JP3017344B2 - Tilt sensor - Google Patents

Tilt sensor

Info

Publication number
JP3017344B2
JP3017344B2 JP3310629A JP31062991A JP3017344B2 JP 3017344 B2 JP3017344 B2 JP 3017344B2 JP 3310629 A JP3310629 A JP 3310629A JP 31062991 A JP31062991 A JP 31062991A JP 3017344 B2 JP3017344 B2 JP 3017344B2
Authority
JP
Japan
Prior art keywords
saw
distance
reflector
pair
tilt sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3310629A
Other languages
Japanese (ja)
Other versions
JPH05141969A (en
Inventor
良平 茂木
洋 岡嶋
紀之 赤羽
秀樹 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Inc filed Critical Tokyo Keiki Inc
Priority to JP3310629A priority Critical patent/JP3017344B2/en
Publication of JPH05141969A publication Critical patent/JPH05141969A/en
Application granted granted Critical
Publication of JP3017344B2 publication Critical patent/JP3017344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、SAW技術を利用して
微小な傾斜角を高精度で検出する傾斜センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tilt sensor for detecting a minute tilt angle with high accuracy by using SAW technology.

【0002】[0002]

【従来の技術】従来、この種のSAW傾斜センサとして
は例えば図3に示すものが知られている。図3におい
て、1は例えば水晶基板で作られたカンチレバーであ
り、カンチレバー1の一端はセンサ筐体等の固定部2に
固定され、他端はフリーとなって重り3を装着してい
る。
2. Description of the Related Art Conventionally, as this kind of SAW tilt sensor, for example, the one shown in FIG. 3 is known. In FIG. 3, reference numeral 1 denotes a cantilever made of, for example, a quartz substrate. One end of the cantilever 1 is fixed to a fixed portion 2 such as a sensor housing, and the other end is free and a weight 3 is mounted.

【0003】カンチレバー1を構成する水晶基板の上下
面の各々にはSAW共振器4a,4bを構成する電極パ
ターンが形成されている。SAW共振器4a,4bの電
極パターンは、送信電極5a,5bと受信電極6a,6
bを並べ、その外側に反射器8a,9aと8b,9bの
アレイパターンを形成している。SAW共振器4a,4
bの受信電極6a,6bの出力はアンプ10,11によ
り送信電極5a,5bに正帰還され、これによってSA
W発振器12a,12bを構成し、周波数f1 ,f2
信号を発振する。
[0005] On each of the upper and lower surfaces of a quartz substrate constituting the cantilever 1, electrode patterns constituting SAW resonators 4a and 4b are formed. The electrode patterns of the SAW resonators 4a and 4b include transmitting electrodes 5a and 5b and receiving electrodes 6a and 6b.
b are arranged, and an array pattern of the reflectors 8a, 9a and 8b, 9b is formed outside thereof. SAW resonators 4a, 4
b, the outputs of the receiving electrodes 6a and 6b are positively fed back to the transmitting electrodes 5a and 5b by the amplifiers 10 and 11, whereby the SA
The W oscillators 12a and 12b are configured to oscillate signals of frequencies f 1 and f 2 .

【0004】SAW発振器12a,12bからの発振信
号は混合器14に入力されて周波数差(f1 −f2 )が
検出され、不要成分を除くためにバンドパスフィルタ
(BPF)15を介して出力する。図4は傾斜センサに
おけるカンチレバー1の実際の配置を示す。即ち、傾斜
角θが零のとき、カンチレバー1は鉛直になっており、
傾斜角θが図示のように生ずると、重り3によってカン
チレバー1の右面のSAW共振器4aの形成面には伸び
歪みを生じ、同時に左面のSAW共振器4bの形成面に
は圧縮歪みを生ずる。
Oscillation signals from the SAW oscillators 12a and 12b are input to a mixer 14 where a frequency difference (f 1 -f 2 ) is detected and output through a band pass filter (BPF) 15 to remove unnecessary components. I do. FIG. 4 shows the actual arrangement of the cantilever 1 in the tilt sensor. That is, when the inclination angle θ is zero, the cantilever 1 is vertical,
When the tilt angle θ is generated as shown in the figure, the weight 3 causes an elongation distortion on the right surface of the cantilever 1 on which the SAW resonator 4a is formed, and at the same time generates a compression distortion on the left surface of the cantilever 1 on which the SAW resonator 4b is formed.

【0005】図5は図4のSAW共振器の電極パターン
を取り出して示したもので、送信電極5と受信電極6の
外側の対称位置に遅延線アレイパターンを用いた反射器
8,9が配置されている。図5のSAW共振器の共振周
波数fは、 f=m×V/(Lc+δ) (1) 但し、m;高調波次数で百数十程度の値 V 水晶基板上でのSAW伝搬速度 Lc;反射器間の距離 δ ;反射器内有効距離 で決まる。
FIG. 5 shows an electrode pattern of the SAW resonator shown in FIG. 4 in which reflectors 8 and 9 using a delay line array pattern are arranged at symmetrical positions outside the transmission electrode 5 and the reception electrode 6. Have been. The resonance frequency f of the SAW resonator shown in FIG. 5 is as follows: f = m × V / (L c + δ) (1) where m: a value of about one hundred and several tens of harmonics V ; SAW propagation velocity on the quartz substrate L c ; distance between reflectors δ It is determined by the effective distance within the reflector.

【0006】更にSAW共振器の共振周波数fは次式に
示す温度依存性をもつ。 f=f0 {1−a(T−T02 } (2) 但し、f0 ;頂点温度T0 での共振周波数 a ;材料定数で水晶の場合は3×10-8 程度 T ;実際の周囲温度 T0 ;頂点温度 この(2)式の頂点温度T0 は、図6に示すように、あ
る温度で共振周波数fがピーク値を示し、その前後の温
度では共振周波数fが減少する特性となり、このピーク
値の周波数をf0 、ピーク周波数f0 の温度を頂点温度
0 という。
Further, the resonance frequency f of the SAW resonator has a temperature dependency represented by the following equation. f = f 0 {1−a (T−T 0 ) 2 } (2) where f 0 ; resonance frequency a at the vertex temperature T 0 ; material constant is about 3 × 10 -8 in the case of quartz; ambient temperature T 0 of; peak temperature T 0 of the apex temperature the equation (2), as shown in FIG. 6, the resonance frequency f at a certain temperature is a peak value, at the before and after temperature decreases the resonance frequency f The frequency of the peak value is called f 0 , and the temperature at the peak frequency f 0 is called the peak temperature T 0 .

【0007】次に傾斜角を検出するために2つのSAW
発振器12a,12bの発振周波数f1,f2を異ならせ
るための手法を説明する。まずSAW共振器4a,4b
の頂点温度T10,T20とすると、頂点温度T10,T20
共振周波数f10,f20をもつことから、発振周波数
1,f2は、 f1=f10{1−a(T−T102−bθ} (3) f2=f20{1−a(T−T202+bθ} (4) で与えられる。
Next, two SAWs are used to detect the inclination angle.
A method for making the oscillation frequencies f 1 and f 2 of the oscillators 12a and 12b different will be described. First, the SAW resonators 4a and 4b
When the peak temperature T 10, T 20, and since the vertex temperature T 10, T 20 having a resonance frequency f 10, f 20, the oscillation frequency f 1, f 2 is, f 1 = f 10 {1 -a ( T−T 10 ) 2 −bθ} (3) f 2 = f 20 {1−a (T−T 20 ) 2 + bθ} (4)

【0008】尚、(3)(4)式のθは正確にはsin
θであるが、傾斜角θはきわめて小さいことからsin
θ=θとして扱っても問題ない。従ってΔTが小さい場
合、周波数差Fは、 F=(f1 −f2 ) =Δf{1−at2 +2a(f10/Δf)ΔT・t}−b(f10+f20)θ (5) 但し、Δf=f10−f20 ΔT;頂点温度の差(T10−T20) t ;実温度と頂点温度との差(T−T20) となる。ここでbは、 b=(9Wx/ED2 e) (6) 但し、W;重りの重量 x;重りの中心から共振器の中心までの距離 E;水晶のヤング率 D;水晶基板の厚さ e;水晶基板の幅 で与えられる。
Note that θ in equations (3) and (4) is exactly sin
θ, but since the inclination angle θ is extremely small, sin
There is no problem if it is treated as θ = θ. Therefore, when ΔT is small,
In this case, the frequency difference F is given by: F = (f 1 −f 2 ) = Δf {1−at 2 + 2a (f 10 / Δf) ΔT · t} −b (f 10 + f 20 ) θ (5) where Δf = f 10 −f 20 ΔT; difference in peak temperature (T 10 −T 20 ) t; difference between actual temperature and peak temperature (T−T 20 ). Here, b is: b = (9Wx / ED 2 e) (6) where, W; weight of weight x; distance from center of weight to center of resonator E; Young's modulus of quartz D: thickness of quartz substrate e; given by the width of the quartz substrate.

【0009】図3の2つのSAW発振器12a,12b
の発振周波数f1 ,f2 を異ならせるには、前記(1)
式から明らかなように、SAW共振器4a,4bにおけ
る反射器間距離Lcを変えればよい。図7は従来のSA
W共振器4a,4bの電極構造を対比して示したもの
で、SAW共振器4aの反射器間距離Lc1に対し例えば
SAW共振器4bの反射器間距離Lc2をわずかに短くす
ることで発振周波数f1,f2 を決める共振周波数を異
ならせている。この場合反射器8aと8b、9aと9b
の反射器内有効距離δ及び各電極アレイパターンのピッ
チdは同一であり、変化していない。
The two SAW oscillators 12a and 12b shown in FIG.
In order to make the oscillation frequencies f 1 and f 2 of
As is apparent from the equation, SAW resonators 4a, may be changed reflector distance L c in 4b. FIG. 7 shows a conventional SA
The electrode structure of the W resonators 4a and 4b is compared with each other. For example, the distance L c2 between the reflectors of the SAW resonator 4b is slightly shorter than the distance L c1 between the reflectors of the SAW resonator 4a. The resonance frequencies that determine the oscillation frequencies f 1 and f 2 are different. In this case the reflectors 8a and 8b, 9a and 9b
And the pitch d of each electrode array pattern is the same and does not change.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の1つのカンチレバーの両面にSAW共振器を
形成した構造のSAW傾斜センサにあっては、2つのS
AW共振器の温度特性の相違に起因して差周波数Fに大
きな温度ドリフトが発生し、計測誤差が大きくなるとい
う問題があった。
However, in such a conventional SAW tilt sensor having a structure in which a SAW resonator is formed on both surfaces of one cantilever, two S
There is a problem that a large temperature drift occurs in the difference frequency F due to a difference in the temperature characteristics of the AW resonator, and a measurement error increases.

【0011】即ち、SAW傾斜センサの差周波数Fは、
前記(5)式で与えられるが、右辺の[2a(f10/Δ
f)ΔT]の項の値がかなり大きな値となる。例えば実
温度tをt=10℃とした場合、頂点温度T10とT20
温度差ΔTに対する[2a(f10/Δf)ΔT]の項の
値は、例えばΔT=1℃で [2a(f10/Δf)ΔT]=1.5×10-3 となってしまい、温度ドリフトが大きいために計測誤差
が大きくなる。
That is, the difference frequency F of the SAW tilt sensor is
As given by the above equation (5), [2a (f 10 / Δ
f) ΔT] has a considerably large value. For example, when the actual temperature t and the t = 10 ° C., the value of the term of [2a (f 10 / Δf) ΔT] with respect to the temperature difference [Delta] T of the peak temperature T 10 and T 20, for example [Delta] T = 1 ° C. in [2a ( f 10 /Δf)ΔT]=1.5×10 −3, and the measurement error increases due to the large temperature drift.

【0012】本発明は、このような従来の問題点に鑑み
てなされたもので、温度ドリフトを抑えて計測精度を飛
躍的に向上することのできるSAW技術を用いた傾斜セ
ンサを提供することを目的とする。
The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a tilt sensor using SAW technology which can suppress temperature drift and dramatically improve measurement accuracy. Aim.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
本発明は次のように構成する。尚、図面中の符号を併せ
て示す。まず本発明は、一端を固定し他端をフリーにし
て重り3を装着した圧電基板で作られたカンチレバー1
と、カンチレバー1の表裏両面に各々形成された共振周
波数の異なる一対のSAW共振器4a,4bと、SAW
共振器4a,4bの出力を正帰還して共振周波数に一致
する周波数f1 ,f2 の信号を発振する一対のSAW発
振器12a,12bと、一対のSAW発振器12a,1
2bの周波数差F(=f1 −f2 )を検出する混合器1
4と、混合器14から出力された周波数差Fに基づいて
カンチレバー1の鉛直軸に対する傾斜角θを検出する傾
斜センサを対称とする。
In order to achieve this object, the present invention is configured as follows. The reference numerals in the drawings are also shown. First, the present invention relates to a cantilever 1 made of a piezoelectric substrate having one end fixed and the other end free, and a weight 3 mounted thereon.
A pair of SAW resonators 4a and 4b having different resonance frequencies respectively formed on the front and back surfaces of the cantilever 1;
A pair of SAW oscillators 12a and 12b that oscillate signals of frequencies f 1 and f 2 that match the resonance frequency by positively feeding back the outputs of the resonators 4a and 4b, and a pair of SAW oscillators 12a and 1
Mixer 1 for detecting frequency difference F (= f 1 −f 2 ) of 2b
4 and a tilt sensor that detects the tilt angle θ of the cantilever 1 with respect to the vertical axis based on the frequency difference F output from the mixer 14 is symmetric.

【0014】このような傾斜センサにつき本発明にあっ
ては、一対のSAW共振器4a,4bは、圧電基板上に
送信電極5a,5bの電極アレイ及び受信電極6a,6
bの電極アレイを配列すると共に送信電極5a,5b及
び受信電極6a,6bの外側の対称位置に反射器8a,
8bと9a,9bのアレイパターンを形成した構造を有
し、一方のSAW共振器4aにおける反射器間距離
c1、反射器内有効距離δ1 及びアレイピッチd1 に対
し、他方のSAW共振器4bにおける反射器間距離
c2、反射器内有効距離δ2 及びアレイピッチd2 を規
定の周波数差Fが得られる寸法比Kをもつ相似パターン
とし、一対のSAW共振器間の頂点温度T10,T20の差
ΔTを零又は最小に抑えたことを特徴とする。
In the tilt sensor according to the present invention, a pair of SAW resonators 4a and 4b are formed on a piezoelectric substrate by an electrode array of transmitting electrodes 5a and 5b and receiving electrodes 6a and 6b.
b, and the reflectors 8a, 8a, 5b,
It has a structure in which an array pattern of 8b and 9a, 9b is formed, and the distance between reflectors L c1 , the effective distance in reflector δ 1 and the array pitch d 1 in one SAW resonator 4a is equal to the other SAW resonator. In FIG. 4b, the inter-reflector distance L c2 , the effective distance δ 2 in the reflector and the array pitch d 2 are similar patterns having a dimensional ratio K at which a specified frequency difference F can be obtained, and the apex temperature T 10 between a pair of SAW resonators , characterized in that suppressing a difference ΔT of T 20 to zero or minimum.

【0015】更に本発明の傾斜センサにあっては、一対
のSAW共振器4a,4bの反射器間距離Lc と反射器
内有効距離δとの構成比(Lc /δ)を、この構成比L
c /δの変化に対し頂点温度T0 の変化が最小となる変
曲点又はその近傍の値に設定したことを特徴とする。
Further, in the tilt sensor according to the present invention, the composition ratio (L c / δ) between the distance L c between the reflectors of the pair of SAW resonators 4a and 4b and the effective distance δ in the reflectors is determined by this configuration. Ratio L
The inflection point at which the change in the vertex temperature T 0 is minimized with respect to the change in c / δ or a value near the inflection point is set.

【0016】[0016]

【作用】このような構成を備えた本発明の傾斜センサに
あっては、カンチレバーを構成する圧電基板の両面に設
けるSAW共振器の電極パターンとして、一方のパター
ンに対し他方のパターンを例えばK=0.9996とい
った倍率の相似パターンとすることで、発振周波数を異
ならせるために反射器間距離Lc を変えても、2つのS
AW共振器の構成比(Lc /δ)を同じにすることがで
き、構成比(Lc/δ)が同じであれば頂点温度も同じ
になるために、頂点温度差ΔTを零もしくは極く小さな
値とすることができる。
According to the tilt sensor of the present invention having the above-mentioned structure, the SAW resonator electrode patterns provided on both sides of the piezoelectric substrate constituting the cantilever are replaced by one pattern, for example, K = with magnification of similar patterns, such as 0.9996, even changing the reflector distance L c for varying the oscillation frequency, two S
Since the composition ratio ( Lc / δ) of the AW resonator can be made the same, and if the composition ratio ( Lc / δ) is the same, the vertex temperature becomes the same, the vertex temperature difference ΔT is set to zero or extreme. It can be a very small value.

【0017】その結果、周波数差Fは、 F=(f1 −f2 ) =Δf(1−at2 )+b(f10+f20)θ となって前記(5)式の[2a(f10/Δf)ΔT・
t]の項がなくなることとなり、温度特性の相違による
計測誤差を生じないか、ごく僅かで済ますことができ、
1/100度オーダーの傾斜角の検出精度が達成でき
る。
As a result, the frequency difference F becomes: F = (f 1 −f 2 ) = Δf (1−at 2 ) + b (f 10 + f 20 ) θ, and [2a (f 10) / Δf) ΔT
t], the measurement error due to the difference in the temperature characteristics does not occur or can be minimized.
A detection accuracy of a tilt angle on the order of 1/100 degrees can be achieved.

【0018】また実際の製造過程にあっては、2つのS
AW共振器を相似パターンとしても、製造過程での電極
の厚みや幅にばらつきを生じ、頂点温度を同じにするこ
とは困難になる。そこで本発明にあっては、SAW共振
器の動作特性として、一対のSAW共振器4a,4bの
反射器間距離Lc と反射器内有効距離δとの構成比(L
c /δ)を変えた場合、頂点温度がほとんど変化しない
があることに着目し、この又はその近傍の値となる
ように構成比(Lc /δ)を設定することにより、製造
過程で電極パターンの形状に寸法的なばらつきが生じて
も、頂点温度の変化を最小限に抑え、結果として温度誤
差のきわめて少ない傾斜センサを製造できる。
In the actual manufacturing process, two S
Even if the AW resonator has a similar pattern, the thickness and width of the electrode will vary in the manufacturing process, making it difficult to make the peak temperature the same. So In the present invention, as the operating characteristics of the SAW resonator, a pair of SAW resonators 4a, 4b reflector distance L c and the reflector in the effective distance δ and composition ratio of (L
c / δ), the peak temperature hardly changes
Focusing on the fact that there is a point, and by setting the composition ratio (L c / δ) to be a value at or near this point , even if dimensional variations occur in the shape of the electrode pattern during the manufacturing process, The change in the peak temperature is minimized, and as a result, a tilt sensor with extremely small temperature errors can be manufactured.

【0019】[0019]

【実施例】本発明ではSAW傾斜センサのカンチレバー
として例えば水晶基板を採用しているが、図1は水晶基
板の両面のそれぞれに形成されるSAW共振器の電極配
置を対比して示した実施例構成図である。図1におい
て、4a,4bはSAW共振器であり、図3に示したよ
うに固定部2に一端を支持され、他端に重り3を装着し
てフリーとした水晶基板で構成されるカンチレバー1の
両側の面のそれぞれに形成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a cantilever of a SAW tilt sensor is used.
For example, a quartz substrate is adopted as a first embodiment. FIG. 1 is a configuration diagram of an embodiment showing the electrode arrangement of SAW resonators formed on both sides of the quartz substrate in comparison. In FIG. 1, reference numerals 4a and 4b denote SAW resonators. As shown in FIG. 3, one end of the cantilever 1 is supported by the fixed portion 2 and the other end is provided with a weight 3 and is made of a free quartz substrate. Formed on each of the two sides.

【0020】一方のSAW共振器4aは送信電極5aと
受信電極6aを所定間隔を隔てて配置し、送信電極5a
及び受信電極6aの外側の対称位置に反射器8a,9a
を形成している。ここで、SAW共振器4aの反射器8
aと9aの間の反射器間距離はLc1であり、また各反射
器8a,9aにおける反射器内有効距離はδ1 となって
いる。
One SAW resonator 4a has a transmitting electrode 5a and a receiving electrode 6a arranged at a predetermined interval, and the transmitting electrode 5a
And reflectors 8a, 9a at symmetrical positions outside the receiving electrode 6a.
Is formed. Here, the reflector 8 of the SAW resonator 4a
The distance between the reflectors a and 9a is L c1 , and the effective distance in the reflectors 8a and 9a is δ 1 .

【0021】一方、反対面側に形成される他方のSAW
共振器4bについても、送信電極5bと受信電極6bの
外側の対称位置に反射器8b,9bを形成しており、反
射器8bと9b間の反射器間距離はLc2であり、また反
射器8b,9bにおける反射器内有効距離はδ2 として
いる。図1のSAW共振器4a,4bにあっては、両者
の電極パターンを相似パターンとしている。即ち、SA
W共振器4aのパターン寸法をP1とすると、他方のS
AW共振器4bのパターン寸法P2はパターン寸法P1
に1より僅かに大きいか或いは僅かに小さい倍率Kを掛
け合わせた値であり、両者の間には P1=K×P2 の寸法関係があり、即ち両者は相似パターンとなってい
る。
On the other hand, the other SAW formed on the opposite surface side
As for the resonator 4b, reflectors 8b and 9b are formed at symmetrical positions outside the transmission electrode 5b and the reception electrode 6b, and the distance between the reflectors 8b and 9b is Lc2 . 8b, the reflectors within an effective distance in 9b is a [delta] 2. In the SAW resonators 4a and 4b of FIG. 1, both electrode patterns are similar patterns. That is, SA
Assuming that the pattern size of the W resonator 4a is P1, the other S
The pattern size P2 of the AW resonator 4b is equal to the pattern size P1.
Is multiplied by a magnification K that is slightly larger or slightly smaller than 1. The two have a dimensional relationship of P1 = K × P2, that is, both have a similar pattern.

【0022】更に具体的にSAW共振器4a,4bにお
ける電極間距離Lc1,Lc2、反射器内有効距離δ1 ,δ
2 、及び電極ピッチd1 ,d2 について見ると、次の関
係式が成立している。 Lc1=K・Lc2 δ1 =K・δ2 (7) d1 =K・d2 このように2つのSAW共振器4a,4bを相似パター
ンとすることで両者の頂点温度T10,T20を同じにする
ことができ、前記(5)式における温度ドリフト項 2a(f10/Δf)ΔT を零とできる。
More specifically, the distances L c1 and L c2 between the electrodes in the SAW resonators 4a and 4b, and the effective distances δ 1 and δ in the reflectors.
2 and the electrode pitches d 1 and d 2 , the following relational expression holds. L c1 = K · L c2 δ 1 = K · δ 2 (7) d 1 = K · d 2 By making the two SAW resonators 4a and 4b similar patterns, the peak temperatures T 10 and T of the two SAW resonators 4a and 4b are obtained. 20 can be made the same, and the temperature drift term 2a (f 10 / Δf) ΔT in the equation (5) can be made zero.

【0023】図2は本発明で用いるSAW共振器につい
て、反射器間距離Lc と反射器内有効距離δとの構成比
(Lc /δ)に対する頂点温度T0 の関係を示した特性
図である。この図2の特性図は本願発明者等がSAW傾
斜センサにおける温度ドリフトの問題を解決するため、
SAW傾斜センサの動作機能を実現するシュミレータを
作成し、このシュミレータを使用して構成比(Lc
δ)を変えて頂点温度T0 の変動を検討した際に発見さ
れ、更に理論的な検討を行って図2に示す特性が得られ
ることを確認できた。
FIG. 2 is a characteristic diagram showing the relationship between the peak ratio T 0 and the composition ratio (L c / δ) of the inter-reflector distance L c and the effective distance δ in the reflector for the SAW resonator used in the present invention. It is. The characteristic diagram of FIG. 2 shows that the inventors of the present invention solve the problem of temperature drift in the SAW tilt sensor.
A simulator realizing the operation function of the SAW tilt sensor is created, and the composition ratio (L c /
It was discovered when the variation of the peak temperature T 0 was examined by changing δ), and further theoretical investigation was performed to confirm that the characteristics shown in FIG. 2 were obtained.

【0024】図2の特性から明らかなように、横軸に示
す反射器間距離Lc と反射器内有効距離δの構成比(L
c /δ)の変化に対し、頂点温度T0 は略正弦カーブと
なるように周期的に変化することが分かった。この図2
の特性から次のことが判る。まず図7に示した従来パタ
ーンにあっては、反射器間距離Lc のみを変えて反射器
有効距離をδを変えていないため、構成比(Lc /δ)
がSAW共振器毎に異なり、その結果、頂点温度に相違
を生ずることになる。
[0024] As apparent from the characteristics of FIG. 2, the reflector distance L c indicated on the horizontal axis reflector the effective distance δ configuration ratio (L
c / δ), it was found that the vertex temperature T 0 changes periodically so as to have a substantially sinusoidal curve. This figure 2
The following can be seen from the characteristics of First, in order to in the conventional pattern shown in FIG. 7, not changing the reflector effective distance [delta] by changing only the reflector distance L c, the composition ratio (L c / δ)
Differs for each SAW resonator, resulting in a difference in peak temperature.

【0025】これに対し本発明にあっては、図1に示し
たように2つのSAW共振器4a,4bを相似パターン
とすることで、反射器間距離がLc1,Lc2と異なっても
反射器内有効距離δ1 ,δ2 との間の構成比(Lc1/δ
1 )と(Lc2/δ2 )は等しく、図2の横軸の位置は変
化しないことになる。このため、図1に示した本発明の
SAW共振器4a,4bにあっては、図2の特性曲線上
の任意の1点で頂点温度が決まり、当然に頂点温度T10
=T20となる。
On the other hand, in the present invention, as shown in FIG. 1, the two SAW resonators 4a and 4b are formed in a similar pattern so that the distance between the reflectors is different from L c1 and L c2. The composition ratio between the effective distances δ 1 and δ 2 in the reflector (L c1 / δ
1 ) and (L c2 / δ 2 ) are equal, and the position of the horizontal axis in FIG. 2 does not change. Therefore, in the SAW resonator 4a, 4b of the present invention shown in FIG. 1, determines the peak temperature at any one point on the characteristic curve of FIG. 2, naturally peak temperature T 10
= The T 20.

【0026】このように、相似パターンによって2つの
SAW共振器4a,4bの頂点温度T10,T20が等しく
なれば、頂点温度差ΔT=0となり、従って前記(5)
式は F=Δf(1−at2 )+b(f10+f20)θ (8) となり、温度ドリフト項 2a(f10/Δf)ΔT を無くすことができる。
As described above, if the peak temperatures T 10 and T 20 of the two SAW resonators 4a and 4b are equal by a similar pattern, the peak temperature difference ΔT = 0, and therefore the above (5)
The equation is F = Δf (1−at 2 ) + b (f 10 + f 20 ) θ (8), and the temperature drift term 2a (f 10 / Δf) ΔT can be eliminated.

【0027】次に本発明の第2実施例を説明する。本発
明の第2実施例にあっては、図1に示したように2つの
SAW共振器4a,4bを相似パターンとすると同時
に、その反射器間距離と反射器内有効記距離の構成比
(Lc /δ)の値を図2の特性曲線における山部のA点
あるいはその近傍の値、もしくは谷部のB点またはその
近傍の値とする。
Next, a second embodiment of the present invention will be described. In the second embodiment of the present invention, as shown in FIG. 1, the two SAW resonators 4a and 4b have a similar pattern, and at the same time, the composition ratio of the distance between the reflectors and the effective recording distance in the reflector ( The value of (L c / δ) is a value at or near point A at the peak, or a value at or near point B at the valley in the characteristic curve of FIG.

【0028】この特性曲線におけるA,B及びその近
傍にあっては、構成比(Lc /δ)の変動に対し頂点温
度のシフト量が少ないことが明らかである。このよう
に、反射器間距離と反射器内有効距離の構成比(Lc
δ)をA,Bまたはその近傍の値となるように決める
ことで、図1に示したSAW共振器4a,4bの電極パ
ターンを製造する際に生ずる厚さ,幅等の寸法的なばら
つきによる頂点温度T10,T20の差ΔTを最小限に抑え
ることができる。
At points A and B in the characteristic curve and in the vicinity thereof, it is apparent that the shift amount of the peak temperature is small with respect to the fluctuation of the composition ratio (L c / δ). Thus, the composition ratio (L c /) of the inter-reflector distance and the effective distance in the reflector
By determining δ) to be a value at or near points A and B, dimensional variations such as thickness and width that occur when manufacturing the electrode patterns of the SAW resonators 4a and 4b shown in FIG. it is possible to minimize the difference ΔT of the peak temperature T 10, T 20 by.

【0029】即ち、設計段階で同じ構成比(Lc /δ)
が得られる相似パターンの寸法設定を行っていても、水
晶基板の両面に図1に示すそれぞれの電極パターンを形
成する製造段階にあっては、様々な要因により電極の厚
さ,幅等に必ずばらつきを生じてしまう。このように電
極パターンの寸法関係にばらつきを生ずるとパターンの
相似性が崩れ、結果として両者の頂点温度T10,T20
温度差ΔTを生じ、温度ドリフト項を除いたり小さくす
ることができなくなる。
That is, the same composition ratio (L c / δ) in the design stage
Even when the dimensions of similar patterns are obtained, the thickness, width, etc. of the electrodes must be adjusted due to various factors in the manufacturing stage of forming the respective electrode patterns shown in FIG. 1 on both sides of the quartz substrate. Variations occur. If the dimensional relationship of the electrode patterns varies as described above, the similarity of the patterns is broken, and as a result, a temperature difference ΔT occurs between the apex temperatures T 10 and T 20 , and the temperature drift term cannot be removed or reduced. .

【0030】これに対し図2のA,Bあるいはその近
傍の値の構成比(Lc /δ)となるように反射器間距
離,反射器内有効距離、更に電極ピッチを決めておくこ
とで、製造段階で電極パターンに厚さや幅のばらつきが
起きても、図2の特性から明らかなようにA,B及び
その近傍では構成比(Lc /δ)が変わってもそれ程頂
点温度はシフトせず、製造時のばらつきによる頂点温度
差ΔTを最小限に抑え、結果的に前記(3)式の温度ド
リフト項 2a(f10/Δf)ΔT を極く小さい値にして傾斜角の計測精度を向上すること
ができる。
On the other hand, the distance between the reflectors, the effective distance in the reflector, and the electrode pitch are determined so that the composition ratio (L c / δ) of the points A and B in FIG. Therefore, even if the thickness and width of the electrode pattern are varied in the manufacturing stage, as is apparent from the characteristics of FIG. 2, the peak temperature is not so large even when the composition ratio (L c / δ) changes at points A and B and in the vicinity thereof. Does not shift, the peak temperature difference ΔT due to manufacturing variations is minimized, and as a result, the temperature drift term 2a (f 10 / Δf) ΔT in the above equation (3) is set to a very small value to reduce the inclination angle. Measurement accuracy can be improved.

【0031】図1に示した本発明のSAWセンサに用い
るSAW共振器4a,4bの特性としては、例えば発振
周波数f1 ,f2 として196MHz帯を使用し、両者
の差周波数F=80kHzとした場合、反射器間距離L
c1とLc2の間には Lc1=0.9996×Lc2c2=1991μm となる。この相似パターンのSAW共振器を作成して頂
点温度T10,T20を求めたところ、T10=2.98℃、
20=2.88℃となり、頂点温度差ΔTを0.1℃に
抑え込むことができた。
As the characteristics of the SAW resonators 4a and 4b used in the SAW sensor of the present invention shown in FIG. 1, for example, the 196 MHz band is used as the oscillation frequencies f 1 and f 2 , and the difference frequency between the two is F = 80 kHz. In the case, the distance L between the reflectors
L c1 = 0.9996 × L c2 L c2 = 1991 μm between c 1 and L c2 . When a SAW resonator having this similar pattern was prepared and the peak temperatures T 10 and T 20 were obtained, T 10 = 2.98 ° C.
T 20 = 2.88 ° C., and the peak temperature difference ΔT was suppressed to 0.1 ° C.

【0032】[0032]

【発明の効果】以上説明してきたように本発明によれ
ば、2つのSAW共振器を相似パターンとすることで両
者の頂点温度を同一にし、多周波数の検出における温度
ドリフトを除去または最小限に抑えて傾斜角の測定精度
を向上できる。更に、電極パターンにおける反射器間距
離と反射器内有効距離との構成比を頂点温度の変動の少
ないまたはその近傍の値とすることで、相似パターン
をもつSAWセンサの製造段階で生ずる電極パターンの
厚さや幅のばらつきに対し頂点温度差を最小に抑え、微
細な相似電極パターンを形成する製造段階での歩留まり
を大幅に向上できる。
As described above, according to the present invention, the two SAW resonators have similar patterns so that the two SAW resonators have the same apex temperature, thereby eliminating or minimizing the temperature drift in multi-frequency detection. It is possible to improve the measurement accuracy of the inclination angle while suppressing the inclination. Further, by setting the composition ratio of the inter-reflector distance and the effective distance in the reflector in the electrode pattern to a value at or near a point where the peak temperature does not fluctuate much, the electrode pattern generated at the stage of manufacturing a SAW sensor having a similar pattern is obtained. The temperature difference between the vertices is minimized with respect to variations in thickness and width, and the yield at the manufacturing stage of forming a fine similar electrode pattern can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を2つのSAW共振器の電極
パターンの対比により示した実施例構成図
FIG. 1 is a configuration diagram showing an embodiment of the present invention by comparing electrode patterns of two SAW resonators.

【図2】本発明の原理となる反射間距離と反射器内有効
距離の構成比に対する頂点温度のシフト量の関係を示し
た特性図
FIG. 2 is a characteristic diagram showing a relationship between a shift ratio of a vertex temperature and a composition ratio of an inter-reflection distance and an effective distance in a reflector according to a principle of the present invention.

【図3】傾斜センサの構造説明図FIG. 3 is a structural explanatory view of a tilt sensor.

【図4】傾斜センサに用いるカンチレバーの取付状態を
示した説明図
FIG. 4 is an explanatory view showing an attached state of a cantilever used for an inclination sensor.

【図5】傾斜センサに用いるSAW共振器の電極パター
ンの説明図
FIG. 5 is an explanatory diagram of an electrode pattern of a SAW resonator used for a tilt sensor.

【図6】SAW共振器の共振周波数と温度との関係を示
した特性図
FIG. 6 is a characteristic diagram showing a relationship between a resonance frequency and a temperature of the SAW resonator.

【図7】従来のSAW共振器における共振周波数を異な
らせるための寸法関係を示した説明図
FIG. 7 is an explanatory diagram showing a dimensional relationship for changing a resonance frequency in a conventional SAW resonator.

【符号の説明】[Explanation of symbols]

1:カンチレバー(水晶基板) 2:固定部 3:重り 4a,4b:SAW共振器 5a,5b:送信電極 6a,6b:受信電極 8a,8b,9a,9b:反射器 10,11:アンプ 12a,12b:SAW発振器 14:混合器 1: cantilever (quartz substrate) 2: fixed part 3: weight 4a, 4b: SAW resonator 5a, 5b: transmitting electrode 6a, 6b: receiving electrode 8a, 8b, 9a, 9b: reflector 10, 11: amplifier 12a, 12b: SAW oscillator 14: Mixer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 秀樹 東京都大田区南蒲田2丁目16番46号 株 式会社トキメック内 (56)参考文献 特開 昭63−184071(JP,A) 特開 平3−222511(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01C 9/00 - 9/36 G01B 7/30 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hideki Ouchi 2-16-46 Minami Kamata, Ota-ku, Tokyo Tokimec Co., Ltd. (56) References JP-A-63-184071 (JP, A) Hei 3-222511 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01C 9/00-9/36 G01B 7/30

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一端を固定し他端をフリーにして重りを装
着した圧電基板で作られたカンチレバーと、該カンチレ
バーの表裏両面に各々形成された共振周波数の異なる一
対のSAW共振器と、該SAW共振器の出力を正帰還し
て前記共振周波数に一致する周波数(f1 ,f2 )の信
号を発振する一対のSAW発振器と、該一対のSAW発
振器の発振信号の周波数差(F)を検出する混合器と、
該混合器から出力された周波数差(F)に基づいて前記
カンチレバーの傾斜角θを検出する傾斜センサに於い
て、 前記一対のSAW共振器は、前記圧電基板上に送信電極
アレイ及び受信電極アレイを配列すると共に該送信電極
及び受信電極の外側に反射器アレイを形成した構造を有
し、一方のSAW共振における反射器間距離(Lc1)、
反射器内有効距離(δ1 )及びアレイピッチ(d1 )に
対し他方のSAW共振器における反射器間距離
(Lc2)、反射器内有効距離(δ2 )及びアレイピッチ
(d2 )を規定の周波数差(F)が得られる寸法比
(K)をもつ相似パターンとし、一対のSAW共振器間
の頂点温度(T10,T20)の差(ΔT)を零又は最小に
抑えたことを特徴とする傾斜センサ。
1. A cantilever made of a piezoelectric substrate having one end fixed and the other end free and mounted with a weight, a pair of SAW resonators having different resonance frequencies respectively formed on the front and back surfaces of the cantilever, A pair of SAW oscillators that oscillate signals of frequencies (f 1 , f 2 ) matching the resonance frequency by positively feeding back the output of the SAW resonator, and a frequency difference (F) between the oscillation signals of the pair of SAW oscillators. A mixer for detecting,
Based on the frequency difference (F) output from the mixer,
In the tilt sensor for detecting the tilt angle θ of the cantilever, the pair of SAW resonators has a transmission electrode array and a reception electrode array arranged on the piezoelectric substrate and a reflector array outside the transmission electrodes and the reception electrodes. Is formed, and the distance between the reflectors (L c1 ) in one SAW resonance is
For the effective distance (δ 1 ) and the array pitch (d 1 ) in the reflector, the distance (L c2 ), the effective distance (δ 2 ) in the reflector and the array pitch (d 2 ) in the other SAW resonator are calculated. A similar pattern having a dimensional ratio (K) at which a specified frequency difference (F) can be obtained, and a difference (ΔT) in apex temperatures (T 10 , T 20 ) between a pair of SAW resonators is suppressed to zero or a minimum. A tilt sensor characterized by the above-mentioned.
【請求項2】請求項1記載の傾斜センサに於いて、前記
一対のSAW共振器の反射器間距離(Lc )と反射器内
有効距離(δ)との構成比(Lc /δ)を、該構成比
(Lc/δ)の変化に対し頂点温度(T0 )の変化が最
小となる変曲点又はその近傍の値に設定したことを特徴
とする傾斜センサ。
2. A tilt sensor according to claim 1, wherein a ratio (L c / δ) of a distance (L c ) between the pair of SAW resonators and an effective distance (δ) in the reflector. Is set to a value at or near an inflection point at which the change in the apex temperature (T 0 ) is minimized with respect to the change in the composition ratio (L c / δ).
JP3310629A 1991-11-26 1991-11-26 Tilt sensor Expired - Fee Related JP3017344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3310629A JP3017344B2 (en) 1991-11-26 1991-11-26 Tilt sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3310629A JP3017344B2 (en) 1991-11-26 1991-11-26 Tilt sensor

Publications (2)

Publication Number Publication Date
JPH05141969A JPH05141969A (en) 1993-06-08
JP3017344B2 true JP3017344B2 (en) 2000-03-06

Family

ID=18007561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3310629A Expired - Fee Related JP3017344B2 (en) 1991-11-26 1991-11-26 Tilt sensor

Country Status (1)

Country Link
JP (1) JP3017344B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984539B2 (en) * 2006-01-17 2012-07-25 セイコーエプソン株式会社 Tilt sensor and tilt angle measuring method
JP6604238B2 (en) * 2016-03-03 2019-11-13 Tdk株式会社 Elastic wave sensor

Also Published As

Publication number Publication date
JPH05141969A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
US4594898A (en) Force sensors
KR100393173B1 (en) Piezoelectric oscillator
US7194793B2 (en) Method for producing an edge reflection type surface acoustic wave device
US4306456A (en) Elastic wave accelerometer
US4262227A (en) Thickness-shear piezo-electric vibrator with additional mass for mode suppression
US9800225B2 (en) Elastic wave device
JP3017344B2 (en) Tilt sensor
US4455502A (en) Rectangular piezoelectric resonator with offset slot
US4331022A (en) Sensor using two tunable oscillators connected to a frequency mixer comprising a device for calibrating the frequency of the output signal and a process for calibrating this frequency
JP2003087087A (en) Crystal transducer
JP3255502B2 (en) Highly stable surface acoustic wave device
US4388548A (en) Multiple mode piezoelectric resonator
US4455503A (en) Rectangular piezoelectric resonator with a slot in one surface
US8368474B2 (en) Surface acoustic wave oscillator
TWI747636B (en) Acoustic wave device
JPH02177712A (en) Surface acoustic wave resonator and method for adjusting its resonance frequency
JP3258078B2 (en) Crystal oscillator
JPS6367364B2 (en)
US20220416721A1 (en) Quartz crystal device, crystal unit, and crystal controlled oscillator
JP3049305B2 (en) Resonator accelerometer
JP3258070B2 (en) Crystal oscillator
JPH08166302A (en) External-force sensor
JP2639580B2 (en) Surface acoustic wave resonator and method of adjusting its resonance frequency
JPS5824968B2 (en) Onsagata Atsudenshindoushi
JP2017158146A (en) Quartz oscillator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees