JPS63260213A - Resonator using high coupling love wave type saw substrate - Google Patents
Resonator using high coupling love wave type saw substrateInfo
- Publication number
- JPS63260213A JPS63260213A JP21553486A JP21553486A JPS63260213A JP S63260213 A JPS63260213 A JP S63260213A JP 21553486 A JP21553486 A JP 21553486A JP 21553486 A JP21553486 A JP 21553486A JP S63260213 A JPS63260213 A JP S63260213A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- resonator
- idt
- wave type
- love wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 25
- 230000008878 coupling Effects 0.000 title claims abstract description 11
- 238000010168 coupling process Methods 0.000 title claims abstract description 11
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 11
- 238000010897 surface acoustic wave method Methods 0.000 claims abstract description 29
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 5
- 229910052737 gold Inorganic materials 0.000 claims abstract description 4
- 239000011248 coating agent Substances 0.000 claims abstract 2
- 238000000576 coating method Methods 0.000 claims abstract 2
- 229910052709 silver Inorganic materials 0.000 claims abstract 2
- 230000005855 radiation Effects 0.000 claims 1
- 229910003327 LiNbO3 Inorganic materials 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- 230000001902 propagating effect Effects 0.000 abstract description 3
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 229910052697 platinum Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 201000004384 Alopecia Diseases 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はラブ波型SAW共振子、殊にラブ波についての
電気機械結合係数大々るカット角を用いたLiNbO3
基板に金等の重い材料によるIDT電極を付着しSAW
を励起する共振子に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a Love wave type SAW resonator, particularly a LiNbO
IDT electrodes made of heavy materials such as gold are attached to the substrate and SAW is performed.
Concerning a resonator that excites.
(従来技術)
従来から実用されているSAW共振子は一般に圧電基板
上にかなりの対数のIDT電極を付しSAWを励起する
と共に励起したSAWエネルギを極力前記IDT電極内
に閉込める為IDT電極両側に多数のグレーティング状
反射器を付するものでありでSAW伝搬方向のサイズが
大きいのみならず、上述の如くQを高める為の構成は必
然的に容量比を大きくするものであるから共振子の周波
数帯域は極めて狭いものとなり発振器用の振動子として
は極めて好都合なるもフィルタやvCO等を構成するに
は適さないものであっ九。(Prior Art) SAW resonators that have been put into practical use generally have IDT electrodes of a considerable number of logarithms attached on a piezoelectric substrate, and both sides of the IDT electrodes are used to excite the SAW and confine the excited SAW energy as much as possible within the IDT electrodes. A large number of grating-like reflectors are attached to the resonator, which not only increases the size in the SAW propagation direction, but also increases the capacity ratio of the resonator because the configuration for increasing Q as described above inevitably increases the capacitance ratio. The frequency band is extremely narrow, and although it is very convenient as a resonator for an oscillator, it is not suitable for constructing filters, VCOs, etc.
一方、温度特性の良好な水晶を用いIDTの対数を減少
すると共に反射器も撤去すれば水晶の電気機械結合係数
は元来極めて小さいものであるから共振現象が出現しな
いという問題があった。On the other hand, if a crystal with good temperature characteristics is used, the logarithm of the IDT is reduced, and the reflector is also removed, there is a problem that the resonance phenomenon does not occur because the electromechanical coupling coefficient of the crystal is originally extremely small.
(発明の目的)
本発明は上述した如き従来一般のSAW共振子が有する
特性上の問題点に鑑みてなされたものであって、フィル
タやvCOを構成するに適した容量比の極めて小さいし
かも小型のラブ波型SAW共振子を提供することを目的
とする。(Objective of the Invention) The present invention has been made in view of the problems in the characteristics of the conventional general SAW resonator as described above, and is small and has an extremely small capacitance ratio suitable for constructing a filter or a VCO. The purpose of the present invention is to provide a Love wave type SAW resonator.
(発明の概要)
上述の目的を達成する為1本発明に係るラブ波型SAW
共振子は基本的にはラブ波についての電気機械結合係数
が大でSAWについてのそれが小さい回転角のLiNb
O5回転Y板を用いその主面に金の如く重い材料にて比
較的小数対のIDTを付するものである。(Summary of the Invention) In order to achieve the above-mentioned objects, a love wave type SAW according to the present invention is provided.
The resonator is basically LiNb with a large electromechanical coupling coefficient for Love waves and a small rotation angle for SAW.
An O5 rotating Y plate is used and a relatively small number of pairs of IDTs are attached to the main surface of the plate using a heavy material such as gold.
(実施例)
以下9本発明を図面に示した理論計算及び実験の結果に
基づいて詳細に説明する。(Example) The following nine inventions will be described in detail based on the results of theoretical calculations and experiments shown in the drawings.
実施例等の説明に先立って本発明の理解を助ける為圧電
基板表面或は表面直下を伝搬する波動の性質について少
しく説明する。Prior to describing embodiments, the nature of waves propagating on or just below the surface of a piezoelectric substrate will be briefly explained in order to aid understanding of the present invention.
前述した如〈従来の弾性表面波(SAW)共振子はLi
Nboa回転Y板、8Tカツト水晶等の表面に励起する
レーり(Rayleigh)波型の波動(縦波のSV波
)を利用するものであるがこの型の波動についての電気
機械結合係数に8は高々数チと小さいものである為共振
子の容量比は50乃至1,000と極めて大きいもので
あった。As mentioned above, conventional surface acoustic wave (SAW) resonators are made of Li.
It uses Rayleigh wave type waves (longitudinal SV waves) excited on the surface of Nboa rotating Y plate, 8T cut crystal, etc., but the electromechanical coupling coefficient for this type of wave is 8. Since the resonator is small, only a few inches at most, the capacitance ratio of the resonator is extremely large, ranging from 50 to 1,000.
−万、上述した如き圧電基板表面にはレーリ波の他にS
H波(圧電表面すべり波)である擬似弾性表面波の存在
することが知られており。- In addition to Rayleigh waves, the surface of the piezoelectric substrate as described above has S
It is known that pseudo surface acoustic waves, which are H waves (piezoelectric surface shear waves), exist.
この波動についての電気機械結合係数は第2図に示す如
< LiNbO5回転Y板に於いては201を越えるも
のである。As shown in FIG. 2, the electromechanical coupling coefficient for this wave motion exceeds 201 for the LiNbO5 rotating Y plate.
但し、この擬似弾性表面波は基板中にバルク波を放射し
つつ伝搬するリーキ(Leaky)波でありそのままで
は伝搬減衰も大きい。However, this pseudo surface acoustic wave is a leaky wave that propagates while radiating a bulk wave into the substrate, and if left as it is, the propagation attenuation is large.
この問題に対処する為本願発明者等はLiNbO3基板
表面に音速の低い重い物質を付着すれば前記擬似弾性波
は伝搬減衰のないラブ(Love)波型表面波となるこ
とを既に確認している。To deal with this problem, the inventors of the present invention have already confirmed that if a heavy substance with low sound velocity is attached to the surface of the LiNbO3 substrate, the pseudo-elastic wave becomes a Love wave type surface wave with no propagation attenuation. .
本発明は上述した如き本願発明者等が従来行ってきた研
究に基づく知見を更に発展させ、基本的にはLiNbO
5回転Y板に直接重い金属−禿係数の大なることからI
DT電極対数は極めて少数、且つ反射器を除去しても共
振させることが可能であろうとの着想に基づくものであ
る。The present invention further develops the knowledge based on the research previously conducted by the inventors as described above, and basically uses LiNbO
5 Heavy metal directly on the rotating Y plate - Due to the large baldness coefficient, I
The idea is that the number of DT electrode pairs is extremely small and that resonance can be achieved even if the reflector is removed.
そこで先ずwJ2図から擬似弾性表面波(Leaky波
)についての電気機械結合係数に2が最大となる回転角
を見ると殆んど零であるから単純にLiNbO3 Y板
を用いることとし第1図に示す如く反射器を有しないA
uによるIDT電極を付着する。Therefore, first of all, if we look at the rotation angle at which the electromechanical coupling coefficient for pseudo surface acoustic waves (Leaky waves) has a maximum of 2 from the wJ2 diagram, it is almost zero, so we decided to simply use a LiNbO3 Y plate, as shown in Figure 1. A without a reflector as shown
Attach the IDT electrode by u.
この際IDTの対数なN=15.20及び25の3種類
、電極膜厚Hを既ね0.8 、1.6及2,2.2mm
の3種類、IDT電極電極指交叉七人、6fiと1.8
m との2種類として実験を行りた。In this case, the logarithmic N of IDT is 15.20 and 25, and the electrode film thickness H is 0.8, 1.6, 2, and 2.2 mm.
3 types of IDT electrodes, 6fi and 1.8
The experiment was conducted with two types: m.
その結果第3図(a)及び(b)からも明らかな如く電
極指対数Nが15の場合であっても共振が現われ共振の
Qは電極膜厚Hが大なる程高くなることが理解されよう
。伺、同図(b)に於いては反共振付近で共振割れが生
じているが、このリクブルはIDTの両横からIDT内
部に向けて吸音材を塗布すると消えること及び交叉幅大
を小さくすると応答の数が減少することから横モードの
振動によるものと考えられる故IDTの交叉幅Aに重み
付けを施しても消滅させることが可能であろう。As a result, as is clear from FIGS. 3(a) and 3(b), resonance appears even when the number of electrode finger pairs N is 15, and it is understood that the Q of resonance increases as the electrode film thickness H increases. Good morning. In Figure (b), resonance cracking occurs near the anti-resonance, but this leakage disappears when sound absorbing material is applied from both sides of the IDT toward the inside of the IDT, and when the crossover width is reduced. Since the number of responses decreases, it is thought that this is caused by transverse mode vibration, so it may be possible to eliminate it even if weighting is applied to the crossover width A of the IDT.
次にこのような共振器の容量比γの電極膜厚Hとの関係
を検討するに第4図に示す如く電極膜厚Hが大なる程小
さくなりその値は3程度と極めて小さいことが理解され
よう。Next, when we examine the relationship between the capacitance ratio γ of such a resonator and the electrode film thickness H, we understand that the larger the electrode film thickness H becomes, the smaller it becomes, as shown in Figure 4, and its value is extremely small, about 3. It will be.
更に共振子のQと電極膜厚Hとの関係は第5図に示す如
く膜厚Hの上昇と共にQも上昇することが判る。Furthermore, as shown in FIG. 5, the relationship between the Q of the resonator and the electrode film thickness H shows that as the film thickness H increases, the Q also increases.
最後に極めて膜厚の大なる電極を付した本発明の共振子
に於いてはその共振周波数はIDT電極ピッチのみで一
義的に決定されるものではあり得ないので共振周波数の
電極膜厚依存性を調べてみたところ第6図に示す如き結
果を得た。Finally, in the resonator of the present invention with extremely thick electrodes, the resonant frequency cannot be uniquely determined only by the IDT electrode pitch, so the resonant frequency depends on the electrode film thickness. When we investigated this, we obtained the results shown in Figure 6.
本図から明らかな如く共振周波数は電極膜厚Hの増大と
共に膜厚1μm当り16%程度低下することが判る。従
って現実の共振子を製造する場合にはこの現象を計算に
入れてIDT wt極の設計を行う必要があろう。As is clear from this figure, as the electrode film thickness H increases, the resonance frequency decreases by about 16% per 1 μm of film thickness. Therefore, when manufacturing an actual resonator, it is necessary to take this phenomenon into consideration when designing the IDT wt pole.
ところで前記第3図の実験結果からも明らかな如く、共
振のQがあまり大でないのみならず反共振のQも極めて
小さい。この理由はIDT両端付近の電極指がIDTの
外部へ表面波を放射することによるものと思われるので
IDT?I!極にその中央部では交叉幅大を犬に1両端
部に向って小となるよう重み付けを付するか或は第7図
に示す如く音響的空胴を構成するグレーティング内にI
DTを分散配置し、中央付近のよりT対数を大に1両端
近傍で小とすればよい。By the way, as is clear from the experimental results shown in FIG. 3, not only is the resonance Q not very large, but also the anti-resonance Q is extremely small. The reason for this seems to be that the electrode fingers near both ends of the IDT radiate surface waves to the outside of the IDT. I! At the poles, weighting is applied so that the cross width is large in the center and becomes small toward both ends, or as shown in FIG.
The DTs may be arranged in a distributed manner, with the T logarithm being larger near the center and smaller near both ends.
以上、ラブ波(Leaky )についての電気機械結合
係数の最大値を示すLiNb03Y板を用いる場合につ
いてのみ説明したが、前記第2図からも明らかな如<
LiNb03Y板はSAW (Rayleigh波)に
ついても相当大きな電気機械結合係数を有する為これが
スプリアスとして出現する可能性がある。従ってラブ波
についての電気機械結合係数は幾分率なるもSAWにつ
いてのそれが一層小さい回転角を有するLiNbO5回
転Y板を使用してもよいことは自明である。この際の回
転角は概ね一10°乃至40°の範囲であろう。Above, we have only explained the case of using a LiNb03Y plate that exhibits the maximum electromechanical coupling coefficient for love waves (Leaky), but as is clear from FIG.
Since the LiNb03Y board has a considerably large electromechanical coupling coefficient for SAW (Rayleigh waves), this may appear as spurious. It is therefore obvious that a LiNbO5 rotating Y-plate may be used which has a smaller rotation angle, although the electromechanical coupling coefficient for the Love wave is somewhat lower than that for the SAW. The rotation angle at this time will be approximately in the range of 110° to 40°.
ところで上述した如き本発明に係る高結合ラブ波型SA
W基板を用いた共振子はその容量比が小さいものである
故共振周波数の可変範囲を大ならしめることが可能であ
りフィルタ或は電圧制御発振器(VCO)用の振動子に
好適である。By the way, the highly coupled love wave type SA according to the present invention as described above
Since a resonator using a W substrate has a small capacitance ratio, it is possible to widen the variable range of the resonant frequency, and is suitable as a resonator for a filter or a voltage controlled oscillator (VCO).
しかしながらLiNbO5は元来人工水晶に比して周波
数一温度特性が良好でないので温度補償がめんどうにな
ることが予想される。However, since LiNbO5 originally does not have good frequency-temperature characteristics compared to artificial quartz, it is expected that temperature compensation will be troublesome.
この問題を解決する為には周波数一温度特性がLiNb
O3とは逆のS iOzを前記第1図或は第7図に示し
た如き共振子の表面に所定の厚さだけ塗布すれば(第8
図参照)よく、斯くすればフィルタの周波数一温度特性
は大幅に改善されvCOもその温度補償回路の複雑化を
避けることが可能となろう。To solve this problem, the frequency-temperature characteristics should be changed to LiNb.
By applying SiOz, which is the opposite of O3, to a predetermined thickness on the surface of the resonator as shown in FIG. 1 or FIG.
(See figure) In this way, the frequency-temperature characteristics of the filter will be greatly improved, and it will be possible to avoid complicating the temperature compensation circuit for vCO.
尚9本発明に係る共振子のIDT ml極はAuの如き
重い金属をかなりの厚さに付着することになるのでその
製造にはリフトオフ法の如き工、チング手法を用いるの
が効果的であろう。It should be noted that since the IDT ml pole of the resonator according to the present invention requires a heavy metal such as Au to be adhered to a considerable thickness, it is effective to use a process such as a lift-off method or a chipping method for manufacturing it. Dew.
(発明の効果)
本発明に係る共振子は以上説明した如く構成するもので
あるから従来のSAW共振子等に比して小型となるのみ
ならずその容量比を極めて小さくすることが可能となる
のでフィルタ或はVCO用の共振子に対する小型化、広
帯域化への厳しい要求を満足する上で著しい効果を発揮
する。(Effects of the Invention) Since the resonator according to the present invention is constructed as described above, it is not only smaller than conventional SAW resonators, etc., but also allows its capacitance ratio to be extremely small. Therefore, it exhibits a remarkable effect in satisfying the strict demands for miniaturization and widening of the band for filters or VCO resonators.
!1図は本発明に係る共振子の基本的構成を示す平面図
、第2図はLiNbO5回転Y板に励起するラブ波(L
eaky波)と8AW(Rayleigh波)について
の電気機械結合係数の回転角依存性を示す図、第3図(
al及び(blは夫々本発明に係る電極膜厚の異なる試
作共振子の共振特性を示す実験結果の図、第4図乃至筆
6図は夫々は本発明に係る共振子のパラメータ(IDT
対数及び交叉幅)を振っ九場合忙於ける容量比r、共振
のQ及び共振周波数frのIDT電極膜厚依存性を示す
実験結果の図、第7図及び第8図は夫々本発明の他の実
施例を示す平面図及び断面図である。! Figure 1 is a plan view showing the basic configuration of the resonator according to the present invention, and Figure 2 is a plan view showing the Love wave (L) excited in a LiNbO5 rotating Y plate.
Figure 3 (
al and (bl are diagrams of experimental results showing the resonance characteristics of prototype resonators with different electrode film thicknesses according to the present invention, respectively, and Figures 4 to 6 are diagrams showing the parameters (IDT) of the resonator according to the present invention, respectively.
Figures 7 and 8 are diagrams of experimental results showing the IDT electrode film thickness dependence of the active capacitance ratio r, the resonance Q, and the resonance frequency fr when changing the logarithm and crossover width, respectively. FIG. 2 is a plan view and a sectional view showing an example.
Claims (5)
数が大であって同時に励起する弾性表面波(SAW)に
ついてのそれが小である如き回転角を選択した回転Yカ
ットLiNbO_3基板表面に比較的少数のAu、Ag
又はPt等の重金属インタディジタルトランスジューサ
(IDT)電極を付し基板X方向にラブ波型表面波を励
起伝搬せしめるようにしたことを特徴とする高結合ラブ
波型SAW基板を用いた共振子。(1) Comparison with a rotated Y-cut LiNbO_3 substrate surface in which a rotation angle was selected such that the electromechanical coupling coefficient for Love waves excited in the substrate is large and that for surface acoustic waves (SAW) excited at the same time is small. A small number of Au, Ag
Alternatively, a resonator using a highly coupled Love wave type SAW substrate, characterized in that a heavy metal interdigital transducer (IDT) electrode such as Pt is attached to excite and propagate a Love wave type surface wave in the X direction of the substrate.
特徴とする特許請求の範囲(1)記載の高結合ラブ波型
SAW基板を用いた共振子。(2) A resonator using a highly coupled Love wave type SAW substrate according to claim (1), wherein the rotation angle is from -10° to +40°.
に所要の厚さのSiO_2を塗布することによって周波
数−温度特性を改善すると共に前記IDT電極膜厚を減
少したことを特徴とする特許請求の範囲(1)又は(2
)記載の高結合ラブ波型SAW基板を用いた共振子。(3) The frequency-temperature characteristics are improved and the thickness of the IDT electrode is reduced by coating the surface of the LiNbO_3 substrate with the IDT electrode to a required thickness. 1) or (2
A resonator using the highly coupled Love wave type SAW substrate described in ).
成するグレーティングを配置することによって振動エネ
ルギのIDT外への放射を減少せしめたことを特徴とす
る特許請求の範囲(1)、(2)又は(3)記載の高結
合ラブ波型SAW基板を用いた共振子。(4) Claims (1) and (2) characterized in that radiation of vibrational energy to the outside of the IDT is reduced by arranging a grating constituting an acoustic cavity between the IDT electrodes and at both ends thereof. ) or a resonator using the highly coupled Love wave type SAW substrate described in (3).
端部で小となる如く連続的な重み付けを施したことを特
徴とする特許請求の範囲(1)、(2)又は(3)記載
の高結合ラブ波型SAW基板を用いた共振子。(5) Claims (1), (2), or (3) characterized in that the crossing width of the IDT electrode is continuously weighted such that it becomes larger at the center and smaller at both ends. A resonator using the highly coupled Love wave type SAW substrate described in ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21553486A JPS63260213A (en) | 1986-09-12 | 1986-09-12 | Resonator using high coupling love wave type saw substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21553486A JPS63260213A (en) | 1986-09-12 | 1986-09-12 | Resonator using high coupling love wave type saw substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63260213A true JPS63260213A (en) | 1988-10-27 |
Family
ID=16674019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21553486A Pending JPS63260213A (en) | 1986-09-12 | 1986-09-12 | Resonator using high coupling love wave type saw substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63260213A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6271617B1 (en) | 1997-08-28 | 2001-08-07 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device with a tungsten-aluminum layered interdigital transducer |
JP2004032116A (en) * | 2002-06-21 | 2004-01-29 | Japan Radio Co Ltd | Surface acoustic wave filter |
US6791237B2 (en) | 2001-03-04 | 2004-09-14 | Kazuhiko Yamanouchi | Surface acoustic wave substrate and surface acoustic wave functional element |
US7209018B2 (en) | 2003-01-27 | 2007-04-24 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
JP2007221416A (en) * | 2006-02-16 | 2007-08-30 | Matsushita Electric Ind Co Ltd | Electronic component and electronic apparatus using the same |
US7339304B2 (en) | 2003-10-03 | 2008-03-04 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
JP2008078981A (en) * | 2006-09-21 | 2008-04-03 | Matsushita Electric Ind Co Ltd | Surface acoustic wave resonator, surface acoustic wave filter and antenna duplexer using the same |
JP2008092610A (en) * | 2001-03-04 | 2008-04-17 | Kazuhiko Yamanouchi | Surface acoustic wave substrate and surface acoustic wave functional element |
WO2008056697A1 (en) * | 2006-11-08 | 2008-05-15 | Panasonic Corporation | Surface acoustic wave resonator |
WO2009081647A1 (en) * | 2007-12-20 | 2009-07-02 | Murata Manufacturing Co., Ltd. | Surface acoustic wave apparatus |
JP2009284554A (en) * | 2009-09-03 | 2009-12-03 | Hitachi Media Electoronics Co Ltd | Surface acoustic wave device, communication filter and mobile communication apparatus |
WO2009147787A1 (en) * | 2008-06-06 | 2009-12-10 | パナソニック株式会社 | Acoustic wave duplexer |
US8035460B2 (en) | 2006-02-16 | 2011-10-11 | Panasonic Corporation | Surface acoustic wave device, surface acoustic wave filter and antenna duplexer using the same, and electronic equipment using the same |
WO2017217197A1 (en) * | 2016-06-14 | 2017-12-21 | 株式会社村田製作所 | Multiplexer, high-frequency front end circuit, and communication device |
JP2021027501A (en) * | 2019-08-07 | 2021-02-22 | 株式会社Piezo Studio | Surface acoustic wave device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57150214A (en) * | 1981-03-11 | 1982-09-17 | Fujitsu Ltd | Surface wave device |
JPS59156013A (en) * | 1983-02-25 | 1984-09-05 | Hiroshi Shimizu | High coupling elastic surface wave piezoelectric substrate |
-
1986
- 1986-09-12 JP JP21553486A patent/JPS63260213A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57150214A (en) * | 1981-03-11 | 1982-09-17 | Fujitsu Ltd | Surface wave device |
JPS59156013A (en) * | 1983-02-25 | 1984-09-05 | Hiroshi Shimizu | High coupling elastic surface wave piezoelectric substrate |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19839247B4 (en) * | 1997-08-28 | 2008-01-31 | Murata Mfg. Co., Ltd., Nagaokakyo | Surface acoustic wave device |
US6271617B1 (en) | 1997-08-28 | 2001-08-07 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device with a tungsten-aluminum layered interdigital transducer |
JP2008148338A (en) * | 2001-03-04 | 2008-06-26 | Kazuhiko Yamanouchi | Surface acoustic wave functional element |
US6791237B2 (en) | 2001-03-04 | 2004-09-14 | Kazuhiko Yamanouchi | Surface acoustic wave substrate and surface acoustic wave functional element |
JP2008092610A (en) * | 2001-03-04 | 2008-04-17 | Kazuhiko Yamanouchi | Surface acoustic wave substrate and surface acoustic wave functional element |
JP2004032116A (en) * | 2002-06-21 | 2004-01-29 | Japan Radio Co Ltd | Surface acoustic wave filter |
US7209018B2 (en) | 2003-01-27 | 2007-04-24 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
US7345400B2 (en) | 2003-01-27 | 2008-03-18 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
US7339304B2 (en) | 2003-10-03 | 2008-03-04 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
JP2007221416A (en) * | 2006-02-16 | 2007-08-30 | Matsushita Electric Ind Co Ltd | Electronic component and electronic apparatus using the same |
US8035460B2 (en) | 2006-02-16 | 2011-10-11 | Panasonic Corporation | Surface acoustic wave device, surface acoustic wave filter and antenna duplexer using the same, and electronic equipment using the same |
JP4544227B2 (en) * | 2006-09-21 | 2010-09-15 | パナソニック株式会社 | Elastic wave resonator, elastic wave filter and antenna duplexer using the same |
JP2008078981A (en) * | 2006-09-21 | 2008-04-03 | Matsushita Electric Ind Co Ltd | Surface acoustic wave resonator, surface acoustic wave filter and antenna duplexer using the same |
JP4706756B2 (en) * | 2006-11-08 | 2011-06-22 | パナソニック株式会社 | Surface acoustic wave resonator |
US8084915B2 (en) | 2006-11-08 | 2011-12-27 | Panasonic Corporation | Surface acoustic wave resonator having comb electrodes with different overlapping lengths |
JPWO2008056697A1 (en) * | 2006-11-08 | 2010-02-25 | パナソニック株式会社 | Surface acoustic wave resonator |
WO2008056697A1 (en) * | 2006-11-08 | 2008-05-15 | Panasonic Corporation | Surface acoustic wave resonator |
JP2011139513A (en) * | 2006-11-08 | 2011-07-14 | Panasonic Corp | Surface acoustic wave resonator |
JP5110091B2 (en) * | 2007-12-20 | 2012-12-26 | 株式会社村田製作所 | Surface acoustic wave device |
US7923896B2 (en) | 2007-12-20 | 2011-04-12 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
WO2009081647A1 (en) * | 2007-12-20 | 2009-07-02 | Murata Manufacturing Co., Ltd. | Surface acoustic wave apparatus |
WO2009147787A1 (en) * | 2008-06-06 | 2009-12-10 | パナソニック株式会社 | Acoustic wave duplexer |
US8384495B2 (en) | 2008-06-06 | 2013-02-26 | Panasonic Corporation | Acoustic wave duplexer |
JP5392255B2 (en) * | 2008-06-06 | 2014-01-22 | パナソニック株式会社 | Elastic wave duplexer |
JP2009284554A (en) * | 2009-09-03 | 2009-12-03 | Hitachi Media Electoronics Co Ltd | Surface acoustic wave device, communication filter and mobile communication apparatus |
WO2017217197A1 (en) * | 2016-06-14 | 2017-12-21 | 株式会社村田製作所 | Multiplexer, high-frequency front end circuit, and communication device |
KR20190002698A (en) * | 2016-06-14 | 2019-01-08 | 가부시키가이샤 무라타 세이사쿠쇼 | Multiplexer, high-frequency front-end circuit and communication device |
JPWO2017217197A1 (en) * | 2016-06-14 | 2019-03-22 | 株式会社村田製作所 | Multiplexer, high frequency front end circuit and communication device |
US10637439B2 (en) | 2016-06-14 | 2020-04-28 | Murata Manufacturing Co., Ltd. | Multiplexer, high-frequency front end circuit, and communication device |
US10972073B2 (en) | 2016-06-14 | 2021-04-06 | Murata Manufacturing Co., Ltd. | Multiplexer, high-frequency front end circuit, and communication device |
US11336261B2 (en) | 2016-06-14 | 2022-05-17 | Murata Manufacturing Co., Ltd. | Multiplexer, high-frequency front end circuit, and communication device |
JP2021027501A (en) * | 2019-08-07 | 2021-02-22 | 株式会社Piezo Studio | Surface acoustic wave device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Iwamoto et al. | Transverse modes in IHP SAW resonator and their suppression method | |
JPS63260213A (en) | Resonator using high coupling love wave type saw substrate | |
JPH09167936A (en) | Surface acoustic wave device | |
Kawachi et al. | Optimal cut for leaky SAW on LiTaO/sub 3/for high performance resonators and filters | |
JPH1174751A (en) | Surface acoustic wave device | |
JP2002330051A (en) | Surface acoustic wave unit and surface acoustic wave device using the same | |
JP3358688B2 (en) | Surface acoustic wave device | |
JP3950611B2 (en) | Surface acoustic wave resonator | |
JP2024001367A (en) | Converter structure for generation source suppression in saw filter device | |
JPH0351330B2 (en) | ||
JP2002135077A (en) | Surface acoustic wave device and its manufacturing method | |
JPH06164306A (en) | Surface acoustic wave resonator | |
Hashimoto et al. | A wideband multi-mode SAW filter employing pitch-modulated IDTs on Cu-grating/15° YX-LiNbO 3-substrate structure | |
JPH08204498A (en) | End face reflection type surface acoustic wave device | |
US8085117B1 (en) | Slotted boundary acoustic wave device | |
JPH053169B2 (en) | ||
JP2008092610A (en) | Surface acoustic wave substrate and surface acoustic wave functional element | |
JP3393945B2 (en) | Vertically coupled dual mode SAW filter | |
JP3329115B2 (en) | Surface wave device | |
JP3107392B2 (en) | Vertically coupled dual mode leaky SAW filter | |
JP3442202B2 (en) | Surface acoustic wave filter | |
JP3096815B2 (en) | Love wave type surface wave resonator | |
JPH04199906A (en) | Surface acoustic wave resonator | |
JP3597483B2 (en) | Surface acoustic wave device | |
JP3597454B2 (en) | Surface acoustic wave device |