン(Mo)のいずれかとの合金、または、銅(Cu)とチタン(Ti)、タングステン(W)、モリブデン(Mo)のいずれかとの合金の金属膜形成される。好ましくは、励振電極または受信電極をAlあるいはCuで形成し、伝搬領域に位置する前記反射器などの電極をAlあるいはCuで形成することが好ましい。前記電極をCuで形成すると、挿入損失を低減でき、電極をAlとTiなどの金属を組み合わせると、大きな電力が与えられたときに電極に疲労破壊が生じるのを防止できる。
【0039】
LiNbO3の弾性、圧電、誘電の各定数としては、Smithらが測定した定数(R.T.Smith et al,J.Appl.Phys.,vol.42、No.6,1971,pp.2219−2229)と、Warnerらが測定した定数(A.W.Warner et al,J.Acoust.Soc.Amer.,Vo1.42,No.6,1967,pp.1223−1231)、温度特性についてはSmithらの定数(SiO2の定数と温度特性についてはM.J. Mcskimin(J.Appl. Phys.,vol.24、pp.988〜997,1953))がある。解析はLiNbO3についてはSmithとWarnerの定数、温度特性はSmithの定数(SiO2についてはMcskiminの定数)で解析を行ったが、LiNbO3については実験結果が、よりSmithらの定数に近いことから、以下においては、Smithの定数を用いて計算した結果を実験結果を含めて説明する。
【0040】
図2は、H/λと、周波数温度特性(TCF)との関係を示す図、図3は、H/λと、擬似弾性表面波の電気機械結合係数k2との関係を示す図、図4、図5および図6は、H/λと、擬似弾性表面波の伝搬減衰との関係を示す図、図7は、H/λと、弾性表面波の伝搬速度との関係を示す図、図8は、H/λと、擬似弾性表面波よりも伝搬速度が遅いレーレー波成分の電気機械結合係数kR 2との関係を示す図である。なお、図2、図4および図7は、LiNbO3基板の回転Y板のカット角度が+10度のとき、図5は前記回転角度が0度のとき、図6は前記回転角度が+5度のときであり、図3と図8は、前記回転角度を、0度から40度の範囲で5度ごとに変化させた場合を示している。いずれも弾性表面波の伝搬方向がX軸方向である。
【0041】
図2で示す実線および破線の曲線はSmithの定数を用いて計算した結果であるが、回転Y板のカット角度が10度の場合、TCFが0ppm/℃となるのは、LiNbO3基板とSiO2の薄膜の界面において基板表面を電気的に短絡させた界面短絡の場合(SHORT)が、H/λ=0.13のときであり、短絡させない界面開放の場合(OPEN)が、H/λ=0.26のときである。またLiNbO3基板とSiO2の薄膜の界面にすだれ状電極を形成して、弾性表面波を送受した時の中心周波数から求めた速度を「×」で示す。これから、すだれ状電極は短絡電極として動作していることが判る。この実験結果は、前記計算結果と一致していることが判る。
【0042】
図2から、回転Y板の回転角度が+10度で、界面短絡の場合、H/λ=0.13であれば、周波数温度特性(TCF)が0であり、H/λを0.115以上で0.31の範囲とすると、周波数温度特性(TCF)が−30ppm/℃から+30ppm/℃の範囲の擬似弾性表面基板を得ることができる。
【0043】
図3に示すように擬似弾性表面波の電気機械結合係数(electro mechanical coupling constant)k2は、回転角度が+10度で、界面短絡でH/λ=0.13のとき、すなわち周波数温度特性(TCF)が0のとき、k2=0.24以上の大きな値となる。また、H/λが0.115以上で0.31の範囲でも、k2を0.19以上にできることが判る。
【0044】
図4は前記回転角度が+10度のときの、伝搬減衰(Decay)を示しているが、界面短絡(SHORT)の場合、H/λ=0.13のとき伝搬減衰は零にきわめて近くなり、H/λが0.115以上で0.31の範囲でも伝搬減衰を小さい値にできることが判る。なお、界面開放(OPEN)の場合、周波数温度特性(TCF)が零になるH/λ=0.26のとき、伝搬減衰は約0.8dB/λであり、伝搬減衰が大きくなる。
【0045】
従って、励振又は受信用のすだれ状電極、あるいは短絡電極または反射器を構成する短絡型のグレーティング電極が、LiNbO3基板とSiO2の薄膜との界面に設けられて、LiNbO3基板とSiO2の薄膜との界面が電気的に短絡された基板を用いたとき、前記基板の回転Y板のカット角度を+10度とし、H/λを0.115以上で0.31以下に設定すれば、周波数温度特性に優れ、電気機械結合係数k2が大きく、伝搬減数が零に近いフィルターなどの弾性表面波機能素子を得ることができる。また、H/λを0.15以上で0.25以下に設定すれば、電気機械結合係数k2を0.215以上にでき、一方において伝搬減衰を限りなく零に近づけることができる。
【0046】
また、図7に示すように、界面短絡(SHORT)の場合は、H/λの変化に対する弾性表面波の伝搬速度の変化の幅が小さく、実用上有効であることが判る。なお、図7の「x」印は、LiNbO3基板とSiO2の薄膜との界面にすだれ状電極を設けて、前記電極で励振される擬似弾性表面波の速度を求めた実験値であるが、これはSmithらの定数から計算した界面短絡(SHORT)の結果と近似していることが判る。
【0047】
また、図8に示すように、回転Y板のカット面の回転角度が+10度の場合、H/λの値が0.115〜0.31の範囲にあるとき、レーレー波の電気機械結合係数KR 2が、+0.002から0の範囲に収まり、スプリアス信号の殆どない弾性表面波基板を得ることができる。
【0048】
図9は、界面短絡(SHORT)の場合の、H/λと擬似弾性表面波の周波数温度特性(TCF)との解析結果を示す図であり、ここではYカット面を−10度から40度の範囲で5度ごとに回転させた回転角度をパラメータとしている。
【0049】
図9に示すように、回転角度が−10度から+15度の範囲では、界面短絡の場合H/λが0.05以上、0.2以下で周波数温度特性が零(TCF=0ppm/℃)と成り得ることが判る。また回転角度が−10度から+25度の範囲では、H/λが0.05以上、0.25以下で、周波数温度特性が零となることが判る。さらに、回転角度が−10度から+30度の範囲では、H/λが0.05以上、0.35以下で、周波数温度特性が零となることが判る。
【0050】
上記のように、SiO2の薄膜の膜厚Hの変化による音響特性に起因して、LiNbO3基板の回転Y板のカット面の最適な回転角度が異なることが判る。よって、最適の回転角度とSiO2の薄膜の膜厚Hとを選択して組み合わせることにより、目的とする弾性表面波機能素子を作製することが可能になる。
【0051】
前記のように、LiNbO3基板とSiO2膜との界面にすだれ状電極または短絡電極あるいは短絡型のグレーティング電極を形成して前記基板と前記薄膜との界面において前記基板と薄膜との間を電気的に短絡させた場合、図9に示す周波数温度特性(TCF)を−30ppm/℃以上で+30ppm/℃以下にするには、基板の回転Y板のカット角度と、H/λとの関係を以下のように設定すればよい。
【0052】
(1)回転Y板のカット角度が−10度以上で−5度以下のとき、H/λは、0.07以上で0.31以下、
(2)回転Y板のカット角度が−5度以上で+10度以下のとき、H/λは、0.115以上で0.31以下、
(3)回転Y板のカット角度が+10度以上で+15度以下のとき、H/λは、0.16以上で0.31以下、
(4)回転Y板のカット角度が+15度以上で+20度以下のとき、H/λは、0.2以上で0.31以下、
(5)回転Y板のカット角度が+20度以上で+30度以下のとき、H/λは、0.25以上で0.31以下、
さらに、回転角度が0度以上で+10度以下のときも、H/λの最適な範囲は、0.115以上で0.31以下であり、回転角度が+5度以上で+15度以下のときの、H/λの最適な範囲も、0.16以上で0.31以下である。
【0053】
図4、図5および図6は回転角度が+10度、0度、および+5度のときを示しているが、これによると界面短絡において、伝搬減衰が零に近づく条件は、回転Y板のカット角度に依存せず、H/λに依存していることが判る。図4,5,6によれば、前記(1)(2)(3)(4)(5)に示す範囲のうち、H/λが0.115以上であれば、伝搬減衰が低下していることが判り、H/λが0.16以上であれば伝搬減衰が限りなく零に近いことが判る。よって、伝搬減衰を零に近づけるためには、前記(1)(2)においてもH/λを0.13以上とすることが好ましく、さらに好ましくは0.15以上である。
【0054】
また、図8に示すように、H/λが0.16から0.31の範囲であれば、レーレー波の電気機械結合係数kR 2が0.01未満であり、レーレー波成分はほとんど励起されず、スプリアス特性に優れたものとなる。図8によれば、回転Y板のカット角度が小さくなるにしたがって、kR 2が零となるH/λが高い値に移行する。よって、前記(1)または(2)の場合、あるいは回転角度が0度から+5度の場合に、H/λは、0.15以上であることが好ましく、さらに好ましくは0.2以上である。
【0055】
また、図3に示すように、回転Y板のカット角度が−10度以上で+30度以下の場合、H/λが0.31以下であれば、擬似弾性表面波の電気機械結合係数k2を0.135以上にできる。また、回転角度が+20度以下の場合に、H/λが0.31以下であれば、擬似弾性表面波の電気機械結合係数k2を0.155以上にでき、回転Y板のカット角度が+15度以下の場合に、H/λが0.31以下であれば、擬似弾性表面波の電気機械結合係数k2を0.175以上にできる。
【0056】
また、挿入損失を低減させて擬似弾性表面波の伝搬特性を向上させ、出力を高くするためには、電気機械結合係数k2を0.215以上とすることが好ましい。そのためには、前記(1)の場合に、H/λを0.07以上で0.25以下とすることが好ましく、前記(2)の場合に、H/λを0.115以上で0.25以下とすることが好ましく、前記(3)の場合に、H/λを0.16以上で0.23以下にすることが好ましい。
【0057】
また、一般に、SiO2膜などの薄膜層での弾性表面波の伝搬損失は、単結晶の圧電材料であるLiNbO3基板より大きいと考えられている。一方、前記実施の形態では、周波数温度特性(TCF)を加味してH/λを前記範囲に設定することによりSiO2膜の膜厚寸法Hは波長5μm以上(周波数800MHz)では1μmと非常に薄いものとなり、薄膜層の伝搬損失を極めて小さく抑えることが可能である。また前記のように薄膜の形成は、既に半導体生産技術において用いられているように、良質の膜を高精度に形成することが可能である。
【0058】
図10はTTE(Triple Transit Echo)の実験結果を示す図である。図10では、回転Y板のカット角度を+10度とし、薄膜層を零の周波数温度特性(TCF=0)が得られる膜厚寸法(H/λ=0.13)とし、伝搬距離を60λ(ただし、λ=10μm(約400MHz))とした場合である。なお、TTEとは入力側によって励振された表面波が受信側に達すると同時にその一部が反射され、これが入力側に戻ってさらに再反射する現象である。
【0059】
図10では5番目のTTEが観測されており、これより伝搬減衰は0.01dB/λ以下である。
【0060】
以上のことから、例えば上記の界面短絡の条件を満たす反射器を備えた弾性表面波共振器とすることにより、高いQ値の弾性表面波共振器を得ることができる。
【0061】
この実施の形態では、SiO2膜を薄くして伝搬減衰の小さい膜とすることが可能であることから、周波数温度特性を零に近くでき、かつ大きな電気機械結合係数k2をもつ擬似弾性表面波基板とすることができる。よって、これまでは得ることができなかった優れた周波数温度特性を持つ擬似弾性表面波機能素子、例えば広帯域のフィルター、マッチドフィルター、VCOなどを得ることが可能となる。
【0062】
図11は本発明の実施の形態として前記擬似弾性表面波基板を用いた弾性表面波機能素子の一例を示す斜視図である。
【0063】
図11に示す弾性表面波基板では、LiNbO3基板1の表面にSiO2の薄膜層2が成膜され、前記LiNbO3基板1と薄膜層2の界面に、擬似弾性表面波を励振又は受信するための一方の電極3aと他方の電極3bとから成るすだれ状電極が形成されている。また前記励振または受信領域5の左右両側に、反射器として機能する一対の短絡型のグレーティング電極4,4が形成された伝搬領域6,7が位置している。
【0064】
そして薄膜層2の膜厚寸法は、励振または受信領域5と伝搬領域6,7とで相違している。励振または受信領域5では、薄膜層2の膜厚寸法H0が擬似弾性表面波の電気機械結合係数k2が大きくなる範囲に設定されており、前記伝搬領域6,7では、薄膜層2の膜厚寸法H1が周波数温度特性(TCF)が小さくなるように設定されている。その結果、擬似弾性表面波に対する電気機械結合係数が大きく、周波数温度特性に優れた弾性表面波機能素子を得ることができる。この場合の、前記膜厚寸法H0とH1の組み合わせとしては以下が好ましい。
【0065】
(6)基板の回転Y板のカット角度が−10度以上で−5度以下のとき、励振または受信領域5ではH0/λが0以上で0.25以下、好ましくは0.05以上で0.25以下、伝搬領域6,7では、H1/λが0.07以上で0.31以下、好ましくは0.15以上で0.31以下、
(7)基板の回転Y板のカット角度が−5度以上で+10度以下のとき、励振または受信領域5ではH0/λが0以上で0.25以下、好ましくは0.05以上で0.25以下、伝搬領域6,7では、H1/λが0.115以上で0.31以下、好ましくは0.15以上で0.25以下、
(8)基板の回転Y板のカット角度が+10度以上で+15度以下のとき、励振または受信領域5ではH0/λが0以上で0.23以下、好ましくは0.05以上で0.23以下、伝搬領域6,7では、H1/λが0.16以上で0.31以下、好ましくは0.16以上で0.23以下、
(9)基板の回転Y板のカット角度が+15度以上で+20度以下のとき、励振または受信領域5ではH0/λが0以上で0.2以下、好ましくは0.05以上で0.2以下、伝搬領域6,7では、H1/λが0.2以上で0.31以下である。
【0066】
前記のように設定すれば、励振または受信領域5において擬似弾性表面波の電気機械結合係数k2を0.2以上、好ましくは0.215以上にでき、伝搬領域6,7では、25℃における周波数温度特性が、−30ppm/℃から+30ppm/℃にできる。
【0067】
以上のSiO2/LiNbO3基板においては、SiO2膜とLiNbO3基板の間の界面に正規型のすだれ状電極を作成した素子、多位相型の一方向性の変換器を有する素子、一方向性のすだれ状電極で形成された内部反射型の弾性表面波変換器を有する素子、短絡型のグレーティング電極を用いた共振器、反射器を付加した共振器などを構成することができる。これらは、擬似弾性表面波を用い、伝搬減衰を零に近くでき、且つ大きな電気機械結合係数k2と周波数温度特性の優れた素子とすることができる。
【0068】
【発明の効果】
本発明の弾性表面波基板および弾性表面波素子は、広い帯域幅で、低挿入損失で、かつ温度安定性に優れたフィルター、高性能の弾性表面波共振器及びVCOなどの弾性波機能素子、あるいは高性能の半導体素子と組み合わせた素子として使用することができる。
【図面の簡単な説明】
【図1】本発明の弾性表面波基板の構造を示す断面図、
【図2】回転Y板のカット角度が+10度のときの、H/λと周波数温度特性(TCF)との関係を示す図、
【図3】回転Y板のカット角度が0度から+40度のときの、H/λと擬似弾性表面波の電気機械結合係数k2との関係を示す図、
【図4】回転Y板のカット角度が+10度のときの、H/λと擬似弾性表面波の伝搬減衰との関係を示す図、
【図5】回転Y板のカット角度が0度のときの、H/λと擬似弾性表面波の伝搬減衰との関係を示す図、
【図6】回転Y板のカット角度が+5度のときの、H/λと擬似弾性表面波の伝搬減衰との関係を示す図、
【図7】回転Y板のカット角度が10度のときの、H/λと伝搬速度との関係を示す図、
【図8】回転Y板のカット角度が0度から+40度のときの、レーレー波成分の電気機械結合係数kR 2との関係を示す図、
【図9】回転Y板のカット角度が−10度から+40度のときの、H/λと擬似弾性表面波の周波数温度(TCF)との解析結果を示す図、
【図10】零温度特性の得られる膜厚で、伝搬距離60λ、λ=5μm(約400MHz)において、5番目のTTE(トリプルトランジットエコー)が観測されていることを示す実験結果、
【図11】本発明の実施の形態の弾性表面波機能素子を示す斜視図、
【符号の説明】
1 基板
2 薄膜層(SiO2膜)
3、3a、3b 電極(すだれ状電極)
4 短絡型のグレーティング電極
1、H0 SiO2の膜厚寸法
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface acoustic wave functional element in which a thin film such as SiO 2 is formed on the Y cut surface of a LiNbO 3 substrate in which a pseudo surface acoustic wave propagates in the X-axis direction on the cut surface of a rotating Y plate. The present invention relates to a surface acoustic wave functional device having excellent temperature characteristics.
[0002]
[Prior art and problems]
A surface acoustic wave functional element having an inter-digital electrode on a piezoelectric substrate surface is widely applied as a filter for an intermediate frequency band of a television or a filter for mobile communication. The surface acoustic wave functional element has an electrode for exciting a surface acoustic wave and an electrode for receiving the surface acoustic wave on the surface of a substrate having a piezoelectric action.
[0003]
As a piezoelectric substrate used for a surface acoustic wave functional element, a material having a large electro mechanical coupling constant k 2 has been conventionally used. However, a surface acoustic wave functional element using a material having a large electromechanical coupling coefficient k 2 as a substrate generally has a problem of poor temperature characteristics, that is, lack of temperature stability.
[0004]
Further, those using a single crystal piezoelectric substrate such as ST-cut quartz and LST-cut quartz are excellent in temperature stability, but on the other hand, the electromechanical coupling coefficient k 2 is small. Therefore, the insertion loss when used as a filter is large, and it cannot be used for a filter having a wide bandwidth.
[0005]
Therefore, as a substrate having excellent temperature stability and a large electromechanical coupling coefficient k 2 , a LiNbO 3 substrate or a LiTaO 3 substrate is used, and a SiO 2 film having a low linear expansion coefficient on its surface and an inverse temperature characteristic. A SiO 2 / LiNbO 3 substrate, a SiO 2 / LiTaO 3 substrate, etc., to which the metal is attached have been devised. These are “Wave Electronics, 3, (1979-12)” by Yamanouchi, Iwahashi and Shibayama, and “IEEE, Trans. On Sonics and Ulrason., Vol-SU-31, No. 1, Jan.” by Yamanouchi and Hayama. 1984) ”is described as a good result. These substrates have been proposed for application as filters using highly stable oscillators and ordinary bi-directional interdigital electrodes.
[0006]
However, there is a need for a substrate having an electromechanical coupling coefficient k 2 greater than that of the conventional one and having excellent temperature stability.
[0007]
An object of the present invention is to provide a surface acoustic wave functional device having an electromechanical coupling coefficient k 2 greater than that of the prior art and good temperature characteristics.
[0008]
[Means for Solving the Problems]
The present invention relates to a surface acoustic wave functional element in which a thin film having a frequency variation characteristic of a surface acoustic wave with respect to a temperature change is opposite to that of the substrate on a piezoelectric or electrostrictive substrate.
The substrate has a pseudo surface acoustic wave having a propagation velocity faster than a Rayleigh-type surface acoustic wave in a range where the cut angle of the rotating Y plate is −10 degrees or more and −5 degrees or less. LiNbO 3 substrate that propagates in the range of plus or minus 5 degrees with respect to the direction,
The value of H / λ is in the range of 0.13 to 0.31, where H is the thickness of the thin film and λ is the wavelength of the pseudo surface acoustic wave at the operating center frequency. It is.
[0010]
When the cut angle and H / λ of the rotating Y plate are selected within the above range, the frequency temperature characteristic (TCF) measured at 25 ° C. can be made zero, or the frequency temperature characteristic can be reduced. .
[0011]
The preferred range of the surface acoustic wave substrate of the present invention, the frequency temperature characteristic (TCF) is, at 25 ° C., is from -30ppm / ℃ + 30ppm / ℃. Furthermore, the electromechanical coupling coefficient k 2 of the pseudo surface acoustic wave is 0.155 or more .
[0012]
Further, according to the present invention, the substrate has a pseudo surface acoustic wave having a propagation velocity faster than a Rayleigh-type surface acoustic wave in a range in which the cut angle of the rotating Y plate is not less than −5 degrees and less than 0 degrees. Or a LiNbO 3 substrate that propagates in a range of plus or minus 5 degrees with respect to the X-axis direction ,
When the film thickness of the thin film is H and the wavelength at the operation center frequency of the pseudo surface acoustic wave is λ, the value of H / λ is in the range of 0.13 to 0.31, and the frequency-temperature characteristics ( TCF) is characterized by being −30 ppm / ° C. to +30 ppm / ° C. at 25 ° C.
[0013]
Moreover, the surface acoustic wave functional element of the present invention uses the surface acoustic wave substrate according to any one of the above,
In the excitation or reception region, an electrode for exciting or receiving a pseudo surface acoustic wave is formed as an interdigital electrode (Inter-Digital Electrode) on the boundary surface between the surface of the substrate and the thin film.
In the propagation region, the boundary surface between the surface of the substrate and the thin film has an electrically short-circuited structure or a short-circuited grating electrode structure.
[0014]
Further, in the present invention, the substrate has a pseudo surface acoustic wave having a propagation velocity faster than a Rayleigh-type surface acoustic wave in a range where the cut angle of the rotating Y plate is -5 degrees or more and less than 0 degrees. Or a LiNbO 3 substrate that propagates in a range of plus or minus 5 degrees with respect to the X-axis direction ,
When the film thickness of the thin film is H and the wavelength at the operating center frequency of the pseudo surface acoustic wave is λ, the value of H / λ is in the range of 0.15 to 0.25, and the frequency temperature characteristic ( TCF) is 0 ppm / ° C. to +20 ppm / ° C. at 25 ° C., and the electromechanical coupling coefficient k 2 is 0.215 or more.
[0019]
Therefore, if any one of the surface acoustic wave functional elements is used as a filter, the frequency characteristics are wide and the insertion loss is low.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a sectional view showing the structure of a surface acoustic wave substrate according to an embodiment of the present invention.
[0021]
In a single crystal grown with an X-axis seed crystal of LiNbO 3 which is an anisotropic piezoelectric material, an elastic surface is formed on the cut surface of a predetermined rotating Y plate with the Y-axis direction set to zero degree as a reference. Consider a case where a wave propagates in the X-axis direction or within a range of plus or minus 5 degrees with respect to the X-axis direction.
[0022]
The analysis and experiment of such a LiNbO 3 substrate on which a surface acoustic wave propagates in the X-axis direction on a rotating Y-cut surface is described by Yamanouchi and Shibayama, “Journal of Applied Physics, Vol. 43, N0.3, March 1972, pp. 856. -862 ".
[0023]
A transverse elastic wave propagating in the X-axis direction on the LiNbO 3 substrate has a fast transverse wave and a slow transverse wave. In the document, a wave in a mode slower than the slow transverse wave is regarded as a Rayleigh wave. Most of the surface acoustic waves used in conventional filters are Rayleigh waves. In addition, the above document describes that there is a piezo electric leaky surface wave having a speed faster than the Rayleigh wave and having a speed between the fast transverse wave and the slow transverse wave.
[0024]
Further, since the pseudo surface acoustic wave is radiated into the substrate, it is attenuated by propagation. In the case of a single crystal of LiNbO 3 , the Y-cut surface of the rotated Y plate of the single crystal is a zero-degree cut surface, and the rotation angle when rotated about the zero-degree cut surface is 41 degrees, The propagation attenuation in the case of the surface Open becomes almost zero. In addition, when the conductive layer is arranged on the LiNbO 3 substrate and electrically short-circuited on the cut surface, the propagation attenuation becomes zero on the cut surface having a rotation angle of around 64 degrees, and other rotation angles. It is described that the propagation attenuation increases in the cut plane.
[0025]
The propagation attenuation is caused when the pseudo surface acoustic wave propagates along the surface of the substrate because the pseudo surface acoustic wave radiates a part of the energy into the substrate inside the substrate. Means how much. This is expressed by the attenuation amount (dB) of the amplitude per unit wavelength (λ), and the unit is (dB / λ). When the cut angle of the rotating Y plate is in the range of −10 degrees to +30 degrees, there is a region where the propagation attenuation is as large as 0.8 (dB / λ). In such a region, the pseudo surface acoustic wave is present. It is difficult to use as a substrate.
[0026]
Further, in the above document, the frequency temperature characteristic (TCF) at 25 ° C. shows a large value of −80 ppm / ° C. on the Y-cut surface where the rotation angle is in the range of −10 degrees to +30 degrees.
[0027]
The frequency temperature characteristic TCF (Temperature Coefficient of Frequency) is the propagation velocity of the surface acoustic wave at 25 ° C. v (m / s), the amount of change in the propagation velocity with respect to the temperature change (∂v / ∂T), linear expansion When the coefficient is α, the frequency temperature characteristic (TCF) is represented by {1 / v · (∂v / ∂T) −α} (1 / ° C.).
[0028]
Therefore, as shown in FIG. 1, a thin film in the surface acoustic wave substrate of this embodiment, the surface of the LiNbO 3 substrate, a characteristic fluctuation characteristics of the LiNbO 3 substrate and the opposite of the frequency of the surface acoustic wave with respect to a temperature change As a result, a SiO 2 film is formed. That is, a thin film of SiO 2 is formed by adhering fused quartz on a LiNbO 3 substrate, which is a piezoelectric single crystal material, by vapor deposition or sputtering.
[0029]
Here, “the fluctuation characteristic of the surface acoustic wave frequency with respect to the temperature change is the reverse characteristic of the substrate” means that the LiNbO 3 substrate has a lower drive center frequency as the temperature increases, but SiO 2 This means that the drive center frequency increases as the temperature increases. That is, in the LiNbO 3 substrate, the propagation speed of the surface acoustic wave becomes slow as the temperature rises, and at the same time the wavelength becomes longer because the linear expansion coefficient is positive, so that the drive center frequency becomes lower. On the other hand, SiO 2 has almost zero linear expansion, but the propagation speed increases as the temperature rises, so the wavelength becomes shorter and the drive center frequency becomes higher.
[0030]
In the embodiment of the present invention, as described above, a thin film of SiO 2 having a frequency variation characteristic of a surface acoustic wave with respect to a temperature change opposite to that of the substrate is formed on the Y-cut surface of the LiNbO 3 substrate. Thus, the frequency temperature characteristic (TCF) can be reduced to zero or extremely small (see FIG. 9). Further, the LiNbO 3 substrate and the SiO 2 thin film are electrically short-circuited, specifically, interdigital electrodes 3a and 3b as shown in FIG. 11 are formed at the interface between the substrate and the thin film. In addition, the propagation path is focused on the fact that the propagation attenuation can be reduced by forming a structure in which the propagation path is electrically short-circuited or short-circuited grating electrodes 4 and 4 (FIG. 4).
[0031]
Here, electrically short-circuiting between the substrate and the thin film means that a conductive layer having a uniform area with a uniform film thickness is sandwiched between the interface between the substrate and the thin film, or This means that the interdigital electrodes 3a and 3b and the short-circuited grating electrodes 4 and 4 are sandwiched.
[0032]
Further, in this specification, the interdigital electrode is configured such that one ends of a plurality of elongated electrodes (strip electrodes) extending in a direction orthogonal to the propagation direction of the surface acoustic wave (X-axis direction) are alternately electrically connected. As shown in FIG. 11, in the excitation or receiving region 5, each strip electrode of one interdigital electrode 3a and each strip electrode of the other interdigital electrode 3b are arranged alternately. is there.
[0033]
As shown in FIG. 11, the short-circuited grating electrode is formed by short-circuiting both ends of a plurality of elongated electrodes (strip electrodes) extending in a direction perpendicular to the propagation direction (X-axis direction) of the surface acoustic wave. Means what In the pseudo surface acoustic wave functional element shown in FIG. 11, a reflector is formed by the short-circuited grating electrodes 4 and 4 formed in the propagation region.
[0034]
Further, in this embodiment, the electromechanical coupling coefficient k of the Rayleigh wave is selected by selecting the cut angle of the rotating Y plate and H / λ (H is the film thickness of the SiO 2 thin film and λ is the drive center frequency). It focuses on the fact that R 2 can be made zero or a value close to zero (FIG. 8) and that the electromechanical coupling coefficient k 2 of the pseudo surface acoustic wave can be increased (FIG. 3). This surface acoustic wave substrate is hardly excited by the Rayleigh wave, can enhance the excitation of the pseudo surface acoustic wave, is excellent in spurious characteristics, and is suitable for use in a filter having a broadband characteristic.
[0035]
The above characteristics are obtained by using a LiNbO 3 substrate in which the rotation angle of the rotating Y plate is -10 degrees or more and +30 degrees or less when the Y-axis direction of the single crystal rotating Y plate is 0 degree cut surface. Can be obtained within a range of 0.05 to 0.35. Preferably, the rotation angle of the rotating Y plate is 0 ° or more and + 20 ° or less, and the value of H / λ is in the range of 0.1 to 0.35. Alternatively, when the cut angle of the rotating Y plate is not less than +20 degrees and not more than +30 degrees, the value of H / λ is preferably in the range of 0.15 to 0.35. Further, to increase the electromechanical coupling coefficient k 2, in order to reduce the electromechanical coupling coefficient k R 2 of Rayleigh waves, it is preferable upper limit of even H / lambda cases is 0.31.
[0036]
As an example of the detailed characteristics described above, a case where the rotation angle is +10 degrees will be described. As shown in FIG. 9, when H / λ = 0, TCF = −80 ppm / ° C., and as shown in FIG. In both the interface short circuit (SHORT) where the interface between the substrate and the thin film is electrically short-circuited and the interface open (OPEN) which is not short-circuited, the propagation attenuation is 0.8 dB / λ, and the good characteristics are I can't get it. On the other hand, at H / λ = 0.2, the TCF is close to 0 ppm / ° C. in the interface short circuit (SHORT) as shown in FIG. 9, and in the case of the interface short circuit (SHORT) as shown in FIG. When H / λ = 0.2, a pseudo surface acoustic wave substrate having a propagation attenuation of approximately 0 dB / λ can be obtained.
[0037]
Here, when an interdigital electrode for exciting surface acoustic waves or an interdigital electrode for receiving is provided at the interface between the substrate and the thin film, or in the surface acoustic wave propagation path, a short-circuited grating electrode Since this corresponds to the condition of the interface short circuit (SHORT), the propagation attenuation of the pseudo surface acoustic wave propagating on the electrode can be made zero or close to zero.
[0038]
The electrode may be aluminum (Al), copper (Cu), an alloy of aluminum (Al) and copper (Cu), titanium (Ti), tungsten (W), or molybdenum (Mo), or copper. (Cu) and a metal film of an alloy of titanium (Ti), tungsten (W), or molybdenum (Mo) . Preferably, the excitation electrode or the reception electrode is formed of Al or Cu, and the electrode such as the reflector located in the propagation region is preferably formed of Al or Cu. When the electrode is made of Cu, insertion loss can be reduced, and when the electrode is made of a combination of metals such as Al and Ti, fatigue breakdown of the electrode can be prevented when large electric power is applied.
[0039]
As the elastic, piezoelectric and dielectric constants of LiNbO 3 , the constants measured by Smith et al. (RTSmith et al, J. Appl. Phys., Vol. 42, No. 6, 1971, pp. 2219-2229), constant Warner et al were measured (AWWarner et al, J.Acoust.Soc.Amer., Vo1.42, No.6,1967, pp.1223-1231), Smith et al constants for temperature characteristics (constant of SiO 2 And MJ Mcskimin (J. Appl. Phys., Vol. 24, pp. 988 to 997, 1953)). Analysis was performed using Smith and Warner constants for LiNbO 3 and Smith constants (Mcskimin constant for SiO 2 ), but the experimental results for LiNbO 3 are closer to those of Smith et al. Therefore, in the following, the results calculated using Smith's constants will be described including experimental results.
[0040]
2 is a diagram showing the relationship between H / λ and frequency temperature characteristics (TCF), and FIG. 3 is a diagram showing the relationship between H / λ and the electromechanical coupling coefficient k 2 of the pseudo surface acoustic wave. 4, FIG. 5 and FIG. 6 are diagrams showing the relationship between H / λ and the propagation attenuation of the pseudo surface acoustic wave. FIG. 7 is a diagram showing the relationship between H / λ and the propagation velocity of the surface acoustic wave. FIG. 8 is a diagram showing the relationship between H / λ and the electromechanical coupling coefficient k R 2 of the Rayleigh wave component whose propagation speed is slower than that of the pseudo surface acoustic wave. 2, 4, and 7 show that when the cut angle of the rotation Y plate of the LiNbO 3 substrate is +10 degrees, FIG. 5 shows the rotation angle is 0 degree, and FIG. 6 shows the rotation angle is +5 degrees. FIG. 3 and FIG. 8 show the case where the rotation angle is changed every 5 degrees in the range of 0 degree to 40 degrees. In any case, the propagation direction of the surface acoustic wave is the X-axis direction.
[0041]
The solid and dashed curves shown in FIG. 2 are the results calculated using Smith's constants. When the cut angle of the rotating Y plate is 10 degrees, the TCF is 0 ppm / ° C. because the LiNbO 3 substrate and SiO 2 The interface short-circuit (SHORT) in which the substrate surface is electrically short-circuited at the interface of the thin film 2 is when H / λ = 0.13, and the interface open without short-circuiting (OPEN) is H / λ. = 0.26. In addition, the speed obtained from the center frequency when the interdigital electrode is formed at the interface between the LiNbO 3 substrate and the SiO 2 thin film and the surface acoustic wave is transmitted and received is indicated by “×”. From this, it can be seen that the interdigital electrode operates as a short-circuit electrode. It can be seen that the experimental result is consistent with the calculation result.
[0042]
From FIG. 2, when the rotation angle of the rotating Y plate is +10 degrees and the interface is short-circuited, if H / λ = 0.13, the frequency temperature characteristic (TCF) is 0 and H / λ is 0.115 or more. If it is within the range of 0.31, a pseudo-elastic surface substrate having a frequency temperature characteristic (TCF) in the range of −30 ppm / ° C. to +30 ppm / ° C. can be obtained.
[0043]
As shown in FIG. 3, the electromechanical coupling constant k 2 of the pseudo-surface acoustic wave is +10 degrees when the rotation angle is H / λ = 0.13 at the interface short-circuit, that is, the frequency-temperature characteristic ( When TCF) is 0, k 2 = 0.24 or larger. It can also be seen that k 2 can be 0.19 or more even when H / λ is 0.115 or more and 0.31.
[0044]
FIG. 4 shows the propagation attenuation (Decay) when the rotation angle is +10 degrees. In the case of the interface short circuit (SHORT), the propagation attenuation becomes very close to zero when H / λ = 0.13. It can be seen that the propagation attenuation can be made small even when H / λ is 0.115 or more and 0.31. In the case of the open interface (OPEN), when H / λ = 0.26 where the frequency temperature characteristic (TCF) is zero, the propagation attenuation is about 0.8 dB / λ, and the propagation attenuation becomes large.
[0045]
Therefore, an interdigital electrode for excitation or reception, or a short-circuited grating electrode constituting a short-circuit electrode or a reflector is provided at the interface between the LiNbO 3 substrate and the SiO 2 thin film, and the LiNbO 3 substrate and the SiO 2 When using a substrate whose interface with the thin film is electrically short-circuited, if the cut angle of the rotating Y plate of the substrate is set to +10 degrees and H / λ is set to 0.115 or more and 0.31 or less, the frequency A surface acoustic wave functional element such as a filter having excellent temperature characteristics, a large electromechanical coupling coefficient k 2 , and a propagation coefficient close to zero can be obtained. If H / λ is set to 0.15 or more and 0.25 or less, the electromechanical coupling coefficient k 2 can be set to 0.215 or more, and on the other hand, the propagation attenuation can be made as close to zero as possible.
[0046]
Further, as shown in FIG. 7, in the case of the interface short circuit (SHORT), it can be understood that the change width of the propagation speed of the surface acoustic wave with respect to the change of H / λ is small and is practically effective. Note that the “x” mark in FIG. 7 is an experimental value in which an interdigital electrode is provided at the interface between the LiNbO 3 substrate and the SiO 2 thin film and the speed of the pseudo surface acoustic wave excited by the electrode is obtained. This is close to the result of the interface short circuit (SHORT) calculated from the Smith et al. Constant.
[0047]
Further, as shown in FIG. 8, when the rotation angle of the cut surface of the rotating Y plate is +10 degrees, when the value of H / λ is in the range of 0.115 to 0.31, the electromechanical coupling coefficient of the Rayleigh wave A surface acoustic wave substrate having a K R 2 in the range of +0.002 to 0 and almost no spurious signal can be obtained.
[0048]
FIG. 9 is a diagram showing an analysis result of H / λ and the frequency temperature characteristic (TCF) of the pseudo surface acoustic wave in the case of an interface short circuit (SHORT). Here, the Y-cut surface is −10 degrees to 40 degrees. The rotation angle rotated every 5 degrees in the range is used as a parameter.
[0049]
As shown in FIG. 9, when the rotation angle is in the range of -10 degrees to +15 degrees, in the case of an interface short circuit, H / λ is 0.05 or more and 0.2 or less and the frequency temperature characteristic is zero (TCF = 0 ppm / ° C.). It can be seen that It can also be seen that when the rotation angle is in the range of −10 degrees to +25 degrees, the frequency temperature characteristic becomes zero when H / λ is 0.05 or more and 0.25 or less. Further, it can be seen that when the rotation angle is in the range of −10 degrees to +30 degrees, H / λ is 0.05 or more and 0.35 or less, and the frequency temperature characteristic becomes zero.
[0050]
As described above, it can be seen that the optimum rotation angle of the cut surface of the rotating Y plate of the LiNbO 3 substrate differs due to the acoustic characteristics due to the change of the film thickness H of the SiO 2 thin film. Therefore, by selecting and combining the optimum rotation angle and the film thickness H of the SiO 2 thin film, it is possible to manufacture the target surface acoustic wave functional element.
[0051]
As described above, an interdigital electrode, a short-circuited electrode, or a short-circuited grating electrode is formed at the interface between the LiNbO 3 substrate and the SiO 2 film, and an electrical connection is made between the substrate and the thin film at the interface between the substrate and the thin film. In order to make the frequency temperature characteristic (TCF) shown in FIG. 9 to be −30 ppm / ° C. or higher and +30 ppm / ° C. or lower when the circuit is short-circuited, the relationship between the cut angle of the rotating Y plate of the substrate and H / λ What is necessary is just to set as follows.
[0052]
(1) When the cut angle of the rotating Y plate is -10 degrees or more and -5 degrees or less, H / λ is 0.07 or more and 0.31 or less,
(2) When the cut angle of the rotating Y plate is −5 degrees or more and +10 degrees or less, H / λ is 0.115 or more and 0.31 or less,
(3) When the cut angle of the rotating Y plate is +10 degrees or more and +15 degrees or less, H / λ is 0.16 or more and 0.31 or less,
(4) When the cut angle of the rotating Y plate is +15 degrees or more and +20 degrees or less, H / λ is 0.2 or more and 0.31 or less,
(5) When the cut angle of the rotating Y plate is +20 degrees or more and +30 degrees or less, H / λ is 0.25 or more and 0.31 or less,
Further, when the rotation angle is 0 ° or more and + 10 ° or less, the optimum range of H / λ is 0.115 or more and 0.31 or less, and the rotation angle is + 5 ° or more and + 15 ° or less. The optimum range of H / λ is also 0.16 or more and 0.31 or less.
[0053]
4, 5, and 6 show when the rotation angles are +10 degrees, 0 degrees, and +5 degrees. According to this, the condition for the propagation attenuation to approach zero at the interface short-circuit is It can be seen that it does not depend on the angle but depends on H / λ. According to FIGS. 4, 5, and 6, if H / λ is 0.115 or more in the ranges shown in (1), (2), (3), (4), and (5), the propagation attenuation is reduced. When H / λ is 0.16 or more, it can be seen that the propagation attenuation is almost zero. Therefore, in order to bring the propagation attenuation close to zero, it is preferable that H / λ is 0.13 or more in (1) and (2), and more preferably 0.15 or more.
[0054]
Further, as shown in FIG. 8, when H / λ is in the range of 0.16 to 0.31, the electromechanical coupling coefficient k R 2 of the Rayleigh wave is less than 0.01, and the Rayleigh wave component is almost excited. In other words, the spurious characteristics are excellent. According to FIG. 8, as the cut angle of the rotating Y plate decreases, H / λ at which k R 2 becomes zero shifts to a higher value. Therefore, in the case of (1) or (2), or when the rotation angle is 0 to +5 degrees, H / λ is preferably 0.15 or more, more preferably 0.2 or more. .
[0055]
As shown in FIG. 3, when the cut angle of the rotating Y plate is −10 degrees or more and +30 degrees or less and H / λ is 0.31 or less, the electromechanical coupling coefficient k 2 of the pseudo surface acoustic wave is 2 Can be made 0.135 or more. When the rotation angle is +20 degrees or less and H / λ is 0.31 or less, the electromechanical coupling coefficient k 2 of the pseudo surface acoustic wave can be made 0.155 or more, and the cut angle of the rotating Y plate is In the case of +15 degrees or less, if H / λ is 0.31 or less, the electromechanical coupling coefficient k 2 of the pseudo surface acoustic wave can be made 0.175 or more.
[0056]
In order to reduce the insertion loss, improve the propagation characteristics of the pseudo surface acoustic wave, and increase the output, the electromechanical coupling coefficient k 2 is preferably 0.215 or more. For that purpose, in the case (1), it is preferable that H / λ is 0.07 or more and 0.25 or less, and in the case (2), H / λ is 0.115 or more and 0.00. It is preferable to be 25 or less, and in the case of (3), H / λ is preferably 0.16 or more and 0.23 or less.
[0057]
In general, the propagation loss of surface acoustic waves in a thin film layer such as a SiO 2 film is considered to be larger than that of a LiNbO 3 substrate which is a single crystal piezoelectric material. On the other hand, in the above embodiment, by setting the H / λ to the above range in consideration of the frequency temperature characteristic (TCF), the film thickness dimension H of the SiO 2 film is very 1 μm at a wavelength of 5 μm or more (frequency 800 MHz). It becomes thin, and it is possible to keep the propagation loss of the thin film layer extremely small. Further, as described above, the formation of a thin film can form a high-quality film with high accuracy as already used in semiconductor production technology.
[0058]
FIG. 10 is a diagram showing the results of TTE (Triple Transit Echo) experiments. In FIG. 10, the cut angle of the rotating Y plate is set to +10 degrees, the thin film layer is set to a film thickness dimension (H / λ = 0.13) at which zero frequency temperature characteristics (TCF = 0) can be obtained, and the propagation distance is set to 60λ ( However, it is a case where λ = 10 μm (about 400 MHz). TTE is a phenomenon in which a surface wave excited by the input side reaches the receiving side, and at the same time, a part of the surface wave is reflected and returns to the input side for further re-reflection.
[0059]
In FIG. 10, the fifth TTE is observed, and the propagation attenuation is 0.01 dB / λ or less.
[0060]
From the above, for example, a surface acoustic wave resonator having a high Q value can be obtained by using a surface acoustic wave resonator including a reflector that satisfies the above-described interface short-circuit condition.
[0061]
In this embodiment, since it is possible to make the SiO 2 film thin and have a small propagation attenuation, the frequency temperature characteristic can be made close to zero and the pseudoelastic surface having a large electromechanical coupling coefficient k 2 It can be a wave substrate. Therefore, it is possible to obtain a pseudo surface acoustic wave functional element having excellent frequency temperature characteristics that could not be obtained until now, such as a broadband filter, a matched filter, a VCO, and the like.
[0062]
FIG. 11 is a perspective view showing an example of a surface acoustic wave functional element using the pseudo surface acoustic wave substrate as an embodiment of the present invention.
[0063]
In the surface acoustic wave substrate shown in FIG. 11, the thin-film layer 2 of SiO 2 is deposited on the surface of the LiNbO 3 substrate 1, an interface between the LiNbO 3 substrate 1 and the thin film layer 2, excites or receives a pseudo surface acoustic wave For this purpose, an interdigital electrode composed of one electrode 3a and the other electrode 3b is formed. Propagation regions 6 and 7 in which a pair of short-circuited grating electrodes 4 and 4 functioning as reflectors are located on the left and right sides of the excitation or reception region 5.
[0064]
The film thickness dimension of the thin film layer 2 is different between the excitation or reception region 5 and the propagation regions 6 and 7. In the excitation or reception region 5, the film thickness dimension H 0 of the thin film layer 2 is set in a range where the electromechanical coupling coefficient k 2 of the pseudo surface acoustic wave becomes large. The film thickness dimension H 1 is set so that the frequency temperature characteristic (TCF) becomes small. As a result, it is possible to obtain a surface acoustic wave functional element having a large electromechanical coupling coefficient with respect to a pseudo surface acoustic wave and excellent frequency temperature characteristics. In this case, the combination of the film thickness dimensions H 0 and H 1 is preferably as follows.
[0065]
(6) When the cut angle of the rotating Y plate of the substrate is -10 degrees or more and -5 degrees or less, in the excitation or reception region 5, H 0 / λ is 0 or more and 0.25 or less, preferably 0.05 or more. 0.25 or less, and in the propagation regions 6 and 7, H 1 / λ is 0.07 or more and 0.31 or less, preferably 0.15 or more and 0.31 or less,
(7) When the cut angle of the rotating Y plate of the substrate is -5 degrees or more and +10 degrees or less, in the excitation or reception area 5, H 0 / λ is 0 or more and 0.25 or less, preferably 0.05 or more and 0. .25 or less, in propagation regions 6 and 7, H 1 / λ is 0.115 or more and 0.31 or less, preferably 0.15 or more and 0.25 or less,
(8) When the cut angle of the rotating Y plate of the substrate is not less than +10 degrees and not more than +15 degrees, in the excitation or reception area 5, H 0 / λ is 0 or more and 0.23 or less, preferably 0.05 or more and 0.00. 23 or less, and in the propagation regions 6 and 7, H 1 / λ is 0.16 or more and 0.31 or less, preferably 0.16 or more and 0.23 or less,
(9) When the cut angle of the rotating Y plate of the substrate is +15 degrees or more and +20 degrees or less, in the excitation or reception area 5, H 0 / λ is 0 or more and 0.2 or less, preferably 0.05 or more and 0.00. 2 or less, in the propagation regions 6 and 7, H 1 / λ is 0.2 or more and 0.31 or less.
[0066]
By setting as described above, the electromechanical coupling coefficient k 2 of the quasi-surface acoustic wave in the excitation or reception region 5 can be 0.2 or more, preferably 0.215 or more. The frequency temperature characteristic can be changed from −30 ppm / ° C. to +30 ppm / ° C.
[0067]
In the above SiO 2 / LiNbO 3 substrate, a device having a regular interdigital electrode at the interface between the SiO 2 film and the LiNbO 3 substrate, a device having a multi-phase unidirectional transducer, a unidirectional An element having an internal reflection type surface acoustic wave converter formed of a conductive interdigital electrode, a resonator using a short-circuited grating electrode, a resonator to which a reflector is added, and the like can be configured. These use quasi-surface acoustic waves, can make propagation attenuation close to zero, and can be an element having a large electromechanical coupling coefficient k 2 and excellent frequency temperature characteristics.
[0068]
【The invention's effect】
The surface acoustic wave substrate and surface acoustic wave element of the present invention are a wide bandwidth, a low insertion loss and an excellent temperature stability filter, a high performance surface acoustic wave resonator and a surface acoustic wave functional element such as a VCO, Or it can be used as an element combined with a high-performance semiconductor element.
[Brief description of the drawings]
1 is a cross-sectional view showing the structure of a surface acoustic wave substrate according to the present invention;
FIG. 2 is a diagram showing the relationship between H / λ and frequency temperature characteristics (TCF) when the cut angle of the rotating Y plate is +10 degrees;
FIG. 3 is a diagram showing the relationship between H / λ and the electromechanical coupling coefficient k 2 of the pseudo surface acoustic wave when the cut angle of the rotating Y plate is 0 ° to + 40 °.
FIG. 4 is a diagram showing a relationship between H / λ and propagation attenuation of a pseudo surface acoustic wave when the cut angle of the rotating Y plate is +10 degrees;
FIG. 5 is a diagram showing a relationship between H / λ and propagation attenuation of a pseudo surface acoustic wave when the cut angle of the rotating Y plate is 0 degree;
FIG. 6 is a diagram showing the relationship between H / λ and the propagation attenuation of a pseudo surface acoustic wave when the cut angle of the rotating Y plate is +5 degrees;
FIG. 7 is a diagram showing the relationship between H / λ and propagation speed when the cut angle of the rotating Y plate is 10 degrees;
FIG. 8 is a diagram showing the relationship between the Rayleigh wave component and the electromechanical coupling coefficient k R 2 when the cut angle of the rotating Y plate is 0 ° to + 40 °;
FIG. 9 is a view showing an analysis result of H / λ and the frequency temperature (TCF) of the pseudo surface acoustic wave when the cut angle of the rotating Y plate is −10 degrees to +40 degrees;
FIG. 10 is an experimental result showing that the fifth TTE (triple transit echo) is observed at a propagation distance of 60λ and λ = 5 μm (about 400 MHz) at a film thickness at which zero temperature characteristics can be obtained;
FIG. 11 is a perspective view showing a surface acoustic wave functional element according to an embodiment of the present invention;
[Explanation of symbols]
1 Substrate 2 Thin film layer (SiO 2 film)
3, 3a, 3b electrode (interdigital electrode)
4 Short-circuit type grating electrodes H 1 and H 0 SiO 2 film thickness

Claims (5)

圧電性あるいは電歪性基板上に、温度変化に対する弾性表面波の周波数の変動特性が前記基板と逆の特性である薄膜が積層された弾性表面波機能素子において、
前記基板は、回転Y板のカット角度が−10度以上で−5度以下の範囲で、レーレー型の弾性表面波よりも速い伝搬速度を有する擬似弾性表面波が、X軸方向あるいは前記X軸方向に対してプラス・マイナス5度の範囲で伝搬するLiNbO3基板であり、
前記薄膜の膜厚をH、前記擬似弾性表面波の動作中心周波数での波長をλとしたときに、H/λの値が0.13から0.31の範囲であることを特徴とする弾性表面波機能素子。
In a surface acoustic wave functional element in which a thin film having a frequency variation characteristic of a surface acoustic wave with respect to a temperature change is opposite to that of the substrate on a piezoelectric or electrostrictive substrate,
The substrate has a pseudo surface acoustic wave having a propagation velocity faster than a Rayleigh-type surface acoustic wave in a range where the cut angle of the rotating Y plate is −10 degrees or more and −5 degrees or less. LiNbO 3 substrate that propagates in the range of plus or minus 5 degrees with respect to the direction,
Elasticity characterized in that the value of H / λ is in the range of 0.13 to 0.31, where H is the thickness of the thin film and λ is the wavelength at the operating center frequency of the pseudo-surface acoustic wave. Surface wave functional element.
周波数温度特性(TCF)が、25℃において、−30ppm/℃から+30ppm/℃である請求項記載の弾性表面波機能素子。Temperature coefficient of frequency (TCF) is, at 25 ° C., -30 ppm / a + 30 ppm / ° C. from ° C. claim 1 surface acoustic wave functional element as claimed. 圧電性あるいは電歪性基板上に、温度変化に対する弾性表面波の周波数の変動特性が前記基板と逆の特性である薄膜が積層された弾性表面波機能素子において、
前記基板は、回転Y板のカット角度が−5度以上で0度未満の範囲で、レーレー型の弾性表面波よりも速い伝搬速度を有する擬似弾性表面波が、X軸方向あるいは前記X軸方向に対してプラス・マイナス5度の範囲で伝搬する LiNbO 3 基板であり、
前記薄膜の膜厚をH、前記擬似弾性表面波の動作中心周波数での波長をλとしたときに、H/λの値が0.13から0.31の範囲であり、且つ周波数温度特性(TCF)が、25℃において、−30 ppm /℃から+30 ppm /℃であることを特徴とする弾性表面波機能素子。
In a surface acoustic wave functional element in which a thin film having a frequency variation characteristic of a surface acoustic wave with respect to a temperature change is opposite to that of the substrate on a piezoelectric or electrostrictive substrate,
In the substrate, a pseudo surface acoustic wave having a propagation velocity faster than a Rayleigh-type surface acoustic wave is in the X-axis direction or the X-axis direction when the cut angle of the rotating Y plate is in the range of -5 degrees or more and less than 0 degrees It is a LiNbO 3 substrate that propagates in the range of plus or minus 5 degrees with respect to
When the film thickness of the thin film is H and the wavelength at the operation center frequency of the pseudo surface acoustic wave is λ, the value of H / λ is in the range of 0.13 to 0.31, and the frequency-temperature characteristics ( A surface acoustic wave functional device having a TCF) of −30 ppm / ° C. to +30 ppm / ° C. at 25 ° C.
前記擬似弾性表面波の電気機械結合係数k2が、0.155以上であ請求項1ないし3のいずれかに記載の弾性表面波機能素子。The leaky electromechanical coupling coefficient k 2 of the surface waves, surface acoustic wave functional element according to any one of 3 claims 1 Ru der least 0.155. 圧電性あるいは電歪性基板上に、温度変化に対する弾性表面波の周波数の変動特性が前記基板と逆の特性である薄膜が積層された弾性表面波機能素子において、
前記基板は、回転Y板のカット角度が−5度以上で0度未満の範囲で、レーレー型の弾性表面波よりも速い伝搬速度を有する擬似弾性表面波が、X軸方向あるいは前記X軸方向に対してプラス・マイナス5度の範囲で伝搬する LiNbO 3 基板であり、
前記薄膜の膜厚をH、前記擬似弾性表面波の動作中心周波数での波長をλとしたときに、H/λの値が0.15から0.25の範囲であり、且つ周波数温度特性(TCF)が、25℃において、0 ppm /℃から+20 ppm /℃で、電気機械結合係数k 2 が0.215以上であることを特徴とする弾性表面波機能素子。
In a surface acoustic wave functional element in which a thin film having a frequency variation characteristic of a surface acoustic wave with respect to a temperature change is opposite to that of the substrate on a piezoelectric or electrostrictive substrate,
In the substrate, a pseudo surface acoustic wave having a propagation velocity faster than a Rayleigh-type surface acoustic wave is in the X-axis direction or the X-axis direction when the cut angle of the rotating Y plate is in the range of -5 degrees or more and less than 0 degrees It is a LiNbO 3 substrate that propagates in the range of plus or minus 5 degrees with respect to
When the film thickness of the thin film is H and the wavelength at the operating center frequency of the pseudo surface acoustic wave is λ, the value of H / λ is in the range of 0.15 to 0.25, and the frequency temperature characteristic ( A surface acoustic wave functional device having a TCF) of 0 ppm / ° C. to +20 ppm / ° C. at 25 ° C. and an electromechanical coupling coefficient k 2 of 0.215 or more .
JP2002051053A 2001-03-04 2002-02-27 Surface acoustic wave functional element Expired - Fee Related JP4109877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002051053A JP4109877B2 (en) 2001-03-04 2002-02-27 Surface acoustic wave functional element

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001110641 2001-03-04
JP2001-110641 2001-03-04
JP2001-379311 2001-11-06
JP2001379311 2001-11-06
JP2002051053A JP4109877B2 (en) 2001-03-04 2002-02-27 Surface acoustic wave functional element

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007338740A Division JP2008092610A (en) 2001-03-04 2007-12-28 Surface acoustic wave substrate and surface acoustic wave functional element
JP2007338652A Division JP4757860B2 (en) 2001-03-04 2007-12-28 Surface acoustic wave functional element

Publications (2)

Publication Number Publication Date
JP2003209458A JP2003209458A (en) 2003-07-25
JP4109877B2 true JP4109877B2 (en) 2008-07-02

Family

ID=27670171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002051053A Expired - Fee Related JP4109877B2 (en) 2001-03-04 2002-02-27 Surface acoustic wave functional element

Country Status (1)

Country Link
JP (1) JP4109877B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092610A (en) * 2001-03-04 2008-04-17 Kazuhiko Yamanouchi Surface acoustic wave substrate and surface acoustic wave functional element

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203839A (en) * 2005-01-23 2006-08-03 Kazuhiko Yamanouchi Surface acoustic wave substrate having temperature highly stable diaphragm structure and surface acoustic wave function element using the substrate
KR100884209B1 (en) 2005-04-08 2009-02-18 가부시키가이샤 무라타 세이사쿠쇼 Elastic wave element
WO2007007475A1 (en) * 2005-07-13 2007-01-18 Murata Manufacturing Co., Ltd. Elastic wave filter
JP4544227B2 (en) * 2006-09-21 2010-09-15 パナソニック株式会社 Elastic wave resonator, elastic wave filter and antenna duplexer using the same
JP5025963B2 (en) * 2006-02-16 2012-09-12 パナソニック株式会社 Electronic component, method for manufacturing the same, and electronic device using the electronic component
KR100961481B1 (en) * 2006-02-16 2010-06-08 파나소닉 주식회사 Surface acoustic wave device, surface acoustic wave filter employing same and antenna duplexer, and electronic apparatus employing same
US7471171B2 (en) 2006-02-28 2008-12-30 Fujitsu Media Devices Limited Elastic boundary wave device, resonator, and filter
JP4975377B2 (en) 2006-06-06 2012-07-11 太陽誘電株式会社 Boundary acoustic wave element, resonator and filter
JP4917396B2 (en) 2006-09-25 2012-04-18 太陽誘電株式会社 Filters and duplexers
EP2963818B1 (en) * 2006-11-08 2023-06-28 Skyworks Filter Solutions Japan Co., Ltd. Surface acoustic wave resonator
JP2008131128A (en) 2006-11-17 2008-06-05 Matsushita Electric Ind Co Ltd Surface acoustic wave filter, antenna duplexer, and manufacturing method of them
US7965155B2 (en) 2006-12-27 2011-06-21 Panasonic Corporation Surface acoustic wave resonator, and surface acoustic wave filter and antenna duplexer in which the surface acoustic wave resonator is used
EP2109218A4 (en) 2007-05-25 2012-11-28 Panasonic Corp Elastic wave element
CN101796723B (en) 2007-10-30 2013-07-17 太阳诱电株式会社 Elastic wave element, duplexer, communication module, and communication apparatus
CN101842981B (en) * 2007-11-06 2013-12-11 松下电器产业株式会社 Elastic wave resonator, elastic wave filter, and antenna sharing device using the same
US8476991B2 (en) 2007-11-06 2013-07-02 Panasonic Corporation Elastic wave resonator, elastic wave filter, and antenna sharing device using the same
JP5316197B2 (en) * 2008-04-24 2013-10-16 パナソニック株式会社 Elastic wave element
JP2014087039A (en) * 2012-10-23 2014-05-12 Kazuhiko Yamanouchi Unidirectional surface acoustic wave transducer and electronic device using the same
JP2014176076A (en) * 2013-03-07 2014-09-22 Kazuhiko Yamanouchi Surface acoustic wave substrate using surface acoustic wave/pseudo surface acoustic wave/boundary acoustic wave, and surface acoustic wave function element employing the substrate
JP6385690B2 (en) 2014-03-05 2018-09-05 太陽誘電株式会社 Elastic wave device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092610A (en) * 2001-03-04 2008-04-17 Kazuhiko Yamanouchi Surface acoustic wave substrate and surface acoustic wave functional element

Also Published As

Publication number Publication date
JP2003209458A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
JP4757860B2 (en) Surface acoustic wave functional element
JP4109877B2 (en) Surface acoustic wave functional element
JP2021177665A (en) Acoustic wave device
US7489065B2 (en) Boundary acoustic wave device
EP1610460B1 (en) Elastic boundary wave device
US8115561B2 (en) Lamb-wave resonator and oscillator
US7323803B2 (en) Boundary acoustic wave device
JP2009177829A (en) Boundary elastic wave device
JP2006270906A (en) Temperature high stability/high-coupling groove structure surface acoustic wave substrate and surface acoustic wave function element using the substrate
US20100237742A1 (en) Lamb-wave resonator and oscillator
JPH06112763A (en) Surface acoustic wave device
JP4001157B2 (en) Boundary acoustic wave device
JP2008092610A (en) Surface acoustic wave substrate and surface acoustic wave functional element
JP2006203839A (en) Surface acoustic wave substrate having temperature highly stable diaphragm structure and surface acoustic wave function element using the substrate
JP7163965B2 (en) Acoustic wave device
JP2004165879A (en) Surface acoustic wave element
JP3597483B2 (en) Surface acoustic wave device
JPH10190407A (en) Surface acoustic wave element
JP3597454B2 (en) Surface acoustic wave device
JP2004282515A (en) Surface acoustic wave element
JP2014176076A (en) Surface acoustic wave substrate using surface acoustic wave/pseudo surface acoustic wave/boundary acoustic wave, and surface acoustic wave function element employing the substrate
JP3873682B2 (en) Surface acoustic wave device
Fujiwara et al. Temperature characteristics of sh-type acoustic waves in a rotated y-cut litao3 thin plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150411

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees