JPH10190407A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPH10190407A
JPH10190407A JP6962097A JP6962097A JPH10190407A JP H10190407 A JPH10190407 A JP H10190407A JP 6962097 A JP6962097 A JP 6962097A JP 6962097 A JP6962097 A JP 6962097A JP H10190407 A JPH10190407 A JP H10190407A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
substrate
langasite
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6962097A
Other languages
Japanese (ja)
Inventor
Shiyunun Kan
春雲 簡
Shinichiro Inui
信一郎 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP6962097A priority Critical patent/JPH10190407A/en
Priority to EP98104212A priority patent/EP0866551A3/en
Priority to TW87103926A priority patent/TW424349B/en
Priority to KR10-1998-0009643A priority patent/KR100499544B1/en
Priority to US09/045,914 priority patent/US6153961A/en
Publication of JPH10190407A publication Critical patent/JPH10190407A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface acoustic wave element provided with a small temperature coefficient, a relatively large electromechanical coupling coefficient and a chemically stable substrate material by forming a metallic electrode film in a propagation direction on the specified cut surface of single crystal Langasite. SOLUTION: When a segmenting angle from the single crystal Langasite (La3 Ga5 SiO14 ) and a surface acoustic wave propagation direction are (180 deg.+α, 40 deg.+β, 20 deg.+γ) by Eulerian angle display, a Langasite substrate 10 is formed by '=-2 deg.-+6 deg., β=-4 deg.-+9 deg. and γ=-1 deg.-+9 deg. or a direction equivalent to it. An electrode 20 for excitation is formed on one end of the substrate and the electrode 30 for reception is formed on the other end by a photolithography method. For the thickness (h) of a film, at the time of defining the wavelength of surface acoustic waves as λ, the range of h/λ=0.005 to 0.2 is suitable. For a delay time temperature coefficient, TCF=3ppm/ deg.C is obtained at 25 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通信機器等に使用
される周波数選別用のフィルタ、高安定度の発振器に使
用される共振子等の素子等に使われる表面弾性波素子に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter for frequency selection used in communication equipment and the like, and a surface acoustic wave element used as an element such as a resonator used in a high stability oscillator. .

【0002】[0002]

【従来の技術】従来、表面弾性波素子用の基板として
は、一般的に、ニオブ酸リチウム、タンタル酸リチウ
ム、四ほう酸リチウム(例えば、特開昭60−4131
5号公報参照)、水晶等の圧電性単結晶を、適当なカッ
ト面で切断、研磨した基板が使用されている。
2. Description of the Related Art Conventionally, as substrates for surface acoustic wave devices, generally, lithium niobate, lithium tantalate, lithium tetraborate (for example, see Japanese Patent Application Laid-Open No. Sho 60-4131).
Japanese Unexamined Patent Application Publication No. 5 (1999)), a substrate obtained by cutting and polishing a piezoelectric single crystal such as a quartz crystal at an appropriate cut surface is used.

【0003】[0003]

【発明が解決しようとする課題】表面弾性波素子に使わ
れる圧電基板に重要な性能として、遅延時間温度係数
(TCD)と電気機械結合係数(K2 )が挙げられる。
TCDは零に近いほど、またK2 は大きいほど、表面弾
性波素子用基板として望ましい。従来、表面弾性波素子
用の基板としては、一般的に、ニオブ酸リチウム(Li
NbO3 )、タンタル酸リチウム(LiTaO3 )、四
ほう酸リチウム(Li247 )、水晶等の圧電性単
結晶を、適当なカット面で切断、研磨した基板が使用さ
れてきた。LiNbO3 (例えば、128°Yカット−
X伝搬)は、K2 は5.5%と大きいが、TCDが74
ppm/℃と大きいため、温度変化による周波数のドリ
フトが生じ、狹帯域特性が求められるフィルタや、高い
安定精度が求められる発振器等には使用することができ
なかった。また、Li247 (例えば、45°Xカ
ット−Z伝搬)は、K2 は1%であり、TCDは0pp
m/℃であるが、基板が水に溶解し、また潮解性を有す
るため、プロセスが難しい、あるいは信頼性に劣る等の
問題を有していた。また、STカット水晶は零TCDを
もつが、K2 が0.1%と小さいために、広域帯のフィ
ルタを得ることが出来なかった。
The important characteristics of a piezoelectric substrate used for a surface acoustic wave device include a delay time temperature coefficient (TCD) and an electromechanical coupling coefficient (K 2 ).
TCD is closer to zero, and as the K 2 is large, preferably as a substrate for a surface acoustic wave device. Conventionally, as a substrate for a surface acoustic wave device, lithium niobate (Li) is generally used.
A substrate obtained by cutting and polishing a piezoelectric single crystal such as NbO 3 ), lithium tantalate (LiTaO 3 ), lithium tetraborate (Li 2 B 4 O 7 ), or quartz at an appropriate cut surface has been used. LiNbO 3 (for example, 128 ° Y cut-
X-propagation), although K 2 are as large as 5.5%, TCD is 74
Because of the large ppm / ° C., a frequency drift occurs due to a temperature change, and it cannot be used for a filter that requires narrow band characteristics or an oscillator that requires high stability accuracy. In Li 2 B 4 O 7 (for example, 45 ° X cut-Z propagation), K 2 is 1% and TCD is 0 pp.
Although the temperature is m / ° C., the substrate is dissolved in water and has deliquescence, so that the process is difficult or the reliability is poor. Moreover, ST-cut quartz is has a zero TCD, since K 2 is smaller and 0.1%, it is impossible to obtain a filter broadband.

【0004】表面弾性波素子に対する高性能化、高周波
化の要求により、TCDが零に近く、より大きなK2
もち、化学的に安定である基板材料が要求されている。
本発明は、上記事情に鑑み、小さなTCDと比較的大き
なK2 を有し、化学的に安定な基板材料を持つ表面弾性
波素子を提供することを目的とする。
[0004] In response to demands for higher performance and higher frequencies for surface acoustic wave devices, substrate materials having a TCD close to zero, a larger K 2 , and being chemically stable have been required.
In view of the above circumstances, an object of the present invention is to provide a surface acoustic wave device having a small TCD and a relatively large K 2 and having a chemically stable substrate material.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する本発
明の表面弾性波素子は、ランガサイト(La3 Ga5
iO14)単結晶基板上に表面弾性波を励振、受信、もし
くは反射するための金属膜を形成した表面弾性波素子に
おいて、ランガサイト基板の単結晶からの切り出し角度
および表面弾性波伝搬方向が、オイラ角表示で、(18
0°+α,40°+β,20°+γ)としたとき、α=
−2°〜+6°、β=−4°〜+9°、γ=−1°〜+
9°、またはこれと等価な方位であることを特徴とす
る。
The surface acoustic wave device of the present invention which achieves the above object is a langasite (La 3 Ga 5 S).
iO 14 ) In a surface acoustic wave device in which a metal film for exciting, receiving, or reflecting surface acoustic waves is formed on a single crystal substrate, the cutout angle and surface acoustic wave propagation direction from the single crystal of the langasite substrate are as follows: In the oiler angle display, (18
0 ° + α, 40 ° + β, 20 ° + γ), α =
-2 ° to + 6 °, β = -4 ° to + 9 °, γ = -1 ° to +
The azimuth is 9 ° or an equivalent direction.

【0006】本発明者らは、圧電性を有する単結晶であ
るランガサイト(La3 Ga5 SiO14)の特定のカッ
ト面における伝搬方位に金属膜を形成した表面弾性波素
子が、小さな温度係数と比較的大きな電気機械結合係数
を持ち、化学的に安定であることを見出し、本発明に至
ったのである。
The present inventors have proposed a surface acoustic wave device in which a metal film is formed in a propagation direction on a specific cut plane of langasite (La 3 Ga 5 SiO 14 ), which is a single crystal having piezoelectricity, with a small temperature coefficient. Have a relatively large electromechanical coupling coefficient and are chemically stable, leading to the present invention.

【0007】[0007]

【発明の実施の形態】図1は伝送型フィルタの模式図で
ある。ランガサイト単結晶基板10上に対の櫛形電極を
形成し、これの一方(励振用電極20)に高周波電圧を
印加すると表面弾性波が励振され受信電極30に達す
る。この入出力間の周波数特性がハンドパスフィルタ特
性を持ち、圧電結晶の特性により、このフィルタの温度
特性が決定される。
FIG. 1 is a schematic diagram of a transmission type filter. When a pair of comb-shaped electrodes are formed on the langasite single-crystal substrate 10, and a high-frequency voltage is applied to one of them (the excitation electrode 20), the surface acoustic wave is excited and reaches the reception electrode 30. The frequency characteristic between the input and output has a hand-pass filter characteristic, and the temperature characteristic of the filter is determined by the characteristic of the piezoelectric crystal.

【0008】ランガサイト単結晶上の表面弾性波の特性
を計算するのに必要な定数として、下記の表1に20℃
における密度、弾性定数、圧電定数、誘電率および線膨
張係数を示した。また、表2には各定数の1次および2
次の温度係数を示した。
As constants required for calculating the characteristics of surface acoustic waves on a langasite single crystal, 20 ° C.
, The density, the elastic constant, the piezoelectric constant, the dielectric constant and the linear expansion coefficient are shown. Table 2 shows the first and second order of each constant.
The following temperature coefficients are given:

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】ここでは、表1,表2に示した定数を使用
して、圧電基板表面での、ニュートンの運動方程式、圧
電方程式、準静電近似したマックスェルの方程式を連成
して解くことにより、TCF(TCF=−TCD)の絶
対値が5ppm以下になり、電気機械結合係数K2
0.3%以上になる角度の範囲として、オイラー角表示
で、(180°+α,40°+β,20°+γ)とした
とき、α=−2°〜+6°、β=−4°〜+9°、γ=
−1°〜+9°、もしくはこれと等価な方位が最適であ
ることを見出した(図2〜図4参照)。
Here, by using the constants shown in Tables 1 and 2, a Newton's equation of motion, a piezoelectric equation, and a Maxwell's equation approximated by quasi-electrostatic on the surface of the piezoelectric substrate are coupled and solved. , TCF (TCF = −TCD) is 5 ppm or less, and the range where the electromechanical coupling coefficient K 2 becomes 0.3% or more is expressed as (180 ° + α, 40 ° + β, 20 ° + γ), α = −2 ° to + 6 °, β = −4 ° to + 9 °, γ =
It has been found that an orientation from -1 ° to + 9 ° or an equivalent direction is optimal (see FIGS. 2 to 4).

【0012】(TCF=(1/V)(∂V/∂T)−γ V:温度T=25℃のにおける表面弾性波の音速 T:温度 γ:考えているカット面、伝搬方向の熱膨張率) ここで、電極材料の膜厚hとしては、表面弾性波の波長
をλとした場合に、h/λ=0.005〜0.2の範囲
が好適である。また、電極材料としてはアルミニウムが
適しており、その他の材料としては金でもよく、アルミ
ニウム+チタンでもよく、あるいはアルミニウム+銅で
も適している。
(TCF = (1 / V) (∂V / ∂T) -γ V: Sound velocity of surface acoustic wave at temperature T = 25 ° C. T: Temperature γ: Cut plane considered, thermal expansion in propagation direction Here, assuming that the wavelength of the surface acoustic wave is λ, the thickness h of the electrode material is preferably in the range of h / λ = 0.005 to 0.2. Aluminum is suitable as an electrode material, and gold or aluminum + titanium or aluminum + copper is also suitable as other materials.

【0013】[0013]

【実施例】図1の模式図に示した伝送型表面弾性波フィ
ルタのパターンを、オイラー角表示で(180°、40
°、20°)で表されるカット面および伝搬方向にフォ
トリソグラフィ工程により形成した。この場合の櫛形電
極の線幅、線間はそれぞれ4μm、入出力の電極の対数
はそれぞれ30対、櫛形電極の開口長は400μmであ
る。アルミニウム膜厚はスパッタリング法で2400オ
ングストローム(h/λ=1.5%)とした。この素子
を金属パッケージに実装し、送受信の櫛形電極をワイヤ
ーボンディングにより取り出して、ネットワークアナラ
イザに接続した。更にこのデバイスを恒温槽内に入れ、
−20℃〜80℃の温度範囲における中心周波数の変化
を測定したところ、図5に示す特性が得られ、25℃の
時のTCF=3ppm/℃であることが確認された。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The pattern of the transmission type surface acoustic wave filter shown in the schematic diagram of FIG.
°, 20 °) in a cut plane and a propagation direction by a photolithography process. In this case, the line width and the line interval of the comb-shaped electrodes are each 4 μm, the number of pairs of input / output electrodes is 30, and the opening length of the comb-shaped electrodes is 400 μm. The thickness of the aluminum film was set to 2,400 angstroms (h / λ = 1.5%) by a sputtering method. The device was mounted on a metal package, and the transmitting and receiving comb electrodes were taken out by wire bonding and connected to a network analyzer. Then put this device in a thermostat,
When the change of the center frequency in the temperature range of −20 ° C. to 80 ° C. was measured, the characteristics shown in FIG. 5 were obtained, and it was confirmed that TCF at 25 ° C. = 3 ppm / ° C.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
小さな遅延時間温度係数と比較的大きな電気機械結合係
数を有し、化学的に安定な基板材料を持つ表面弾性波素
子が得られる。
As described above, according to the present invention,
A surface acoustic wave device having a small delay time temperature coefficient and a relatively large electromechanical coupling coefficient and having a chemically stable substrate material can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】伝送型フィルタの模式図である。FIG. 1 is a schematic diagram of a transmission filter.

【図2】(175°〜185°、40°、20°)カッ
ト面でのK2 とTCDの変化を示すグラフである。
FIG. 2 is a graph showing changes in K 2 and TCD on a (175 ° to 185 °, 40 °, 20 °) cut surface.

【図3】(180°、35°〜45°、20°)カット
面でのK2 とTCDの変化を示すグラフである。
FIG. 3 is a graph showing changes in K 2 and TCD on a (180 °, 35 ° to 45 °, 20 °) cut surface.

【図4】(180°、40°、15°〜25°)カット
面でのK2 とTCDの変化を示すグラフである。
FIG. 4 is a graph showing changes in K 2 and TCD on a (180 °, 40 °, 15 ° to 25 °) cut surface.

【図5】中心周波数の温度依存性を示すグラフである。FIG. 5 is a graph showing the temperature dependence of the center frequency.

【符号の説明】[Explanation of symbols]

10 ランガサイト基板 20 励振用電極 30 受信用電極 DESCRIPTION OF SYMBOLS 10 Langasite board 20 Excitation electrode 30 Receiving electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ランガサイト(La3 Ga5 SiO14
単結晶基板上に表面弾性波を励振、受信、もしくは反射
するための金属膜を形成した表面弾性波素子において、
ランガサイト基板の単結晶からの切り出し角度および表
面弾性波伝搬方向が、オイラ角表示で、(180°+
α,40°+β,20°+γ)としたとき、α=−2°
〜+6°、β=−4°〜+9°、γ=−1°〜+9°、
またはこれと等価な方位であることを特徴とする表面弾
性波素子。
1. Langasite (La 3 Ga 5 SiO 14 )
In a surface acoustic wave device in which a metal film for exciting, receiving, or reflecting surface acoustic waves is formed on a single crystal substrate,
The cutout angle and the direction of surface acoustic wave propagation from the single crystal of the langasite substrate are expressed by Euler angles as (180 ° +
α, −40 ° + β, 20 ° + γ), α = −2 °
~ + 6 °, β = -4 ° to + 9 °, γ = -1 ° to + 9 °,
Alternatively, a surface acoustic wave device having an equivalent direction.
JP6962097A 1996-10-23 1997-03-24 Surface acoustic wave element Pending JPH10190407A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6962097A JPH10190407A (en) 1996-10-23 1997-03-24 Surface acoustic wave element
EP98104212A EP0866551A3 (en) 1997-03-21 1998-03-10 Surface acoustic wave element
TW87103926A TW424349B (en) 1996-10-23 1998-03-17 Surface acoustic wave element
KR10-1998-0009643A KR100499544B1 (en) 1997-03-21 1998-03-20 Surface acoustic wave element
US09/045,914 US6153961A (en) 1997-03-21 1998-03-23 Surface acoustic wave element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-280525 1996-10-23
JP28052596 1996-10-23
JP6962097A JPH10190407A (en) 1996-10-23 1997-03-24 Surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPH10190407A true JPH10190407A (en) 1998-07-21

Family

ID=26410798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6962097A Pending JPH10190407A (en) 1996-10-23 1997-03-24 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPH10190407A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012257A1 (en) * 1997-09-02 1999-03-11 Tdk Corporation Surface acoustic wave apparatus
WO2000016478A1 (en) * 1998-09-14 2000-03-23 Tdk Corporation Surface acoustic wave device
US6317014B1 (en) * 1998-08-21 2001-11-13 Murata Manufacturing Co., Ltd. Surface acoustic wave resonator, filter, duplexer and communication device utilizing a shear horizontal wave on langasite
US6356167B1 (en) * 1998-08-21 2002-03-12 Murata Manufacturing Co., Ltd. Surface acoustic wave resonator, surface acoustic wave filter, duplexer communications apparatus and surface acoustic wave apparatus, and production method of surface acoustic wave resonator
JP2004156950A (en) * 2002-11-05 2004-06-03 Mitsubishi Materials Corp Surface acoustic wave element module and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012257A1 (en) * 1997-09-02 1999-03-11 Tdk Corporation Surface acoustic wave apparatus
US6317014B1 (en) * 1998-08-21 2001-11-13 Murata Manufacturing Co., Ltd. Surface acoustic wave resonator, filter, duplexer and communication device utilizing a shear horizontal wave on langasite
US6356167B1 (en) * 1998-08-21 2002-03-12 Murata Manufacturing Co., Ltd. Surface acoustic wave resonator, surface acoustic wave filter, duplexer communications apparatus and surface acoustic wave apparatus, and production method of surface acoustic wave resonator
WO2000016478A1 (en) * 1998-09-14 2000-03-23 Tdk Corporation Surface acoustic wave device
JP2004156950A (en) * 2002-11-05 2004-06-03 Mitsubishi Materials Corp Surface acoustic wave element module and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4757860B2 (en) Surface acoustic wave functional element
EP1610460B1 (en) Elastic boundary wave device
US7323803B2 (en) Boundary acoustic wave device
JP4109877B2 (en) Surface acoustic wave functional element
EP0034351A2 (en) Surface acoustic wave device
JP3568025B2 (en) Surface wave device and communication device
US6153961A (en) Surface acoustic wave element
JPH06112763A (en) Surface acoustic wave device
US5302877A (en) Surface acoustic wave device
JP4001157B2 (en) Boundary acoustic wave device
JP3269466B2 (en) Surface wave resonator, surface wave filter, duplexer, communication device
JP4127170B2 (en) Surface wave device
JP2000278088A (en) Surface acoustic wave device
JPH11191720A (en) Surface acoustic wave device and surface accosting wave filter
JPH10190407A (en) Surface acoustic wave element
JPH1127089A (en) Surface acoustic wave device
JP2008092610A (en) Surface acoustic wave substrate and surface acoustic wave functional element
JPH10270977A (en) Surface acoustic wave element
Sato et al. Temperature stable SAW devices using directly bonded LiTaO/sub 3//glass substrates
EP0982857A2 (en) Surface acoustic wave resonator, surface acoustic wave filter, duplexer, communications apparatus and surface acoustic wave apparatus, and production method of surface acoustic wave device
JP3597483B2 (en) Surface acoustic wave device
EP1037382A2 (en) Surface acoustic wave resonator, surface acoustic wave filter, duplexer, communication apparatus, and surface acoustic wave device
JP3597454B2 (en) Surface acoustic wave device
JP3378388B2 (en) Surface acoustic wave device
Kadota Surface acoustic wave properties of zinc oxide film on quartz substrate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011127