JPH11191720A - Surface acoustic wave device and surface accosting wave filter - Google Patents

Surface acoustic wave device and surface accosting wave filter

Info

Publication number
JPH11191720A
JPH11191720A JP35831997A JP35831997A JPH11191720A JP H11191720 A JPH11191720 A JP H11191720A JP 35831997 A JP35831997 A JP 35831997A JP 35831997 A JP35831997 A JP 35831997A JP H11191720 A JPH11191720 A JP H11191720A
Authority
JP
Japan
Prior art keywords
saw
electrode finger
electrode
surface acoustic
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35831997A
Other languages
Japanese (ja)
Inventor
Ikuo Ohara
郁夫 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP35831997A priority Critical patent/JPH11191720A/en
Publication of JPH11191720A publication Critical patent/JPH11191720A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the pass band characteristics and the attenuation characteristics of the SAW filer by making a Δf adjustable of each SAW device formed on a piezoelectric substrate. SOLUTION: The surface acoustic wave SAW device D1 is formed by forming at least a couple of inter-digital transducers IDTs on a principal surface of a piezoelectric substrate, and a relation of 0.04<=w2/w1<=0.20 is established, where w1 is a length of an electrode finger 30a of the IDT electrode 30 and w2 is an interval between the tip of the electrode finger 30a and a bus bar 30 of the opposed IDT electrode 30. Then a small electrode finger 30b is projected from the bus bar 30c toward to the interval.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯電話やセルラ
ー電話等の通信機器に内蔵される共振子や周波数帯域フ
ィルタとして使用される弾性表面波装置及び弾性表面波
フィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave device and a surface acoustic wave filter used as a resonator or a frequency band filter incorporated in a communication device such as a cellular phone or a cellular phone.

【0002】[0002]

【従来の技術】従来の弾性表面波(Surface Acoustic W
ave で、以下、SAWと略す)装置Dを図3に示す。同
図において、35はAl等から成り櫛歯状電極のIDT
(Inter Digital Transducer)電極、35aはIDT電
極35の電極指、35bは電極指35aを複数本設ける
ための共通電極であるバスバー、36はIDT電極35
のSAW伝搬路の両端に配置されSAWを効率良く共振
させる反射器、w1 は電極指35aの長さ、w2 は電極
指35aと相手側のバスバー35bとの間隔である。
尚、これらの部品はLiTaO3 等の圧電基板(図示せ
ず)上に形成されるものであり、また電極指35aの対
数は数10〜数100対、反射器36の電極指の本数は
数10〜数100本に及ぶため、同図では簡略化して描
いてある。
2. Description of the Related Art Conventional surface acoustic waves (Surface Acoustic W)
ave, hereinafter abbreviated as SAW) Apparatus D is shown in FIG. In the figure, 35 is an IDT of a comb-shaped electrode made of Al or the like.
(Inter Digital Transducer) electrode, 35a is an electrode finger of the IDT electrode 35, 35b is a bus bar which is a common electrode for providing a plurality of electrode fingers 35a, 36 is the IDT electrode 35
Reflectors disposed at both ends of the SAW propagation path for efficiently resonating the SAW, w1 is the length of the electrode finger 35a, and w2 is the distance between the electrode finger 35a and the bus bar 35b on the other side.
These parts are formed on a piezoelectric substrate (not shown) such as LiTaO 3. The number of electrode fingers 35 a is several tens to several hundreds, and the number of electrode fingers of the reflector 36 is several. Since the number ranges from ten to several hundreds, it is simplified in FIG.

【0003】また、図5に、従来の3段のラダー型(梯
子型)SAWフィルタF1の回路図を示す。このラダー
型SAWフィルタF1は、圧電基板1上において直列S
AW共振子2a〜2cと並列SAW共振子3a〜3cと
を交互に接続して構成する。尚、同図において、4は直
列SAW共振子2a〜2cと並列SAW共振子3a〜3
cを接続する配線パターン、5は外部の駆動回路等と接
続するためのワイヤーである。
FIG. 5 is a circuit diagram of a conventional three-stage ladder type (ladder type) SAW filter F1. This ladder-type SAW filter F1 has a series S
The AW resonators 2a to 2c and the parallel SAW resonators 3a to 3c are connected alternately. In the figure, reference numeral 4 denotes a series SAW resonator 2a to 2c and a parallel SAW resonator 3a to 3c.
Wiring patterns 5 for connecting c are wires for connecting to an external drive circuit or the like.

【0004】上記SAW装置(SAW共振子)Dは、図
4に示すように、周波数によってインピーダンスが極小
になる共振周波数(fr)10と、逆にインピーダンス
が極大になる反共振周波数(fa)11を併せ持つ2重
共振特性を示す。同図において、9はSAW共振子のイ
ンピーダンス|Z|−周波数特性(以下、インピーダン
ス特性という)、12は等価容量である。そして、上記
ラダー型SAWフィルタF1については、図6に示すよ
うに、直列SAW共振子2a〜2cの共振周波数7aと
並列SAW共振子3a〜3cの反共振周波数8bとが交
差しない程度に近づけて設定することにより、これらの
周波数近傍を通過帯域7fとする帯域通過フィルタを構
成できることが提案されている(特開平6−23268
2号公報参照)。
As shown in FIG. 4, the SAW device (SAW resonator) D has a resonance frequency (fr) 10 at which the impedance is minimized by frequency and an anti-resonance frequency (fa) 11 at which the impedance is maximized. And the double resonance characteristic having the following. In the figure, 9 is the impedance | Z | -frequency characteristic (hereinafter referred to as impedance characteristic) of the SAW resonator, and 12 is the equivalent capacitance. As for the ladder type SAW filter F1, as shown in FIG. 6, the resonance frequency 7a of the series SAW resonators 2a to 2c and the anti-resonance frequency 8b of the parallel SAW resonators 3a to 3c do not cross each other. It has been proposed that a band-pass filter having a pass band of 7 f near these frequencies can be configured by setting (refer to JP-A-6-23268).
No. 2).

【0005】尚、図6において、7は直列SAW共振子
2a〜2cのインピーダンス特性、7bは直列SAW共
振子2a〜2cの反共振周波数、7cは後述するように
本発明により急峻性を改善された場合の直列SAW共振
子2a〜2cの反共振周波数である。また、8は並列S
AW共振子3a〜3cのインピーダンス特性、8aは並
列SAW共振子3a〜3cの共振周波数、8cは後述す
るように本発明により急峻性を改善された場合の並列S
AW共振子3a〜3cの共振周波数である。
In FIG. 6, 7 is the impedance characteristic of the series SAW resonators 2a to 2c, 7b is the anti-resonance frequency of the series SAW resonators 2a to 2c, and 7c is the steepness improved by the present invention as described later. Is the anti-resonance frequency of the series SAW resonators 2a to 2c. 8 is a parallel S
The impedance characteristics of the AW resonators 3a to 3c, 8a are the resonance frequencies of the parallel SAW resonators 3a to 3c, and 8c is the parallel S when the steepness is improved by the present invention as described later.
This is the resonance frequency of the AW resonators 3a to 3c.

【0006】そして、携帯電話等の通信機器用のSAW
フィルタにおいては、要求仕様によりSAW共振子のイ
ンピーダンス特性を最適に設計する。SAW共振子のイ
ンピーダンス特性を決定付ける代表的なパラメータとし
て、共振周波数fr、反共振周波数fa、Δf=fa−
fr及び等価容量があり、これらのパラメータはSAW
共振子のIDT電極35の設計により調整でき、frは
IDT電極35の電極指35aピッチ、等価容量は電極
指35aの交差幅(w1 −w2 )と電極指35aの対数
によって制御できる。
A SAW for a communication device such as a mobile phone
In the filter, the impedance characteristics of the SAW resonator are optimally designed according to required specifications. Representative parameters for determining the impedance characteristics of the SAW resonator include a resonance frequency fr, an anti-resonance frequency fa, and Δf = fa−
fr and equivalent capacitance, these parameters are
It can be adjusted by designing the IDT electrode 35 of the resonator, fr can be controlled by the pitch of the electrode fingers 35a of the IDT electrode 35, and the equivalent capacitance can be controlled by the intersection width (w1 -w2) of the electrode fingers 35a and the logarithm of the electrode fingers 35a.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、faは
主として圧電基板1の電気機械結合係数によって決定さ
れるため、IDT電極35の材質及び膜厚を決定すると
ほぼ決まってしまい、圧電基板1上の個々のSAW共振
子毎にfaを自由に設定できないという問題があった。
従って、SAWフィルタの通過帯域幅を変化させようと
すると、圧電基板1の材質又はウェハの結晶方位の変更
によって解決する必要が生じていた。また、SAWフィ
ルタの通過帯域幅が決定すると、減衰傾度(減衰帯域幅
/通過帯域幅)を改善する方法はなかった。
However, since fa is mainly determined by the electromechanical coupling coefficient of the piezoelectric substrate 1, it is almost determined when the material and the film thickness of the IDT electrode 35 are determined. However, there is a problem that fa cannot be set freely for each SAW resonator.
Therefore, in order to change the pass bandwidth of the SAW filter, it is necessary to solve the problem by changing the material of the piezoelectric substrate 1 or the crystal orientation of the wafer. When the pass bandwidth of the SAW filter is determined, there is no method for improving the attenuation gradient (attenuation bandwidth / pass bandwidth).

【0008】上記の通り、従来のラダー型SAWフィル
タや格子型SAWフィルタでは、SAW共振子のΔfは
使用する圧電基板1の電気機械結合係数によって定ま
る。このため、同一圧電基板1上に形成された複数のS
AW共振子は、絶対値は異なるものの夫々同等のインピ
ーダンス特性及びΔfを持つ結果となる。
As described above, in a conventional ladder type SAW filter or lattice type SAW filter, Δf of the SAW resonator is determined by the electromechanical coupling coefficient of the piezoelectric substrate 1 used. For this reason, a plurality of S formed on the same piezoelectric substrate 1
The AW resonators have different impedances, but have the same impedance characteristics and Δf.

【0009】故に、このようなSAW共振子により構成
するSAWフィルタでは、減衰傾度が限定され、目的と
する通過帯域特性及び減衰特性の両方を満足することは
困難であった。また、近年、SAWフィルタのような周
波数制御用の電子部品に対する性能向上の要求は強く、
例えば図6の点線に示すように、SAWフィルタの通過
帯域幅を変えずに減衰特性を急峻にするといった必要が
生じている。
Therefore, in the SAW filter constituted by such a SAW resonator, the attenuation gradient is limited, and it is difficult to satisfy both the desired passband characteristics and the desired attenuation characteristics. In recent years, there has been a strong demand for performance improvement for electronic components for frequency control such as SAW filters.
For example, as shown by the dotted line in FIG. 6, there is a need to make the attenuation characteristic steep without changing the pass bandwidth of the SAW filter.

【0010】従って、本発明は上記事情に鑑みて完成さ
れたものであり、その目的は同一の圧電基板上に形成さ
れたSAW装置(SAW共振子)のΔfを個々のSAW
装置毎に調整可能とし、SAWフィルタの通過帯域特性
や減衰特性等を改善することである。
Therefore, the present invention has been completed in view of the above circumstances, and an object of the present invention is to reduce Δf of a SAW device (SAW resonator) formed on the same piezoelectric substrate to each SAW device.
An object of the present invention is to make adjustments possible for each device and to improve the pass band characteristics and attenuation characteristics of the SAW filter.

【0011】[0011]

【課題を解決するための手段】本発明の弾性表面波装置
は、圧電基板の主面に少なくとも一組の櫛歯状電極を形
成して成る弾性表面波装置であって、前記櫛歯状電極の
電極指の長さをw1 、前記電極指先端と相対するバスバ
ーとの間隔をw2 とした場合、0.04≦w2/w1 ≦
0.20とし、かつ前記間隔部に前記電極指先端と相対
するバスバーより小電極指を突設させたことを特徴とす
る。
A surface acoustic wave device according to the present invention is a surface acoustic wave device comprising at least one set of comb-like electrodes formed on a main surface of a piezoelectric substrate, wherein the comb-like electrode is provided. Where w1 is the length of the electrode finger and w2 is the distance between the tip of the electrode finger and the bus bar opposite thereto, 0.04≤w2 / w1≤
0.20, and a small electrode finger protrudes from the bus bar facing the tip of the electrode finger at the interval.

【0012】本発明において、好ましくは、前記小電極
指は、前記バスバーから前記電極指先端方向に向けて先
細り状となっている。
In the present invention, preferably, the small electrode finger is tapered from the bus bar toward the tip of the electrode finger.

【0013】また、本発明の弾性表面波フィルタは、同
一の圧電基板上において複数の弾性表面波装置を接続し
て成る梯子型弾性表面波フィルタ又は平衡型弾性表面波
フィルタであって、前記弾性表面波装置の少なくとも1
個が上記の弾性表面波装置であることを特徴とする。
The surface acoustic wave filter according to the present invention is a ladder type surface acoustic wave filter or a balanced surface acoustic wave filter formed by connecting a plurality of surface acoustic wave devices on the same piezoelectric substrate. At least one of the surface acoustic wave devices
This is characterized in that the individual is the surface acoustic wave device described above.

【0014】本発明は上記構成により、以下のような効
果を奏する。圧電基板用のリチウムタンタレート(Li
TaO3 )単結晶やリチウムニオベート(LiNb
3 )単結晶の場合、IDT電極の電極指の交差部と非
交差部(小電極指部)では、明らかに電気機械結合係数
2 が異なる。そして、開口率(w2 /w1 ×100
%)を変化させることにより、電極指部の電気機械結合
係数k2 は小電極指部の影響を受け減少する。
According to the present invention, the following effects can be obtained by the above configuration. Lithium tantalate (Li
TaO 3 ) single crystal or lithium niobate (LiNb)
In the case of O 3 ) single crystal, the electromechanical coupling coefficient k 2 is clearly different between the intersecting portion and the non-intersecting portion (small electrode finger portion) of the electrode finger of the IDT electrode. Then, the aperture ratio (w2 / w1 × 100)
%) By changing the electromechanical coupling coefficient k 2 of the electrode fingers decreases under the influence of small electrode fingers.

【0015】ここで、開口率とΔfの関係を図8に示
す。開口率4%未満ではΔfの変化率が大きく設計上の
自由度は大きいが、製造偏差が通過帯域に与える影響が
甚大であるため無視できないばかりでなく、フォトリソ
グラフィー法等による微細加工の歩留りが急激に劣化す
る。例えば、950MHzのリチウムタンタレート単結
晶で考察すると、SAW波長λは約3.7μm、電極指
の交差幅(w1 −w2 )は10λ程度が適当である場合
が多く、開口率4%は約0.15μmとなるため、この
精度未満ではフォトリソグラフィー法による正確な形成
が困難である。一方、開口率が20%を超えると、Δf
の変化が飽和する。
FIG. 8 shows the relationship between the aperture ratio and Δf. If the aperture ratio is less than 4%, the change rate of Δf is large and the degree of freedom in design is large, but the influence of the manufacturing deviation on the pass band is so large that it cannot be neglected and the yield of fine processing by photolithography or the like is low. Degrades rapidly. For example, when considering a 950 MHz lithium tantalate single crystal, it is often appropriate that the SAW wavelength λ is about 3.7 μm, the intersection width (w 1 −w 2) of the electrode fingers is about 10 λ, and the aperture ratio 4% is about 0 μm. If the precision is less than this, it is difficult to form accurately by photolithography. On the other hand, when the aperture ratio exceeds 20%, Δf
Changes saturate.

【0016】また、図3のSAW装置Dにおいて、外部
より高周波信号が入力されることにより電極指35a部
に擬似SAWを生じるが、この擬似SAWは電極指35
a中央部のSAW伝搬軸から拡散し、間隔w2 部を伝搬
する波が発生する。尚、前記間隔w2 部に相当する電極
指35a部を電極指首部(非交差部)という。この電極
指首部は、電極指35a部に比して電極面積が小さいた
め、電極指首部を伝搬するSAWと、電極指35a中央
部(交差部)を伝搬するSAWとで、速度差が生じる。
これにより電気機械結合孫数k2 が小さくなった場合と
同じ現象を示し、Δfが小さくなる。
In the SAW device D shown in FIG. 3, when a high-frequency signal is input from the outside, a pseudo SAW is generated in the electrode finger 35a.
A wave is generated that spreads from the SAW propagation axis at the center a and propagates through the interval w2. The electrode finger 35a corresponding to the interval w2 is referred to as an electrode finger neck (non-intersecting portion). Since the electrode finger has a smaller electrode area than the electrode finger 35a, a speed difference occurs between the SAW propagating through the electrode finger neck and the SAW propagating through the center (intersection) of the electrode finger 35a.
This shows the same phenomenon as when the number k 2 of electromechanical coupling grandchildren becomes small, and Δf becomes small.

【0017】SAW共振子の共振特性は、電極指35a
部のSAWと電極指首部のSAWとの合成特性となるた
め、開口率を調整することでΔfをコントロールでき
る。また、開口率を比較的大きくした場合、フォトリソ
グラフィー工程における前記電極指首部での露光量が大
きくなり、所謂ハレーションにより前記電極指首部の線
幅が設定値よりも細くなるという問題が生じる。この場
合、細くなった部分の電気抵抗が増大するため、挿入損
失の増加や耐電力性(信頼性)の低下を招くことにな
る。
The resonance characteristic of the SAW resonator is the same as that of the electrode finger 35a.
Since it has a combined characteristic of the SAW of the electrode finger and the SAW of the electrode finger, Δf can be controlled by adjusting the aperture ratio. In addition, when the aperture ratio is relatively large, the amount of exposure at the electrode finger in the photolithography process becomes large, and the line width of the electrode finger becomes narrower than a set value due to so-called halation. In this case, since the electrical resistance of the thinned portion increases, the insertion loss increases and the power durability (reliability) decreases.

【0018】そこで、開口率を変更した場合に、電極指
首部の線幅減少を防ぐため、間隔w2 部にバスバーより
突設されかつ電極指35aに接しない小電極指を設け
る。このとき、小電極指の形状を電極指35aと同様の
方形状とすると、上記速度差が小さくなりΔfの制御が
難しくなる。従って、小電極指を、バスバーから電極指
35a先端に向かうにつれて先細り状、換言すると線幅
が狭くなるように形成することで、上記速度差を失うこ
となく、電極指首部の線幅の細線化を防ぐことができ
る。
Therefore, in order to prevent a decrease in the line width of the electrode finger neck portion when the aperture ratio is changed, a small electrode finger projecting from the bus bar and not in contact with the electrode finger 35a is provided at the interval w2. At this time, if the shape of the small electrode finger is the same as that of the electrode finger 35a, the speed difference becomes small, and it becomes difficult to control Δf. Therefore, by forming the small electrode finger so as to be tapered from the bus bar toward the tip of the electrode finger 35a, in other words, to reduce the line width, the line width of the electrode finger neck can be reduced without losing the speed difference. Can be prevented.

【0019】本発明のSAWフィルタは、図6に示すよ
うに、例えば1個のSAW共振子のΔfを小さくするこ
とにより、このSAW共振子の共振周波数frから反共
振周波数fa迄のインピーダンス特性は、他のSAW共
振子に比して急激に変化することとなる。その結果、S
AWフィルタの特性は、通過帯域7f幅を維持したまま
減衰傾度が急峻になる。より具体的には、図7に示すよ
うに、SAWフィルタの減衰極が24aから24bに移
動するため、減衰量を20aから20bにできる。尚、
同図において、19は通過帯域、20は減衰域である。
In the SAW filter of the present invention, as shown in FIG. 6, by reducing Δf of one SAW resonator, for example, the impedance characteristic from the resonance frequency fr to the anti-resonance frequency fa of this SAW resonator is reduced. , Will change more rapidly than other SAW resonators. As a result, S
The characteristics of the AW filter are such that the attenuation gradient becomes steep while maintaining the pass band 7f width. More specifically, as shown in FIG. 7, since the attenuation pole of the SAW filter moves from 24a to 24b, the attenuation can be changed from 20a to 20b. still,
In the figure, 19 is a pass band, and 20 is an attenuation band.

【0020】[0020]

【発明の実施の形態】本発明のSAW装置について以下
に説明する。図1と図2は本発明によるSAW装置D
1,D2の基本構成の平面図である。図1において、3
0はIDT電極、30aは電極指、30bは小電極指、
30cはバスバー、31は反射器である。電極指30a
の長さをw1 、電極指30a先端と相対するIDT電極
30のバスバー30cとの間隔をw2 とした場合、0.
04≦w2 /w1 ≦0.20であり、前記間隔部におい
てバスバー30cより突設された小電極指30bを設け
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The SAW device according to the present invention will be described below. 1 and 2 show a SAW device D according to the present invention.
1 is a plan view of a basic configuration of D2. In FIG. 1, 3
0 is an IDT electrode, 30a is an electrode finger, 30b is a small electrode finger,
30c is a bus bar, and 31 is a reflector. Electrode finger 30a
Where w1 is the length of the electrode finger 30a and w2 is the distance between the end of the electrode finger 30a and the bus bar 30c of the IDT electrode 30.
04 ≦ w2 / w1 ≦ 0.20, and a small electrode finger 30b protruding from the bus bar 30c is provided at the interval.

【0021】図1の例では、小電極指30bが三角形状
とされており、点線部で示すように小電極指30bの底
辺部を幅広にしたり、小電極指30bを曲線的に形成し
てもよい。図2の例は、小電極指30bbが2つの三角
形状部から成り、3つ以上に分割してもよい。
In the example shown in FIG. 1, the small electrode finger 30b has a triangular shape, and the bottom of the small electrode finger 30b is widened as shown by a dotted line, or the small electrode finger 30b is formed in a curved line. Is also good. In the example of FIG. 2, the small electrode finger 30bb may be formed of two triangular portions and divided into three or more.

【0022】本発明において、小電極指先端と電極指3
5a先端との間隔は0.15λ〜0.35λが好まし
く、0.15λ未満ではフォトリソグラフィー法等によ
る微細加工の歩留りが急激に劣化する。また、0.35
λを超えると電極指35aと小電極指の間隔が広がるた
めハレーションによる細線化が顕著になる。
In the present invention, the tip of the small electrode finger and the electrode finger 3
The distance from the tip of 5a is preferably from 0.15λ to 0.35λ, and if it is less than 0.15λ, the yield of fine processing by photolithography or the like is rapidly deteriorated. Also, 0.35
When the distance exceeds λ, the distance between the electrode finger 35a and the small electrode finger is increased, so that thinning due to halation becomes remarkable.

【0023】また、小電極指の面積は、小電極指が方形
状の場合(図1の一点鎖線部)と比較して、その50%
〜150%(図1の点線部)とするのがよく、50%未
満では小電極指を施す効果、つまりハレーションによる
細線化を抑制する効果が低下し、150%を超えるとΔ
fを制御することが困難になる。
Also, the area of the small electrode finger is 50% of that of the case where the small electrode finger is square (the dashed line in FIG. 1).
1 to 150% (dotted line in FIG. 1). If it is less than 50%, the effect of applying a small electrode finger, that is, the effect of suppressing thinning due to halation decreases, and if it exceeds 150%, Δ
It becomes difficult to control f.

【0024】図5のラダー型SAWフィルタF1に本発
明を適用した場合について、以下に説明する。直列SA
W共振子2b,2cの2個について、図1のように構成
する。図6は、ラダー型SAWフィルタF1の通過帯域
の周波数特性(上側のグラフ)と、SAW共振子のイン
ピーダンス特性(上側のグラフ)を示す。直列SAW共
振子2aのインピーダンス特性7は、w2 /w1 を従来
より大きくしたことによりΔfが減少し、共振周波数7
aを保持したまま反共振周波数7bが低周波側に移動し
7cとなる。このインピーダンス特性の変化に対応し
て、SAWフィルタF1の通過帯域の周波数特性は高域
側の減衰特性が急峻になる。
The case where the present invention is applied to the ladder type SAW filter F1 shown in FIG. 5 will be described below. Series SA
Two W resonators 2b and 2c are configured as shown in FIG. FIG. 6 shows the frequency characteristics of the pass band of the ladder type SAW filter F1 (upper graph) and the impedance characteristics of the SAW resonator (upper graph). The impedance characteristic 7 of the series SAW resonator 2a is as follows.
The anti-resonance frequency 7b moves to the lower frequency side while maintaining a, and becomes 7c. In response to this change in the impedance characteristic, the frequency characteristic of the pass band of the SAW filter F1 has a steep attenuation characteristic on the high frequency side.

【0025】また、並列SAW共振子3bのインピーダ
ンス特性8は、w2 /w1 を従来より大きくしたことに
よりΔfが減少し、反共振周波数8bを保持して、共振
周波数8aが高周波側に移動し8cとなる。このインピ
ーダンス特性の変化に対応して、SAWフィルタF1の
通過帯域の周波数特性は低域側の減衰特性が急峻に変化
する。
In the impedance characteristic 8 of the parallel SAW resonator 3b, Δf is reduced by increasing w 2 / w 1 as compared with the prior art, the anti-resonance frequency 8b is maintained, and the resonance frequency 8a shifts to the high frequency side and 8c Becomes In response to the change in the impedance characteristic, the frequency characteristic of the pass band of the SAW filter F1 has a sharp change in the attenuation characteristic on the low frequency side.

【0026】このようなw2 /w1 の調整によって得ら
れるΔfの変化幅は、42°Yカット−X伝搬のLiT
aO3 単結晶から成る圧電基板1で決まるΔfに対して
約10%であり、SAWフィルタの減衰特性の急峻度を
十分に改善することができる。
The variation width of Δf obtained by such adjustment of w 2 / w 1 is the LiT of 42 ° Y cut-X propagation.
It is about 10% of Δf determined by the piezoelectric substrate 1 made of the aO 3 single crystal, and the steepness of the attenuation characteristic of the SAW filter can be sufficiently improved.

【0027】具体的には、900MHz帯のSAWフィ
ルタF1について、本発明の2個のSAW共振子2b,
2cの電極指30aは、86対と94対、電極指30a
の長さw1 は共に10λ、電極指30aの材質は蒸着法
により成膜したAlを用い、電極指30aの厚みは共に
410nm、間隔w2 はw1 の12.5%に共に設定し
た。また、電極指30a幅及び電極指30a間隔は夫々
約1μmである。図11に改善前の信号レベルの周波数
特性を、図12に本発明によって得られた周波数持性を
示す。本発明により減衰特性が改善されている。
Specifically, for a 900 MHz band SAW filter F1, two SAW resonators 2b,
The electrode finger 30a of 2c has 86 pairs and 94 pairs, and the electrode finger 30a
The length w1 of the electrode fingers 30a was 10λ, the material of the electrode fingers 30a was Al formed by vapor deposition, the thickness of the electrode fingers 30a was 410 nm, and the interval w2 was 12.5% of w1. The electrode finger 30a width and the electrode finger 30a interval are each about 1 μm. FIG. 11 shows the frequency characteristics of the signal level before the improvement, and FIG. 12 shows the frequency durability obtained by the present invention. The present invention has improved damping characteristics.

【0028】図9に本発明による対称格子状の平衡型
(ブリッジ型)SAWフィルタF2の回路図を示す。直
列腕に接続された2個のSAW共振子40,41につい
て、本発明を適用している。尚、同図において、42,
43は並列腕に接続された2個のSAW共振子、45
a,45bは入力端子、46a,46bは出力端子であ
る。
FIG. 9 is a circuit diagram of a balanced (bridge-type) SAW filter F2 having a symmetrical lattice shape according to the present invention. The present invention is applied to two SAW resonators 40 and 41 connected to a serial arm. Incidentally, in FIG.
43 is two SAW resonators connected to the parallel arm;
a and 45b are input terminals, and 46a and 46b are output terminals.

【0029】図10に、平衡型SAWフィルタF2の通
過帯域の周波数特性と、SAW共振子40〜43のイン
ピーダンス特性を示す。SAW共振子40のインピーダ
ンス特性17は、w2 /w1 を従来より大きくしたこと
によりΔfが減少し、共振周波数17aを保持したまま
反共振周波数17bが低周波側に移動し17cとなる。
このインピーダンス特性の変化に対応して、SAWフィ
ルタF2の通過帯域17fの周波数特性は高域側の減衰
特性が急峻になる。
FIG. 10 shows the frequency characteristics of the pass band of the balanced SAW filter F2 and the impedance characteristics of the SAW resonators 40 to 43. The impedance characteristic 17 of the SAW resonator 40 is reduced by Δf due to the increase of w2 / w1 as compared with the prior art, and the anti-resonance frequency 17b moves to the lower frequency side while maintaining the resonance frequency 17a to become 17c.
In response to this change in the impedance characteristic, the frequency characteristic of the pass band 17f of the SAW filter F2 has a steep attenuation characteristic on the high frequency side.

【0030】また、SAW腕共振子42,43のインピ
ーダンス特性18は、w2 /w1 を従来より大きくした
ことによりΔfが減少し、反共振周波数18bを保持し
て、共振周波数18aが高周波側に移動し18cとな
る。このインピーダンス特性の変化に対応して、SAW
フィルタF2の通過帯域17fの周波数特性は低域側の
減衰特性が急峻になる。
Further, the impedance characteristic 18 of the SAW arm resonators 42 and 43 is reduced in Δf by increasing w 2 / w 1 as compared with the prior art, the anti-resonance frequency 18b is maintained, and the resonance frequency 18a is shifted to the high frequency side. 18c. In response to this change in impedance characteristics, SAW
In the frequency characteristic of the pass band 17f of the filter F2, the attenuation characteristic on the low frequency side becomes steep.

【0031】このようなw2 /w1 の調整によって得ら
れるΔfの変化幅は、ラダー型SAWフィルタF1と同
様、42°Yカット−X伝搬のLiTaO3 単結晶から
成る圧電基板1で決まるΔfに対して約10%であり、
SAWフィルタの減衰特性の急峻度を十分に改善するこ
とができる。
The width of change of Δf obtained by such adjustment of w 2 / w 1 is the same as that of ladder type SAW filter F 1, with respect to Δf determined by piezoelectric substrate 1 made of LiTaO 3 single crystal of 42 ° Y cut-X propagation. About 10%,
The steepness of the attenuation characteristic of the SAW filter can be sufficiently improved.

【0032】具体的には、900MHz帯のSAWフィ
ルタF2について、本発明の2個のSAW共振子40,
41の電極指30aは、60対と60対、電極指30a
の長さw1 は共に15λ、電極の材質は蒸着法により成
膜したAlを用い、電極指30aの厚みは共に410n
m、間隔w2 はw1 の12.0%に共に設定した。ま
た、電極指30a幅及び電極指30a間隔は夫々約1μ
mである。図13に改善前の信号レベルの周波数特性
を、図14に本発明によって得られた周波数持性を示
す。本発明により減衰特性が改善されている。
Specifically, for a 900 MHz band SAW filter F2, two SAW resonators 40,
41 electrode fingers 30a are 60 pairs and 60 pairs, electrode fingers 30a
Are 15λ, the electrode material is Al formed by vapor deposition, and the thickness of the electrode finger 30a is 410n.
m and the interval w2 were both set to 12.0% of w1. The electrode finger 30a width and the electrode finger 30a interval are each about 1 μm.
m. FIG. 13 shows the frequency characteristics of the signal level before the improvement, and FIG. 14 shows the frequency durability obtained by the present invention. The present invention has improved damping characteristics.

【0033】本発明において、IDT電極30はAlあ
るいはAl合金(Al−Cu系,Al−Ti系等)から
なり、特にAlが励振効率が高く、材料コストが低いた
め好ましい。また、IDT電極30は蒸着法、スパッタ
リング法又はCVD法等の薄膜形成法により形成する。
In the present invention, the IDT electrode 30 is made of Al or an Al alloy (Al-Cu system, Al-Ti system, etc.), and Al is particularly preferable because of its high excitation efficiency and low material cost. The IDT electrode 30 is formed by a thin film forming method such as an evaporation method, a sputtering method, or a CVD method.

【0034】そして、IDT電極30の電極指30aの
対数は50〜200程度、電極指30aの線幅は0.1
〜10.0μm程度、電極指30aの間隔は0.1〜1
0.0μm程度、電極指30aの開口幅(交差幅)は1
0〜100μm程度、IDT電極30aの厚みは0.2
〜0.4μm程度とすることが、SAW共振子あるいは
SAWフィルタとしての所期の特性を得るうえで好適で
ある。また、IDT電極30aの電極指間に酸化亜鉛,
酸化アルミニウム等の圧電材料を成膜すれば、SAWの
共振効率が向上し好適である。
The logarithm of the electrode finger 30a of the IDT electrode 30 is about 50 to 200, and the line width of the electrode finger 30a is 0.1.
About 10.0 μm, and the interval between the electrode fingers 30 a is 0.1 to 1 μm.
The opening width (intersection width) of the electrode finger 30a is about 0.0 μm,
The thickness of the IDT electrode 30a is about 0.2 to 100 μm.
It is preferable that the thickness be about 0.4 μm in order to obtain desired characteristics as a SAW resonator or a SAW filter. Also, zinc oxide, between electrode fingers of the IDT electrode 30a,
It is preferable to form a piezoelectric material such as aluminum oxide because the SAW resonance efficiency is improved.

【0035】圧電基板としては、36°±10°Yカッ
ト−X伝搬のLiTaO3 単結晶、64°Yカット−X
伝搬のLiNbO3 単結晶、45°Xカット−Z伝搬の
LiB4 7 単結晶等が、電気機械結合係数が大きく且
つ群遅延時間温度係数が小さいため好ましく、特に電気
機械結合係数の大きな36°±10°Yカット−X伝搬
のLiTaO3 単結晶が良い。また、結晶Y軸方向にお
けるカット角は36°±10°の範囲内であれば良く、
その場合十分な圧電特性が得られる。圧電基板の厚みは
0.1〜0.5mm程度がよく、0.1mm未満では圧
電基板が脆くなり、0.5mm超では材料コストが大き
くなる。
As the piezoelectric substrate, 36 ° ± 10 ° Y-cut-X propagating LiTaO 3 single crystal, 64 ° Y-cut-X
Propagating LiNbO 3 single crystal, 45 ° X cut-Z propagating LiB 4 O 7 single crystal, and the like are preferable because the electromechanical coupling coefficient is large and the group delay time temperature coefficient is small. LiTaO 3 single crystal of ± 10 ° Y cut-X propagation is preferred. Further, the cut angle in the crystal Y-axis direction may be within a range of 36 ° ± 10 °,
In that case, sufficient piezoelectric characteristics can be obtained. The thickness of the piezoelectric substrate is preferably about 0.1 to 0.5 mm. If the thickness is less than 0.1 mm, the piezoelectric substrate becomes brittle, and if it exceeds 0.5 mm, the material cost increases.

【0036】かくして、本発明のSAW装置は、IDT
電極の電極指の開口率(w2 /w1×100%)を調整
することによりΔfを制御できるとともに、フォトリソ
グラフィー工程でIDT電極を形成する際に電極指首部
が細線化するのを防止でき、また、本発明のSAW装置
でSAWフィルタを構成した場合、通過帯域端部の減衰
特性が改善されるという作用効果を有する。
Thus, the SAW device of the present invention has the IDT
By adjusting the aperture ratio (w2 / w1 × 100%) of the electrode fingers of the electrode, Δf can be controlled, and at the time of forming the IDT electrode in the photolithography process, the electrode finger neck can be prevented from being thinned. When a SAW filter is formed by the SAW device according to the present invention, there is an operational effect that the attenuation characteristic at the end of the pass band is improved.

【0037】更には、本発明のSAWフィルタにおい
て、0.04≦w2 /w1 ≦0.20とし小電極指を設
けたSAW装置を少なくとも1個有していればよく、勿
論全てのSAW装置を上記構成としてもよい。また、圧
電基板の両主面(表裏面)にSAW装置又はSAWフィ
ルタを設けても構わない。
Further, in the SAW filter of the present invention, at least one SAW device provided with small electrode fingers with 0.04 ≦ w 2 / w 1 ≦ 0.20 only needs to be provided. The above configuration may be adopted. Further, a SAW device or a SAW filter may be provided on both main surfaces (front and back surfaces) of the piezoelectric substrate.

【0038】尚、本発明は上記実施形態に限定されるも
のではなく、本発明の要旨を変更しない範囲内で種々の
変更は何等差し支えない。
Note that the present invention is not limited to the above-described embodiment, and various changes may be made without departing from the scope of the present invention.

【0039】[0039]

【発明の効果】本発明は、IDT電極の電極指の長さを
w1 、電極指先端と相対するIDT電極のバスバーとの
間隔をw2 とした場合、0.04≦w2 /w1 ≦0.2
0であり、前記間隔部において前記バスバーより小電極
指を突設させたことにより、SAW装置のΔfを制御で
きるとともに、フォトリソグラフィー工程でIDT電極
を形成する際に電極指首部が細線化するのを防止でき、
また、SAWフィルタを構成した場合、通過帯域端部の
減衰特性が改善される。
According to the present invention, when the length of the electrode finger of the IDT electrode is w1 and the distance between the tip of the electrode finger and the bus bar of the IDT electrode is w2, 0.04≤w2 / w1≤0.2.
0, the small electrode finger protrudes from the bus bar at the interval, so that Δf of the SAW device can be controlled, and the electrode finger neck portion becomes thin when forming the IDT electrode in the photolithography process. Can be prevented,
Further, when the SAW filter is configured, the attenuation characteristics at the end of the pass band are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のSAW装置D1の基本構成の平面図で
ある。
FIG. 1 is a plan view of a basic configuration of a SAW device D1 of the present invention.

【図2】本発明のSAW装置D2の基本構成の平面図で
ある。
FIG. 2 is a plan view of a basic configuration of a SAW device D2 of the present invention.

【図3】従来のSAW装置Dの基本構成の平面図であ
る。
FIG. 3 is a plan view of a basic configuration of a conventional SAW device D.

【図4】従来のSAW装置Dのインピーダンス特性のグ
ラフである。
FIG. 4 is a graph showing impedance characteristics of a conventional SAW device D;

【図5】本発明を適用できるラダー型SAWフィルタF
1の回路図である。
FIG. 5 shows a ladder type SAW filter F to which the present invention can be applied.
1 is a circuit diagram of FIG.

【図6】ラダー型SAWフィルタF1の通過帯域の周波
数特性のグラフと、直列SAW共振子及び並列SAW共
振子のインピーダンス特性のグラフである。
FIG. 6 is a graph of a frequency characteristic of a pass band of the ladder-type SAW filter F1, and a graph of impedance characteristics of a series SAW resonator and a parallel SAW resonator.

【図7】ラダー型SAWフィルタF1の通過帯域端部の
減衰特性改善について説明するためのグラフである。
FIG. 7 is a graph for describing an improvement in attenuation characteristics at a passband end of a ladder-type SAW filter F1.

【図8】本発明のSAW装置の開口率とΔfとの関係を
示すグラフである。
FIG. 8 is a graph showing the relationship between the aperture ratio and Δf of the SAW device of the present invention.

【図9】本発明による平衡型SAWフィルタF2の回路
図である。
FIG. 9 is a circuit diagram of a balanced SAW filter F2 according to the present invention.

【図10】平衡型SAWフィルタF2の通過帯域の周波
数特性のグラフと、直列腕に接続されたSAW共振子及
び並列腕に接続されたSAW共振子のインピーダンス特
性のグラフである。
FIG. 10 is a graph of a frequency characteristic of a pass band of the balanced SAW filter F2, and a graph of impedance characteristics of a SAW resonator connected to a series arm and a SAW resonator connected to a parallel arm.

【図11】従来のラダー型SAWフィルタF1の通過帯
域の周波数特性のグラフである。
FIG. 11 is a graph showing frequency characteristics of a pass band of a conventional ladder-type SAW filter F1.

【図12】本発明によるラダー型SAWフィルタF1の
通過帯域の周波数特性のグラフである。
FIG. 12 is a graph of a passband frequency characteristic of the ladder-type SAW filter F1 according to the present invention.

【図13】従来の平衡型SAWフィルタF2の通過帯域
の周波数特性のグラフである。
FIG. 13 is a graph showing frequency characteristics of a pass band of the conventional balanced SAW filter F2.

【図14】本発明による平衡型SAWフィルタF2の通
過帯域の周波数特性のグラフである。
FIG. 14 is a graph of a passband frequency characteristic of the balanced SAW filter F2 according to the present invention.

【符号の説明】[Explanation of symbols]

1:圧電基板 2a:直列SAW共振子 2b:直列SAW共振子 2c:直列SAW共振子 3a:並列SAW共振子 3b:並列SAW共振子 3c:並列SAW共振子 4:配線パターン 5:ワイヤー 7:直列SAW共振子のインピーダンス特性 7a:共振周波数 7b:反共振周波数 7c:反共振周波数 8:並列SAW共振子のインピーダンス特性 8a:共振周波数 8b:反共振周波数 8c:共振周波数 9:SAW共振子のインピーダンス特性 30:IDT電極 30a:電極指 30b:小電極指 30c:バスバー 31:反射器 1: piezoelectric substrate 2a: series SAW resonator 2b: series SAW resonator 2c: series SAW resonator 3a: parallel SAW resonator 3b: parallel SAW resonator 3c: parallel SAW resonator 4: wiring pattern 5: wire 7: series Impedance characteristics of SAW resonator 7a: Resonance frequency 7b: Anti-resonance frequency 7c: Anti-resonance frequency 8: Impedance characteristics of parallel SAW resonator 8a: Resonance frequency 8b: Anti-resonance frequency 8c: Resonance frequency 9: Impedance characteristics of SAW resonator 30: IDT electrode 30a: Electrode finger 30b: Small electrode finger 30c: Bus bar 31: Reflector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧電基板の主面に少なくとも一組の櫛歯状
電極を形成して成る弾性表面波装置であって、前記櫛歯
状電極の電極指の長さをw1 、前記電極指先端と相対す
るバスバーとの間隔をw2 とした場合、0.04≦w2
/w1 ≦0.20とし、かつ前記間隔部に前記電極指先
端と相対するバスバーより小電極指を突設させたことを
特徴とする弾性表面波装置。
1. A surface acoustic wave device comprising at least one pair of comb-shaped electrodes formed on a main surface of a piezoelectric substrate, wherein a length of an electrode finger of the comb-shaped electrode is w1, and a tip of the electrode finger is 0.04 ≦ w2, where w2 is the distance between the busbar and
/W1≦0.20, and a small electrode finger protrudes from the bus bar facing the tip of the electrode finger at the interval.
【請求項2】前記小電極指は、前記バスバーから前記電
極指先端方向に向けて先細り状となっている請求項1記
載の弾性表面波装置。
2. The surface acoustic wave device according to claim 1, wherein the small electrode finger is tapered from the bus bar toward a tip end of the electrode finger.
【請求項3】同一の圧電基板上において複数の弾性表面
波装置を接続して成る梯子型弾性表面波フィルタ又は平
衡型弾性表面波フィルタであって、前記弾性表面波装置
の少なくとも1個が請求項1又は2の弾性表面波装置で
あることを特徴とする弾性表面波フィルタ。
3. A ladder-type surface acoustic wave filter or a balanced surface acoustic wave filter formed by connecting a plurality of surface acoustic wave devices on the same piezoelectric substrate, wherein at least one of the surface acoustic wave devices is connected. Item 3. A surface acoustic wave filter according to item 1 or 2.
JP35831997A 1997-12-25 1997-12-25 Surface acoustic wave device and surface accosting wave filter Pending JPH11191720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35831997A JPH11191720A (en) 1997-12-25 1997-12-25 Surface acoustic wave device and surface accosting wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35831997A JPH11191720A (en) 1997-12-25 1997-12-25 Surface acoustic wave device and surface accosting wave filter

Publications (1)

Publication Number Publication Date
JPH11191720A true JPH11191720A (en) 1999-07-13

Family

ID=18458690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35831997A Pending JPH11191720A (en) 1997-12-25 1997-12-25 Surface acoustic wave device and surface accosting wave filter

Country Status (1)

Country Link
JP (1) JPH11191720A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328196A (en) * 2003-04-23 2004-11-18 Fujitsu Media Device Kk Surface acoustic wave device
US6903626B2 (en) 2001-12-14 2005-06-07 Fujitsu Media Devices Limited Surface acoustic wave element and duplexer having the same
EP1548936A1 (en) * 2003-12-24 2005-06-29 Fujitsu Media Devices Limited Surface acoustic wave filter
US6946931B2 (en) 2001-12-21 2005-09-20 Fujitsu Limited Surface acoustic wave resonator and surface acoustic wave filter
US6989724B2 (en) 2003-05-19 2006-01-24 Murata Manufacturing Co., Ltd. Surface acoustic wave device and communication device
JP2006186435A (en) * 2004-12-24 2006-07-13 Kyocera Corp Surface acoustic wave device
WO2006078001A1 (en) * 2005-01-21 2006-07-27 National University Corporation Chiba University Elastic surface wave device
JP2007068107A (en) * 2005-09-02 2007-03-15 Kyocera Corp Surface acoustic wave element and communication apparatus
JP2007081469A (en) * 2005-09-09 2007-03-29 Kyocera Corp Surface acoustic wave element and communication apparatus
US7215224B2 (en) 2001-04-09 2007-05-08 Murata Manufacturing Co., Ltd. Surface acoustic wave filter, surface acoustic wave device and communication device
JP4853520B2 (en) * 2006-10-31 2012-01-11 株式会社村田製作所 Surface acoustic wave filter device and duplexer
JP2019021997A (en) * 2017-07-12 2019-02-07 京セラ株式会社 Acoustic wave element, splitter, and communication device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215224B2 (en) 2001-04-09 2007-05-08 Murata Manufacturing Co., Ltd. Surface acoustic wave filter, surface acoustic wave device and communication device
US6903626B2 (en) 2001-12-14 2005-06-07 Fujitsu Media Devices Limited Surface acoustic wave element and duplexer having the same
US6946931B2 (en) 2001-12-21 2005-09-20 Fujitsu Limited Surface acoustic wave resonator and surface acoustic wave filter
US7170371B2 (en) * 2003-04-23 2007-01-30 Fujitsu Media Devices Limited Surface acoustic wave device with a thicker partial bus bar area and optimal bus bar to electrode tip gap
JP2004328196A (en) * 2003-04-23 2004-11-18 Fujitsu Media Device Kk Surface acoustic wave device
US6989724B2 (en) 2003-05-19 2006-01-24 Murata Manufacturing Co., Ltd. Surface acoustic wave device and communication device
EP1548936A1 (en) * 2003-12-24 2005-06-29 Fujitsu Media Devices Limited Surface acoustic wave filter
US7385468B2 (en) 2003-12-24 2008-06-10 Fujitsu Media Devices Limited Surface acoustic wave filter
JP2006186435A (en) * 2004-12-24 2006-07-13 Kyocera Corp Surface acoustic wave device
JP4601416B2 (en) * 2004-12-24 2010-12-22 京セラ株式会社 Surface acoustic wave device
JPWO2006078001A1 (en) * 2005-01-21 2008-06-19 国立大学法人 千葉大学 Surface acoustic wave device
JP4590642B2 (en) * 2005-01-21 2010-12-01 国立大学法人 千葉大学 Surface acoustic wave device
WO2006078001A1 (en) * 2005-01-21 2006-07-27 National University Corporation Chiba University Elastic surface wave device
US8106726B2 (en) 2005-01-21 2012-01-31 National University Corporation Chiba University Elastic surface wave device comprising dummy electrodes
JP2007068107A (en) * 2005-09-02 2007-03-15 Kyocera Corp Surface acoustic wave element and communication apparatus
JP4671813B2 (en) * 2005-09-02 2011-04-20 京セラ株式会社 Surface acoustic wave device
JP2007081469A (en) * 2005-09-09 2007-03-29 Kyocera Corp Surface acoustic wave element and communication apparatus
JP4853520B2 (en) * 2006-10-31 2012-01-11 株式会社村田製作所 Surface acoustic wave filter device and duplexer
JP2019021997A (en) * 2017-07-12 2019-02-07 京セラ株式会社 Acoustic wave element, splitter, and communication device

Similar Documents

Publication Publication Date Title
JP6415469B2 (en) Acoustic wave resonator, filter and multiplexer, and method for manufacturing acoustic wave resonator
KR100346805B1 (en) Surface acoustic wave device
US7659653B2 (en) Acoustic wave device and filter
JP3301399B2 (en) Surface acoustic wave device
EP0734120B1 (en) Surface acoustic wave resonator filter
JP3391309B2 (en) Surface wave device and communication device
JP3228223B2 (en) Surface acoustic wave filter
JP3353742B2 (en) Surface wave resonator, surface wave device, communication device
JPH09298446A (en) Surface acoustic wave device and its design method
JPH11191720A (en) Surface acoustic wave device and surface accosting wave filter
JP3204112B2 (en) Surface acoustic wave resonator filter
JP2002232264A (en) Surface acoustic wave filter
JPH11163664A (en) Acoustic wave filter
JP4251409B2 (en) Surface acoustic wave filter
JPH09181566A (en) Surface acoustic wave resonator filtering device
JPH1022765A (en) Surface acoustic wave resonator and resonator type filter
JP2001345675A (en) Surface acoustic wave filter
JP2000049558A (en) Surface acoustic wave filter
JPH10261935A (en) Surface acoustic wave element
JPH11186867A (en) Surface acoustic wave device
JPH10335965A (en) Surface acoustic wave filter
JPH08265099A (en) Surface acoustic wave filter of resonator type
JPH10303697A (en) Surface acoustic wave filter
WO2019175317A1 (en) Transducer structure for source suppression in saw filter devices
JP3597483B2 (en) Surface acoustic wave device