JPH05141969A - Inclination sensor - Google Patents

Inclination sensor

Info

Publication number
JPH05141969A
JPH05141969A JP31062991A JP31062991A JPH05141969A JP H05141969 A JPH05141969 A JP H05141969A JP 31062991 A JP31062991 A JP 31062991A JP 31062991 A JP31062991 A JP 31062991A JP H05141969 A JPH05141969 A JP H05141969A
Authority
JP
Japan
Prior art keywords
saw
distance
reflector
reflectors
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31062991A
Other languages
Japanese (ja)
Other versions
JP3017344B2 (en
Inventor
Ryohei Mogi
良平 茂木
Hiroshi Okajima
洋 岡嶋
Noriyuki Akaha
紀之 赤羽
Hideki Ouchi
秀樹 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokimec Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP3310629A priority Critical patent/JP3017344B2/en
Publication of JPH05141969A publication Critical patent/JPH05141969A/en
Application granted granted Critical
Publication of JP3017344B2 publication Critical patent/JP3017344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To suppress the temperature drift to the minimum when many frequencies are detected and improve the measurement precision of the inclination angle by setting two SAW resonators to the analogous pattern, and making the summit temperature of them equal. CONSTITUTION:Transmitting electrodes 5a and receiving electrodes 6a of an SAW resonator 4a are arranged at a preset interval, and reflectors 8a, 9a are formed at symmetrical positions on the outside of the electrodes 5a and the electrodes 6a. The distance between the reflectors 8a, 9a is set to LC1, and the effective distance in the reflectors 8a, 9a respectively is set to delta1. Transmitting electrodes 5b, receiving electrodes 6b, and reflectors 8b, 9b are likewise formed on a resonator 4b. The distance between the reflectors 8b, 9b is set to LC2, and the effective distance in the reflectors 8b, 9b is set to delta2. The resonators 4a, 4b are set to the analogous pattern, thus LC1/delta1) and (LC2/delta2) are made equal, and both summit temperatures (temperature at the peak resonance frequency) can be made equal. The frequency difference generates no or very little measurement error due to the difference of temperature characteristics, and high-precision detection can be made.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、SAW技術を利用して
微小な傾斜角を高精度で検出する傾斜センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tilt sensor for detecting a minute tilt angle with high accuracy by using SAW technology.

【0002】[0002]

【従来の技術】従来、この種のSAW傾斜センサとして
は例えば図3に示すものが知られている。図3におい
て、1は水晶基板で作られたカンチレバーであり、カン
チレバー1の一端はセンサ筐体等の固定部2に固定さ
れ、他端はフリーとなって重り3を装着している。
2. Description of the Related Art Conventionally, a SAW tilt sensor of this type is known, for example, as shown in FIG. In FIG. 3, reference numeral 1 is a cantilever made of a quartz substrate, one end of the cantilever 1 is fixed to a fixing portion 2 such as a sensor housing, and the other end is free and a weight 3 is attached.

【0003】カンチレバー1を構成する水晶基板の上下
面の各々にはSAW共振器4a,4bを構成する電極パ
ターンが形成されている。SAW共振器4a,4bの電
極パターンは、送信電極5a,5bと受信電極6a,6
bを並べ、その外側に反射器8a,9aと8b,9bの
アレイパターンを形成している。SAW共振器4a,4
bの受信電極6a,6bの出力はアンプ10,11によ
り送信電極5a,5bに正帰還され、これによってSA
W発振器12a,12bを構成し、周波数f1 ,f2
信号を発振する。
Electrode patterns forming SAW resonators 4a and 4b are formed on the upper and lower surfaces of the quartz substrate forming the cantilever 1, respectively. The electrode patterns of the SAW resonators 4a and 4b are the transmitting electrodes 5a and 5b and the receiving electrodes 6a and 6b.
b is arranged, and the array pattern of the reflectors 8a, 9a and 8b, 9b is formed on the outside thereof. SAW resonators 4a, 4
The outputs of the receiving electrodes 6a and 6b of the antenna b are positively fed back to the transmitting electrodes 5a and 5b by the amplifiers 10 and 11, whereby the SA
W oscillator 12a, and 12b configured to oscillate a signal of a frequency f 1, f 2.

【0004】SAW発振器12a,12bからの発振信
号は混合器14に入力されて周波数差(f1 −f2 )が
検出され、不要成分を除くためにバンドパスフィルタ
(BPF)15を介して出力する。図4は傾斜センサに
おけるカンチレバー1の実際の配置を示す。即ち、傾斜
角θが零のとき、カンチレバー1は鉛直になっており、
傾斜角θが図示のように生ずると、重り3によってカン
チレバー1の右面のSAW共振器4aの形成面には伸び
歪みを生じ、同時に左面のSAW共振器4bの形成面に
は圧縮歪みを生ずる。
Oscillation signals from the SAW oscillators 12a and 12b are input to a mixer 14 to detect a frequency difference (f 1 -f 2 ) and output via a bandpass filter (BPF) 15 to remove unnecessary components. To do. FIG. 4 shows the actual arrangement of the cantilever 1 in the tilt sensor. That is, when the tilt angle θ is zero, the cantilever 1 is vertical,
When the tilt angle θ is generated as shown in the figure, the weight 3 causes extensional strain on the formation surface of the SAW resonator 4a on the right side of the cantilever 1, and at the same time, compressive strain is generated on the formation surface of the SAW resonator 4b on the left side.

【0005】図5は図4のSAW共振器の電極パターン
を取り出して示したもので、送信電極5と受信電極6の
外側の対称位置に遅延線アレイパターンを用いた反射器
8,9が配置されている。図5のSAW共振器の共振周
波数fは、 f=m×V/(Lc+δ) (1) 但し、m;高調波次数で百数十程度の値 V;STカット水晶基板上でのSAW伝搬速度 Lc;反射器間の距離 δ;反射器内有効距離 で決まる。
FIG. 5 shows the electrode pattern of the SAW resonator of FIG. 4 in an extracted form, and reflectors 8 and 9 using a delay line array pattern are arranged at symmetrical positions outside the transmitting electrode 5 and the receiving electrode 6. Has been done. The resonance frequency f of the SAW resonator of FIG. 5 is: f = m × V / (L c + δ) (1) where m is a value of about a hundred and several tens in terms of harmonic order V; SAW on a ST cut quartz substrate Propagation velocity L c ; Distance between reflectors δ; Effective distance within reflector.

【0006】更にSAW共振器の共振周波数fは次式に
示す温度依存性をもつ。 f=f0 {1−a(T−T02 } (2) 但し、f0 ;頂点温度T0 での共振周波数 a ;材料定数で水晶の場合は3×10-8 T ;実際の周囲温度 T0 ;頂点温度 この(2)式の頂点温度T0 は、図6に示すように、あ
る温度で共振周波数fがピーク値を示し、その前後の温
度では共振周波数fが減少する特性となり、このピーク
値の周波数をf0 、ピーク周波数f0 の温度を頂点温度
0 という。
Further, the resonance frequency f of the SAW resonator has temperature dependence shown by the following equation. f = f 0 {1-a (T−T 0 ) 2 } (2) where f 0 : Resonance frequency at apex temperature T 0 a; Material constant 3 × 10 −8 T in the case of crystal; actual Ambient temperature T 0 ; apex temperature As shown in FIG. 6, the apex temperature T 0 of the equation (2) is a characteristic that the resonance frequency f exhibits a peak value at a certain temperature, and the resonance frequency f decreases at temperatures before and after that. Therefore, the frequency of this peak value is called f 0 , and the temperature of the peak frequency f 0 is called the apex temperature T 0 .

【0007】次に傾斜角を検出するめに2つのASW発
振器12,14の発振周波数f1 ,f2 を異ならせるた
めの手法を説明する。まずSAW共振器12,14の頂
点温度T10,T20とすると、頂点温度T10,T20で共振
周波数f10,f20をもつことから、発振周波数f1 ,f
2 は、 f1 =f10{1−a(T−T102 −bθ} (3) f2 =f20{1−a(T−T202 +bθ} (4) で与えられる。
Next, a method for making the oscillation frequencies f 1 and f 2 of the two ASW oscillators 12 and 14 different to detect the tilt angle will be described. First, assuming that the peak temperatures T 10 and T 20 of the SAW resonators 12 and 14 are the resonance frequencies f 10 and f 20 at the peak temperatures T 10 and T 20 , the oscillation frequencies f 1 and f
2 is given by f 1 = f 10 {1- a (T-T 10) 2 -bθ} (3) f 2 = f 20 {1-a (T-T 20) 2 + bθ} (4).

【0008】尚、(3)(4)式のθは正確にはsin
θであるが、傾斜角θはきわめて小さいことからsin
θ=θとして扱っても問題ない。従って周波数差Fは、 F=(f1 −f2 ) =Δf{1−at2 +2a(f10/Δf)ΔT・t}+b(f10+f20)θ (5) 但し、Δf=f10−f20 ΔT;頂点温度の差(T10−T20) t ;実温度と頂点温度との差(T−T20) となる。ここでbは、 b=(9Wx/ED2 e) (6) 但し、W;重りの重量 x;重りの中心から共振器の中心までの距離 E;水晶のヤング率 D;水晶基板の厚さ e;水晶基板の幅 で与えられる。
Note that θ in equations (3) and (4) is exactly sin
θ, but since the inclination angle θ is extremely small, sin
There is no problem in handling as θ = θ. Therefore, the frequency difference F is F = (f 1 −f 2 ) = Δf {1-at 2 + 2a (f 10 / Δf) ΔT · t} + b (f 10 + f 20 ) θ (5) where Δf = f 10 −f 20 ΔT; difference between peak temperatures (T 10 −T 20 ) t; difference between actual temperature and peak temperature (T−T 20 ). Here, b is b = (9Wx / ED 2 e) (6) where W: weight of weight x: distance from center of weight to center of resonator E: Young's modulus of crystal D: thickness of crystal substrate e; given by the width of the quartz substrate.

【0009】図3の2つのSAW発振器12a,12b
の発振周波数f1 ,f2 を異ならせるには、前記(1)
式から明らかなように、SAW共振器4a,4bにおけ
る反射器間距離Lcを変えればよい。図7は従来のSA
W共振器4a,4bの電極構造を対比して示したもの
で、SAW共振器4aの反射器間距離Lc1に対し例えば
SAW共振器4bの反射器間距離Lc2をわずかに短くす
ることで発振周波数f1,f2 を決める共振周波数を異
ならせている。この場合反射器8aと8b、9aと9b
の反射器内有効距離δ及び各電極アレイパターンのピッ
チdは同一であり、変化していない。
The two SAW oscillators 12a and 12b shown in FIG.
In order to make the oscillation frequencies f 1 and f 2 of (1) different,
As is clear from the equation, the inter-reflector distance L c in the SAW resonators 4a and 4b may be changed. Figure 7 shows the conventional SA
W resonator 4a, which was shown by comparing the electrode structure 4b, by slightly shortening the reflector distance L c2 reflector distance L c1 with respect to e.g. SAW resonator 4b of SAW resonators 4a The resonance frequencies that determine the oscillation frequencies f 1 and f 2 are made different. In this case reflectors 8a and 8b, 9a and 9b
The effective distance δ in the reflector and the pitch d of each electrode array pattern are the same and do not change.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の1つのカンチレバーの両面にSAW共振器を
形成した構造のSAW傾斜センサにあっては、2つのS
AW共振器の温度特性の相違に起因して差周波数Fに大
きな温度ドリフトが発生し、計測誤差が大きくなるとい
う問題があった。
However, in a SAW tilt sensor having a structure in which SAW resonators are formed on both surfaces of one conventional cantilever as described above, two SW tilt sensors are used.
There is a problem that a large temperature drift occurs in the difference frequency F due to the difference in the temperature characteristics of the AW resonator, and the measurement error increases.

【0011】即ち、SAW傾斜センサの差周波数Fは、
前記(5)式で与えられるが、右辺の[2a(f10/Δ
f)ΔT]の項の値がかなり大きな値となる。例えば実
温度tをt=10℃とした場合、頂点温度T10とT20
温度差ΔTに対する[2a(f10/Δf)ΔT]の項の
値は、例えばΔT=1℃で [2a(f10/Δf)ΔT]=1.5×10-3 となってしまい、温度ドリフトが大きいために計測誤差
が大きくなる。
That is, the difference frequency F of the SAW tilt sensor is
It is given by the above equation (5), and [2a (f 10 / Δ
f) The value of the [ΔT] term becomes a considerably large value. For example, when the actual temperature t is set to t = 10 ° C., the value of the term [2a (f 10 / Δf) ΔT] with respect to the temperature difference ΔT between the peak temperatures T 10 and T 20 is, for example, ΔT = 1 ° C. and [2a ( f 10 /Δf)ΔT]=1.5×10 −3, and the measurement error becomes large because the temperature drift is large.

【0012】本発明は、このような従来の問題点に鑑み
てなされたもので、温度ドリフトを抑えて計測精度を飛
躍的に向上することのできるSAW技術を用いた傾斜セ
ンサを提供することを目的とする。
The present invention has been made in view of such conventional problems, and it is an object of the present invention to provide an inclination sensor using the SAW technique, which can suppress the temperature drift and dramatically improve the measurement accuracy. To aim.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
本発明は次のように構成する。尚、図面中の符号を併せ
て示す。まず本発明は、一端を固定し他端をフリーにし
て重り3を装着した水晶基板で作られたカンチレバー1
と、カンチレバー1の表裏両面に各々形成された共振周
波数の異なる一対のSAW共振器4a,4bと、SAW
共振器4a,4bの出力を正帰還して共振周波数に一致
する周波数f1 ,f2 の信号を発振する一対のSAW発
振器12a,12bと、一対のSAW発振器12a,1
2bの周波数差F(=f1 −f2 )を検出する混合器1
4と、混合器14から出力された周波数差Fに基づいて
カンチレバー1の鉛直軸に対する傾斜角θを検出する傾
斜センサを対称とする。
To achieve this object, the present invention is constructed as follows. The reference numerals in the drawings are also shown. First, the present invention is directed to a cantilever 1 made of a quartz substrate with one end fixed and the other end free and a weight 3 attached.
And a pair of SAW resonators 4a and 4b having different resonance frequencies formed on the front and back surfaces of the cantilever 1, respectively.
Resonator 4a, a pair of SAW oscillator 12a oscillating a signal of frequency f 1, f 2 to the output of 4b positive feedback to match the resonant frequency, and 12b, a pair of SAW oscillators 12a, 1
Mixer 1 for detecting the frequency difference F (= f 1 −f 2 ) of 2b
4 and the tilt sensor that detects the tilt angle θ of the cantilever 1 with respect to the vertical axis based on the frequency difference F output from the mixer 14 are symmetrical.

【0014】このような傾斜センサにつき本発明にあっ
ては、一対のSAW共振器4a,4bは、水晶基板上に
送信電極5a,5bの電極アレイ及び受信電極6a,6
bの電極アレイを配列すると共に送信電極5a,5b及
び受信電極6a,6bの外側の対称位置に反射器8a,
8bと9a,9bのアレイパターンを形成した構造を有
し、一方のSAW共振器4aにおける反射器間距離
c1、反射器内有効距離δ 1 及びアレイピッチd1 に対
し、他方のSAW共振器4bにおける反射器間距離
c2、反射器内有効距離δ2 及びアレイピッチd2 を規
定の周波数差Fが得られる寸法比Kをもつ相似パターン
とし、一対のSAW共振器間の頂点温度T10,T 20の差
ΔTを零又は最小に抑えたことを特徴とする。
The present invention relates to such an inclination sensor.
The pair of SAW resonators 4a and 4b are mounted on a quartz substrate.
Electrode array of transmitting electrodes 5a and 5b and receiving electrodes 6a and 6
b electrode array is arranged and transmitting electrodes 5a, 5b and
And the reflectors 8a, 6a, 6b at symmetrical positions outside the receiving electrodes 6a, 6b.
8b, 9a, 9b array structure is formed
And the distance between the reflectors in one SAW resonator 4a
Lc1, Effective distance in reflector δ 1 And array pitch d1 Against
And the distance between the reflectors in the other SAW resonator 4b
Lc2, Effective distance in reflector δ2 And array pitch d2 The regulation
Similar pattern with a size ratio K that gives a constant frequency difference F
And the apex temperature T between the pair of SAW resonatorsTen, T 20Difference
The feature is that ΔT is suppressed to zero or minimum.

【0015】更に本発明の傾斜センサにあっては、一対
のSAW共振器4a,4bの反射器間距離Lc と反射器
内有効距離δとの構成比(Lc /δ)を、この構成比L
c /δの変化に対し頂点温度T0 の変化が最小となる変
曲点又はその近傍の値に設定したことを特徴とする。
Further, in the tilt sensor of the present invention, the composition ratio (L c / δ) between the inter-reflector distance L c of the pair of SAW resonators 4a and 4b and the intra-reflector effective distance δ is defined as follows. Ratio L
It is characterized in that it is set to a value at or near the inflection point where the change in the apex temperature T 0 is minimum with respect to the change in c / δ.

【0016】[0016]

【作用】このような構成を備えた本発明の傾斜センサに
あっては、カンチレバーを構成する水晶基板の両面に設
けるSAW共振器の電極パターンとして、一方のパター
ンに対し他方のパターンを例えばK=0.9996とい
った倍率の相似パターンとすることで、発振周波数を異
ならせるために反射器間距離Lc を変えても、2つのS
AW共振器の構成比(Lc /δ)を同じにすることがで
き、構成比(Lc/δ)が同じであれば頂点温度も同じ
になるために、頂点温度差ΔTを零もしくは極く小さな
値とすることができる。
In the tilt sensor of the present invention having such a configuration, as the electrode pattern of the SAW resonator provided on both sides of the quartz substrate forming the cantilever, one pattern is defined as the other pattern, for example, K = Even if the inter-reflector distance L c is changed in order to make the oscillation frequency different, by using a similar pattern with a magnification of 0.9996, two S
The composition ratio (L c / δ) of the AW resonator can be the same, and if the composition ratio (L c / δ) is the same, the apex temperature is also the same. Therefore, the apex temperature difference ΔT is zero or the pole. It can be a very small value.

【0017】その結果、周波数差Fは、 F=(f1 −f2 ) =Δf(1−at2 )+b(f10+f20)θ となって前記(5)式の[2a(f10/Δf)ΔT・
t]の項がなくなることとなり、温度特性の相違による
計測誤差を生じないか、ごく僅かで済ますことができ、
1/100度オーダーの傾斜角の検出精度が達成でき
る。
As a result, the frequency difference F becomes F = (f 1 −f 2 ) = Δf (1−at 2 ) + b (f 10 + f 20 ) θ, and [2a (f 10 / Δf) ΔT
Since the term [t] is eliminated, a measurement error due to the difference in temperature characteristics will not occur, or can be negligible.
Inclination angle detection accuracy of the order of 1/100 degree can be achieved.

【0018】また実際の製造過程にあっては、2つのS
AW共振器を相似パターンとしても、製造過程での電極
の厚みや幅にばらつきを生じ、頂点温度を同じにするこ
とは困難になる。そこで本発明にあっては、SAW共振
器の動作特性として、一対のSAW共振器4a,4bの
反射器間距離Lc と反射器内有効距離δとの構成比(L
c /δ)を変えた場合、頂点温度がほとんど変化しない
変曲点があることに着目し、この変曲点又はその近傍の
値となるように構成比(Lc /δ)を設定することによ
り、製造過程で電極パターンの形状に寸法的なばらつき
が生じても、頂点温度の変化を最小限に抑え、結果とし
て温度誤差のきわめて少ない傾斜センサを製造できる。
In the actual manufacturing process, two S
Even if the AW resonator has a similar pattern, the thickness and width of the electrodes vary during the manufacturing process, and it is difficult to make the vertex temperatures the same. Therefore, in the present invention, as the operating characteristics of the SAW resonator, the composition ratio (L) between the inter-reflector distance L c of the pair of SAW resonators 4a and 4b and the intra-reflector effective distance δ is set.
When changing c / δ), pay attention to the fact that there is an inflection point where the apex temperature hardly changes, and set the composition ratio (L c / δ) so as to be a value at or near this inflection point. As a result, even if dimensional variations occur in the shape of the electrode pattern during the manufacturing process, changes in the vertex temperature can be minimized, and as a result, a tilt sensor with extremely small temperature error can be manufactured.

【0019】[0019]

【実施例】図1は本発明のSAW傾斜センサのカンチレ
バーを構成する水晶基板の両面のそれぞれに形成される
SAW共振器の電極配置を対比して示した実施例構成図
である。図1において、4a,4bはSAW共振器であ
り、図3に示したように固定部2に一端を支持され、他
端に重り3を装着してフリーとした水晶基板で構成され
るカンチレバー1の両側の面のそれぞれに形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a constitutional view of an embodiment showing the electrode arrangement of SAW resonators formed on both sides of a quartz substrate which constitutes a cantilever of a SAW tilt sensor of the present invention. In FIG. 1, 4a and 4b are SAW resonators, one end of which is supported by a fixed portion 2 and a weight 3 is attached to the other end of the cantilever 1 which is free as shown in FIG. Is formed on each of the surfaces on both sides of.

【0020】一方のSAW共振器4aは送信電極5aと
受信電極6aを所定間隔を隔てて配置し、送信電極5a
及び受信電極6aの外側の対称位置に反射器8a,9a
を形成している。ここで、SAW共振器4aの反射器8
aと9aの間の反射器間距離はLc1であり、また各反射
器8a,9aにおける反射器内有効距離はδ1 となって
いる。
In one SAW resonator 4a, a transmitting electrode 5a and a receiving electrode 6a are arranged at a predetermined distance, and the transmitting electrode 5a
And reflectors 8a and 9a at symmetrical positions outside the receiving electrode 6a.
Is formed. Here, the reflector 8 of the SAW resonator 4a
The distance between the reflectors between a and 9a is L c1 , and the effective distance within the reflector in each of the reflectors 8a and 9a is δ 1 .

【0021】一方、反対面側に形成される他方のSAW
共振器4bについても、送信電極5bと受信電極6bの
外側の対称位置に反射器8b,9bを形成しており、反
射器8bと9b間の反射器間距離はLc2であり、また反
射器8b,9bにおける反射器内有効距離はδ2 として
いる。図1のSAW共振器4a,4bにあっては、両者
の電極パターンを相似パターンとしている。即ち、SA
W共振器4aのパターン寸法をP1とすると、他方のS
AW共振器4bのパターン寸法P2はパターン寸法P1
に1より僅かに大きいか或いは僅かに小さい倍率Kを掛
け合わせた値であり、両者の間には P1=K×P2 の寸法関係があり、即ち両者は相似パターンとなってい
る。
On the other hand, the other SAW formed on the opposite surface side
Also in the resonator 4b, reflectors 8b and 9b are formed at symmetrical positions outside the transmitting electrode 5b and the receiving electrode 6b, the inter-reflector distance between the reflectors 8b and 9b is L c2 , and The effective distance within the reflector at 8b and 9b is δ 2 . In the SAW resonators 4a and 4b of FIG. 1, the electrode patterns of both are similar patterns. That is, SA
If the pattern size of the W resonator 4a is P1, the other S
The pattern size P2 of the AW resonator 4b is the pattern size P1.
Is multiplied by a magnification K which is slightly larger or slightly smaller than 1, and there is a dimensional relationship of P1 = K × P2 between them, that is, both are similar patterns.

【0022】更に具体的にSAW共振器4a,4bにお
ける電極間距離Lc1,Lc2、反射器内有効距離δ1 ,δ
2 、及び電極ピッチd1 ,d2 について見ると、次の関
係式が成立している。 Lc1=K・Lc2 δ1 =K・δ2 (7) d1 =K・d2 このように2つのSAW共振器4a,4bを相似パター
ンとすることで両者の頂点温度T10,T20を同じにする
ことができ、前記(5)式における温度ドリフト項 2a(f10/Δf)ΔT を零とできる。
More specifically, the inter-electrode distances L c1 and L c2 in the SAW resonators 4a and 4b and the effective distances δ 1 and δ in the reflector.
2 and the electrode pitches d 1 and d 2 , the following relational expressions hold. L c1 = K · L c2 δ 1 = K · δ 2 (7) d 1 = K · d 2 As described above, the two SAW resonators 4a and 4b are made to have a similar pattern, so that the peak temperatures T 10 and T of the two SAW resonators 20 can be made the same, and the temperature drift term 2a (f 10 / Δf) ΔT in the equation (5) can be made zero.

【0023】図2は本発明で用いるSAW共振器につい
て、反射器間距離Lc と反射器内有効距離δとの構成比
(Lc /δ)に対する頂点温度T0 の関係を示した特性
図である。この図2の特性図は本願発明者等がSAW傾
斜センサにおける温度ドリフトの問題を解決するため、
SAW傾斜センサの動作機能を実現するシュミレータを
作成し、このシュミレータを使用して構成比(Lc
δ)を変えて頂点温度T 0 の変動を検討した際に発見さ
れ、更に論理的な検討を行って図2に示す特性が得られ
ることを確認できた。
FIG. 2 shows the SAW resonator used in the present invention.
And the distance between reflectors Lc And the effective distance in the reflector δ
(Lc / Δ) apex temperature T with respect to0 Characteristics showing the relationship of
It is a figure. The characteristic diagram of FIG. 2 shows that the present inventors
In order to solve the problem of temperature drift in the tilt sensor,
A simulator that realizes the operation function of the SAW tilt sensor
Create and use this simulator to calculate the composition ratio (Lc /
δ) is changed and the peak temperature T 0 Discovered when considering the fluctuation of
Then, further theoretical study was conducted to obtain the characteristics shown in FIG.
I was able to confirm that.

【0024】図2の特性から明らかなように、横軸に示
す反射器間距離Lc と反射器内有効距離δの構成比(L
c /δ)の変化に対し、頂点温度T0 は略正弦カーブと
なるように周期的に変化することが分かった。この図2
の特性から次のことが判る。まず図7に示した従来パタ
ーンにあっては、反射器間距離Lc のみを変えて反射器
有効距離をδを変えていないため、構成比(Lc /δ)
がSAW共振器毎に異なり、その結果、頂点温度に相違
を生ずることになる。
As is clear from the characteristics shown in FIG. 2, the composition ratio (L) between the inter-reflector distance L c and the intra-reflector effective distance δ shown on the horizontal axis.
It was found that the apex temperature T 0 periodically changes so as to form a substantially sinusoidal curve with respect to the change of c / δ). This Figure 2
The following can be understood from the characteristics of. First, in the conventional pattern shown in FIG. 7, since the reflector effective distance δ is not changed by changing only the inter-reflector distance L c , the composition ratio (L c / δ)
Varies from SAW resonator to SAW resonator, resulting in a difference in peak temperature.

【0025】これに対し本発明にあっては、図1に示し
たように2つのSAW共振器4a,4bを相似パターン
とすることで、反射器間距離がLc1,Lc2と異なっても
反射器内有効距離δ1 ,δ2 との間の構成比(Lc1/δ
1 )と(Lc2/δ2 )は等しく、図2の横軸の位置は変
化しないことになる。このため、図1に示した本発明の
SAW共振器4a,4bにあっては、図2の特性曲線上
の任意の1点で頂点温度が決まり、当然に頂点温度T10
=T20となる。
On the other hand, in the present invention, as shown in FIG. 1, the two SAW resonators 4a and 4b have similar patterns so that the distances between the reflectors are different from L c1 and L c2. The composition ratio (L c1 / δ) between the effective distances δ 1 , δ 2 in the reflector
1 ) and (L c2 / δ 2 ) are equal, and the position of the horizontal axis in FIG. 2 does not change. Therefore, in the SAW resonator 4a, 4b of the present invention shown in FIG. 1, determines the peak temperature at any one point on the characteristic curve of FIG. 2, naturally peak temperature T 10
= T 20 .

【0026】このように、相似パターンによって2つの
SAW共振器4a,4bの頂点温度T10,T20が等しく
なれば、頂点温度差ΔT=0となり、従って前記(5)
式は F=Δf(1−at2 )+b(f10+f20)θ (8) となり、温度ドリフト項 2a(f10/Δf)ΔT を無くすことができる。
In this way, if the apex temperatures T 10 and T 20 of the two SAW resonators 4a and 4b are equalized by the similar pattern, the apex temperature difference ΔT = 0, and therefore (5) above.
The formula is F = Δf (1-at 2 ) + b (f 10 + f 20 ) θ (8), and the temperature drift term 2a (f 10 / Δf) ΔT can be eliminated.

【0027】次に本発明の第2実施例を説明する。本発
明の第2実施例にあっては、図1に示したように2つの
SAW共振器4a,4bを相似パターンとすると同時
に、その反射器間距離と反射器内有効記距離の構成比
(Lc /δ)の値を図2の特性曲線における山部のA点
あるいはその近傍の値、もしくは谷部のB点またはその
近傍の値とする。
Next, a second embodiment of the present invention will be described. In the second embodiment of the present invention, as shown in FIG. 1, the two SAW resonators 4a and 4b have similar patterns, and at the same time, the composition ratio of the inter-reflector distance and the effective recording distance within the reflector ( The value of L c / δ) is taken as the value at the point A of the mountain portion or its vicinity or the value of the point B of the valley portion or its vicinity in the characteristic curve of FIG.

【0028】この特性曲線における変曲点A,B及びそ
の近傍にあっては、構成比(Lc /δ)の変動に対し頂
点温度のシフト量が少ないことが明らかである。このよ
うに、反射器間距離と反射器内有効距離の構成比(Lc
/δ)を変曲点A,Bまたはその近傍の値となるように
決めることで、図1に示したSAW共振器4a,4bの
電極パターンを製造する際に生ずる厚さ,幅等の寸法的
なばらつきによる頂点温度T10,T20の差ΔTを最小限
に抑えることができる。
At the inflection points A and B in this characteristic curve and in the vicinity thereof, it is apparent that the shift amount of the vertex temperature is small with respect to the variation of the composition ratio (L c / δ). Thus, the ratio of the distance between reflectors to the effective distance within the reflector (L c
/ Δ) is determined to be a value at the inflection points A and B or in the vicinity thereof, so that dimensions such as thickness and width produced when the electrode patterns of the SAW resonators 4a and 4b shown in FIG. 1 are manufactured. It is possible to minimize the difference ΔT between the peak temperatures T 10 and T 20 due to the variation in temperature.

【0029】即ち、設計段階で同じ構成比(Lc /δ)
が得られる相似パターンの寸法設定を行っていても、水
晶基板の両面に図1に示すそれぞれの電極パターンを形
成する製造段階にあっては、様々な要因により電極の厚
さ,幅等に必ずばらつきを生じてしまう。このように電
極パターンの寸法関係にばらつきを生ずるとパターンの
相似性が崩れ、結果として両者の頂点温度T10,T20
温度差ΔTを生じ、温度ドリフト項を除いたり小さくす
ることができなくなる。
That is, at the design stage, the same composition ratio (L c / δ)
Even if the dimension of the similar pattern is obtained, the thickness, width, etc. of the electrode must be changed due to various factors at the manufacturing stage of forming the electrode patterns shown in FIG. 1 on both sides of the quartz substrate. There will be variations. When the dimensional relationships of the electrode patterns are varied in this way, the similarity of the patterns is broken, and as a result, a temperature difference ΔT occurs between the vertex temperatures T 10 and T 20 of the two, and it becomes impossible to eliminate or reduce the temperature drift term. ..

【0030】これに対し図2の変曲点A,Bあるいはそ
の近傍の値の構成比(Lc /δ)となるように反射器間
距離,反射器内有効距離、更に電極ピッチを決めておく
ことで、製造段階で電極パターンに厚さや幅のばらつき
が起きても、図2の特性から明らかなように変曲点A,
B及びその近傍では構成比(Lc /δ)が変わってもそ
れ程頂点温度はシフトせず、製造時のばらつきによる頂
点温度差ΔTを最小限に抑え、結果的に前記(3)式の
温度ドリフト項 2a(f10/Δf)ΔT を極く小さい値にして傾斜角の計測精度を向上すること
ができる。
[0030] In contrast the inflection point A of FIG. 2, B or Composition ratio (L c / δ) become as reflectors distance value in the vicinity thereof, the reflectors within the effective distance, further decide electrode pitch As a result, even if the thickness or width of the electrode pattern varies during the manufacturing process, the inflection point A,
Even if the composition ratio (L c / δ) changes in B and its vicinity, the apex temperature does not shift so much, and the apex temperature difference ΔT due to variations in manufacturing is minimized, resulting in the temperature of the formula (3). The drift term 2a (f 10 / Δf) ΔT can be set to an extremely small value to improve the measurement accuracy of the tilt angle.

【0031】図1に示した本発明のSAWセンサに用い
るSAW共振器4a,4bの特性としては、例えば発振
周波数f1 ,f2 として196MHz帯を使用し、両者
の差周波数F=80kHzとした場合、反射器間距離L
c1とLc2の間には Lc1=0.9996×Lc2c2=1991μm となる。この相似パターンのSAW共振器を作成して頂
点温度T10,T20を求めたところ、T10=2.98℃、
20=2.88℃となり、頂点温度差ΔTを0.1℃に
抑え込むことができた。
As the characteristics of the SAW resonators 4a and 4b used in the SAW sensor of the present invention shown in FIG. 1, for example, 196 MHz band is used as the oscillation frequencies f 1 and f 2 , and the difference frequency F = 80 kHz between them. If the distance between reflectors L
Between c1 and L c2 , L c1 = 0.9996 × L c2 L c2 = 1991 μm. When the SAW resonator having this similar pattern was created and the peak temperatures T 10 and T 20 were calculated, T 10 = 2.98 ° C.
T 20 = 2.88 ° C., and the peak temperature difference ΔT could be suppressed to 0.1 ° C.

【0032】[0032]

【発明の効果】以上説明してきたように本発明によれ
ば、2つのSAW共振器を相似パターンとすることで両
者の頂点温度を同一にし、多周波数の検出における温度
ドリフトを除去または最小限に抑えて傾斜角の測定精度
を向上できる。更に、電極パターンにおける反射器間距
離と反射器内有効距離との構成比を頂点温度の変動の少
ない変曲点またはその近傍の値とすることで、相似パタ
ーンをもつSAWセンサの製造段階で生ずる電極パター
ンの厚さや幅のばらつきに対し頂点温度差を最小に抑
え、微細な相似電極パターンを形成する製造段階での歩
留まりを大幅に向上できる。
As described above, according to the present invention, the two SAW resonators have similar patterns so that the peak temperatures of the two SAW resonators are the same and the temperature drift in the detection of multiple frequencies is eliminated or minimized. The measurement accuracy of the tilt angle can be improved by suppressing it. Furthermore, by setting the composition ratio of the inter-reflector distance in the electrode pattern and the effective distance within the reflector to a value at or near the inflection point where the variation of the apex temperature is small, this occurs at the manufacturing stage of the SAW sensor having a similar pattern. The peak temperature difference can be suppressed to the minimum with respect to the variation in the thickness and width of the electrode pattern, and the yield at the manufacturing stage for forming a fine similar electrode pattern can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を2つのSAW共振器の電極
パターンの対比により示した実施例構成図
FIG. 1 is a configuration diagram of an embodiment showing an embodiment of the present invention by comparing electrode patterns of two SAW resonators.

【図2】本発明の原理となる反射間距離と反射器内有効
距離の構成比に対する頂点温度のシフト量の関係を示し
た特性図
FIG. 2 is a characteristic diagram showing a relationship of a shift amount of apex temperature with respect to a composition ratio of a distance between reflections and an effective distance in a reflector, which is a principle of the present invention.

【図3】傾斜センサの構造説明図FIG. 3 is a structural explanatory view of a tilt sensor.

【図4】傾斜センサに用いるカンチレバーの取付状態を
示した説明図
FIG. 4 is an explanatory view showing a mounting state of a cantilever used for a tilt sensor.

【図5】傾斜センサに用いるSAW共振器の電極パター
ンの説明図
FIG. 5 is an explanatory diagram of an electrode pattern of a SAW resonator used for a tilt sensor.

【図6】SAW共振器の共振周波数と温度との関係を示
した特性図
FIG. 6 is a characteristic diagram showing the relationship between the resonance frequency of the SAW resonator and temperature.

【図7】従来のSAW共振器における共振周波数を異な
らせるための寸法関係を示した説明図
FIG. 7 is an explanatory diagram showing a dimensional relationship for making resonance frequencies different in a conventional SAW resonator.

【符号の説明】[Explanation of symbols]

1:カンチレバー(水晶基板) 2:固定部 3:重り 4a,4b:SAW共振器 5a,5b:送信電極 6a,6b:受信電極 8a,8b,9a,9b:反射器 10,11:アンプ 12a,12b:SAW発振器 14:混合器 1: Cantilever (quartz substrate) 2: Fixed part 3: Weight 4a, 4b: SAW resonator 5a, 5b: Transmitting electrode 6a, 6b: Receiving electrode 8a, 8b, 9a, 9b: Reflector 10, 11: Amplifier 12a, 12b: SAW oscillator 14: Mixer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年12月19日[Submission date] December 19, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】従来、この種のSAW傾斜センサとして
は例えば図3に示すものが知られている。図3におい
て、1は例えば水晶基板で作られたカンチレバーであ
り、カンチレバー1の一端はセンサ筐体等の固定部2に
固定され、他端はフリーとなって重り3を装着してい
る。
2. Description of the Related Art Conventionally, a SAW tilt sensor of this type is known, for example, as shown in FIG. In FIG. 3, reference numeral 1 denotes a cantilever made of, for example, a quartz substrate. One end of the cantilever 1 is fixed to a fixed portion 2 such as a sensor housing, and the other end is free and a weight 3 is attached.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】図5は図4のSAW共振器の電極パターン
を取り出して示したもので、送信電極5と受信電極6の
外側の対称位置に遅延線アレイパターンを用いた反射器
8,9が配置されている。図5のSAW共振器の共振周
波数fは、 f=m×V/(Lc+δ) (1) 但し、m;高調波次数で百数十程度の値 V 水晶基板上でのSAW伝搬速度 Lc;反射器間の距離 δ ;反射器内有効距離 で決まる。
FIG. 5 shows the electrode pattern of the SAW resonator of FIG. 4 in an extracted form, and reflectors 8 and 9 using a delay line array pattern are arranged at symmetrical positions outside the transmitting electrode 5 and the receiving electrode 6. Has been done. The resonance frequency f of the SAW resonator of FIG. 5 is: f = m × V / (L c + δ) (1) where m; SAW propagation velocity on the quartz substrate L c ; Distance between reflectors δ It is determined by the effective distance within the reflector.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】更にSAW共振器の共振周波数fは次式に
示す温度依存性をもつ。 f=f0 {1−a(T−T02 } (2) 但し、f0 ;頂点温度T0 での共振周波数 a ;材料定数で水晶の場合は3×10 -8程度 T ;実際の周囲温度 T0 ;頂点温度 この(2)式の頂点温度T0 は、図6に示すように、あ
る温度で共振周波数fがピーク値を示し、その前後の温
度では共振周波数fが減少する特性となり、このピーク
値の周波数をf0 、ピーク周波数f0 の温度を頂点温度
0 という。
Further, the resonance frequency f of the SAW resonator has temperature dependence shown by the following equation. f = f 0 {1-a (T−T 0 ) 2 } (2) where f 0 : Resonance frequency at apex temperature T 0 a; Material constant of quartz, about 3 × 10 −8 T; Actual Ambient temperature T 0 ; vertex temperature As shown in FIG. 6, the vertex temperature T 0 of the equation (2) shows a peak value of the resonance frequency f at a certain temperature, and the resonance frequency f decreases before and after the temperature. The frequency of this peak value is referred to as f 0 , and the temperature of the peak frequency f 0 is referred to as the apex temperature T 0 .

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】尚、(3)(4)式のθは正確にはsin
θであるが、傾斜角θはきわめて小さいことからsin
θ=θとして扱っても問題ない。従ってΔTが小さい場
合、周波数差Fは、 F=(f1 −f2 ) =Δf{1−at2 +2a(f10/Δf)ΔT・t}−b(f10+f20)θ (5) 但し、Δf=f10−f20 ΔT;頂点温度の差(T10−T20) t ;実温度と頂点温度との差(T−T20) となる。ここでbは、 b=(9Wx/ED2 e) (6) 但し、W;重りの重量 x;重りの中心から共振器の中心までの距離 E;水晶のヤング率 D;水晶基板の厚さ e;水晶基板の幅 で与えられる。
Note that θ in equations (3) and (4) is exactly sin
θ, but since the inclination angle θ is extremely small, sin
There is no problem in handling as θ = θ. Therefore, when ΔT is small
In this case, the frequency difference F is F = (f 1 −f 2 ) = Δf {1-at 2 + 2a (f 10 / Δf) ΔT · t} −b (f 10 + f 20 ) θ (5) where Δf = f 10 −f 20 ΔT; difference in peak temperature (T 10 −T 20 ) t; difference between actual temperature and peak temperature (T−T 20 ). Here, b is b = (9Wx / ED 2 e) (6) where W: weight of weight x: distance from center of weight to center of resonator E: Young's modulus of crystal D: thickness of crystal substrate e; given by the width of the quartz substrate.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
本発明は次のように構成する。尚、図面中の符号を併せ
て示す。まず本発明は、一端を固定し他端をフリーにし
て重り3を装着した圧電基板で作られたカンチレバー1
と、カンチレバー1の表裏両面に各々形成された共振周
波数の異なる一対のSAW共振器4a,4bと、SAW
共振器4a,4bの出力を正帰還して共振周波数に一致
する周波数f1 ,f2 の信号を発振する一対のSAW発
振器12a,12bと、一対のSAW発振器12a,1
2bの周波数差F(=f1 −f2 )を検出する混合器1
4と、混合器14から出力された周波数差Fに基づいて
カンチレバー1の鉛直軸に対する傾斜角θを検出する傾
斜センサを対称とする。
To achieve this object, the present invention is constructed as follows. The reference numerals in the drawings are also shown. First, the present invention relates to a cantilever 1 made of a piezoelectric substrate on which one end is fixed and the other end is free and a weight 3 is mounted.
And a pair of SAW resonators 4a and 4b having different resonance frequencies formed on the front and back surfaces of the cantilever 1, respectively.
Resonator 4a, a pair of SAW oscillator 12a oscillating a signal of frequency f 1, f 2 to the output of 4b positive feedback to match the resonant frequency, and 12b, a pair of SAW oscillators 12a, 1
Mixer 1 for detecting the frequency difference F (= f 1 −f 2 ) of 2b
4 and the tilt sensor that detects the tilt angle θ of the cantilever 1 with respect to the vertical axis based on the frequency difference F output from the mixer 14 are symmetrical.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】このような傾斜センサにつき本発明にあっ
ては、一対のSAW共振器4a,4bは、圧電基板上に
送信電極5a,5bの電極アレイ及び受信電極6a,6
bの電極アレイを配列すると共に送信電極5a,5b及
び受信電極6a,6bの外側の対称位置に反射器8a,
8bと9a,9bのアレイパターンを形成した構造を有
し、一方のSAW共振器4aにおける反射器間距離
c1、反射器内有効距離δ 1 及びアレイピッチd1 に対
し、他方のSAW共振器4bにおける反射器間距離
c2、反射器内有効距離δ2 及びアレイピッチd2 を規
定の周波数差Fが得られる寸法比Kをもつ相似パターン
とし、一対のSAW共振器間の頂点温度T10,T 20の差
ΔTを零又は最小に抑えたことを特徴とする。
The present invention relates to such an inclination sensor.
Then, the pair of SAW resonators 4a and 4b arePiezoelectricOn board
Electrode array of transmitting electrodes 5a and 5b and receiving electrodes 6a and 6
b electrode array is arranged and transmitting electrodes 5a, 5b and
And the reflectors 8a, 6a, 6b at symmetrical positions outside the receiving electrodes 6a, 6b.
8b, 9a, 9b array structure is formed
And the distance between the reflectors in one SAW resonator 4a
Lc1, Effective distance in reflector δ 1 And array pitch d1 Against
And the distance between the reflectors in the other SAW resonator 4b
Lc2, Effective distance in reflector δ2 And array pitch d2 The regulation
Similar pattern with a size ratio K that gives a constant frequency difference F
And the apex temperature T between the pair of SAW resonatorsTen, T 20Difference
The feature is that ΔT is suppressed to zero or minimum.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】[0016]

【作用】このような構成を備えた本発明の傾斜センサに
あっては、カンチレバーを構成する圧電基板の両面に設
けるSAW共振器の電極パターンとして、一方のパター
ンに対し他方のパターンを例えばK=0.9996とい
った倍率の相似パターンとすることで、発振周波数を異
ならせるために反射器間距離Lc を変えても、2つのS
AW共振器の構成比(Lc /δ)を同じにすることがで
き、構成比(Lc/δ)が同じであれば頂点温度も同じ
になるために、頂点温度差ΔTを零もしくは極く小さな
値とすることができる。
In the tilt sensor of the present invention having such a structure, as the electrode pattern of the SAW resonator provided on both surfaces of the piezoelectric substrate forming the cantilever, one pattern is defined as the other pattern, for example, K = Even if the inter-reflector distance L c is changed in order to make the oscillation frequency different, by using a similar pattern with a magnification of 0.9996, two S
The composition ratio (L c / δ) of the AW resonator can be the same, and if the composition ratio (L c / δ) is the same, the apex temperature is also the same. Therefore, the apex temperature difference ΔT is zero or the pole. It can be a very small value.

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】また実際の製造過程にあっては、2つのS
AW共振器を相似パターンとしても、製造過程での電極
の厚みや幅にばらつきを生じ、頂点温度を同じにするこ
とは困難になる。そこで本発明にあっては、SAW共振
器の動作特性として、一対のSAW共振器4a,4bの
反射器間距離Lc と反射器内有効距離δとの構成比(L
c /δ)を変えた場合、頂点温度がほとんど変化しない
があることに着目し、この又はその近傍の値となる
ように構成比(Lc /δ)を設定することにより、製造
過程で電極パターンの形状に寸法的なばらつきが生じて
も、頂点温度の変化を最小限に抑え、結果として温度誤
差のきわめて少ない傾斜センサを製造できる。
In the actual manufacturing process, two S
Even if the AW resonator has a similar pattern, the thickness and width of the electrodes vary during the manufacturing process, and it is difficult to make the vertex temperatures the same. Therefore, in the present invention, as the operating characteristics of the SAW resonator, the composition ratio (L) between the inter-reflector distance L c of the pair of SAW resonators 4a and 4b and the intra-reflector effective distance δ is set.
When c / δ) is changed, the peak temperature hardly changes
By paying attention to the fact that there is a point, and setting the composition ratio (L c / δ) to a value at or near this point , even if dimensional variations occur in the shape of the electrode pattern during the manufacturing process, It is possible to manufacture a tilt sensor that minimizes the change in the peak temperature and consequently has an extremely small temperature error.

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Name of item to be corrected] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】[0019]

【実施例】本発明ではSAW傾斜センサのカンチレバー
として例えば水晶基板を採用しているが、図1は水晶基
板の両面のそれぞれに形成されるSAW共振器の電極配
置を対比して示した実施例構成図である。図1におい
て、4a,4bはSAW共振器であり、図3に示したよ
うに固定部2に一端を支持され、他端に重り3を装着し
てフリーとした水晶基板で構成されるカンチレバー1の
両側の面のそれぞれに形成される。
EXAMPLE A cantilever for a SAW tilt sensor according to the present invention
For example, a crystal substrate is used as the substrate, but FIG. 1 is a configuration diagram of an embodiment showing the electrode arrangements of the SAW resonators formed on both sides of the crystal substrate in comparison. In FIG. 1, 4a and 4b are SAW resonators, one end of which is supported by a fixed portion 2 and a weight 3 is attached to the other end of the cantilever 1 which is free as shown in FIG. Is formed on each of the surfaces on both sides of.

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】図2は本発明で用いるSAW共振器につい
て、反射器間距離Lc と反射器内有効距離δとの構成比
(Lc /δ)に対する頂点温度T0 の関係を示した特性
図である。この図2の特性図は本願発明者等がSAW傾
斜センサにおける温度ドリフトの問題を解決するため、
SAW傾斜センサの動作機能を実現するシュミレータを
作成し、このシュミレータを使用して構成比(Lc
δ)を変えて頂点温度T 0 の変動を検討した際に発見さ
れ、更に理論的な検討を行って図2に示す特性が得られ
ることを確認できた。
FIG. 2 shows the SAW resonator used in the present invention.
And the distance between reflectors Lc And the effective distance in the reflector δ
(Lc / Δ) apex temperature T with respect to0 Characteristics showing the relationship of
It is a figure. The characteristic diagram of FIG. 2 shows that the present inventors
In order to solve the problem of temperature drift in the tilt sensor,
A simulator that realizes the operation function of the SAW tilt sensor
Create and use this simulator to calculate the composition ratio (Lc /
δ) is changed and the peak temperature T 0 Discovered when considering the fluctuation of
And furthertheoryThe results shown in Figure 2 were obtained
I was able to confirm that.

【手続補正12】[Procedure Amendment 12]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】この特性曲線におけるA,B及びその近
傍にあっては、構成比(Lc /δ)の変動に対し頂点温
度のシフト量が少ないことが明らかである。このよう
に、反射器間距離と反射器内有効距離の構成比(Lc
δ)をA,Bまたはその近傍の値となるように決める
ことで、図1に示したSAW共振器4a,4bの電極パ
ターンを製造する際に生ずる厚さ,幅等の寸法的なばら
つきによる頂点温度T10,T20の差ΔTを最小限に抑え
ることができる。
At points A and B in this characteristic curve and in the vicinity thereof, it is apparent that the shift amount of the apex temperature is small with respect to the variation of the composition ratio (L c / δ). Thus, the ratio of the distance between reflectors to the effective distance within the reflector (L c /
By determining δ) to be a value at or near points A and B, dimensional variations such as thickness and width that occur when the electrode patterns of the SAW resonators 4a and 4b shown in FIG. 1 are manufactured. It is possible to minimize the difference ΔT between the peak temperatures T 10 and T 20 due to.

【手続補正13】[Procedure Amendment 13]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】これに対し図2のA,Bあるいはその近
傍の値の構成比(Lc /δ)となるように反射器間距
離,反射器内有効距離、更に電極ピッチを決めておくこ
とで、製造段階で電極パターンに厚さや幅のばらつきが
起きても、図2の特性から明らかなようにA,B及び
その近傍では構成比(Lc /δ)が変わってもそれ程頂
点温度はシフトせず、製造時のばらつきによる頂点温度
差ΔTを最小限に抑え、結果的に前記(3)式の温度ド
リフト項 2a(f10/Δf)ΔT を極く小さい値にして傾斜角の計測精度を向上すること
ができる。
On the other hand, the inter-reflector distance, the intra-reflector effective distance, and the electrode pitch are determined so that the composition ratio (L c / δ) of the values at points A and B in FIG. Therefore, even if the thickness and width of the electrode pattern vary during the manufacturing process, even if the composition ratio (L c / δ) changes at points A and B and in the vicinity thereof, it is clear that the peak temperature is so high as is clear from the characteristics of FIG. Does not shift, and the peak temperature difference ΔT due to variations in manufacturing is minimized. As a result, the temperature drift term 2a (f 10 / Δf) ΔT in the equation (3) is set to an extremely small value, and the inclination angle The measurement accuracy can be improved.

【手続補正14】[Procedure Amendment 14]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】[0032]

【発明の効果】以上説明してきたように本発明によれ
ば、2つのSAW共振器を相似パターンとすることで両
者の頂点温度を同一にし、多周波数の検出における温度
ドリフトを除去または最小限に抑えて傾斜角の測定精度
を向上できる。更に、電極パターンにおける反射器間距
離と反射器内有効距離との構成比を頂点温度の変動の少
ないまたはその近傍の値とすることで、相似パターン
をもつSAWセンサの製造段階で生ずる電極パターンの
厚さや幅のばらつきに対し頂点温度差を最小に抑え、微
細な相似電極パターンを形成する製造段階での歩留まり
を大幅に向上できる。
As described above, according to the present invention, the two SAW resonators have similar patterns so that the peak temperatures of the two SAW resonators are the same and the temperature drift in the detection of multiple frequencies is eliminated or minimized. The measurement accuracy of the tilt angle can be improved by suppressing it. Further, by setting the composition ratio of the inter-reflector distance and the effective distance within the reflector in the electrode pattern to a value at or near the point where the variation of the vertex temperature is small, the electrode pattern generated in the manufacturing stage of the SAW sensor having a similar pattern. It is possible to minimize the apex temperature difference with respect to the variation in thickness and width and to significantly improve the yield in the manufacturing stage in which a fine similar electrode pattern is formed.

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 秀樹 東京都大田区南蒲田2丁目16番46号 株式 会社トキメツク内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideki Ouchi 2-16-46 Minami-Kamata, Ota-ku, Tokyo Within Tokimetsuku Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一端を固定し他端をフリーにして重りを装
着した水晶基板で作られたカンチレバーと、該カンチレ
バーの表裏両面に各々形成された共振周波数の異なる一
対のSAW共振器と、該SAW共振器の出力を正帰還し
て前記共振周波数に一致する周波数(f1 ,f2 )の信
号を発振する一対のSAW発振器と、該一対のSAW発
振器の発振信号の周波数差(F)を検出する混合器と、
該混合器から出力された周波数差(F)に基づいて前記
カンチレバーの鉛直軸に対する傾斜角θを検出する傾斜
センサに於いて、 前記一対のSAW共振器は、前記水晶基板上に送信電極
アレイ及び受信電極アレイを配列すると共に該送信電極
及び受信電極の外側に反射器アレイを形成した構造を有
し、一方のSAW共振における反射器間距離(Lc1)、
反射器内有効距離(δ1 )及びアレイピッチ(d1 )に
対し他方のSAW共振器における反射器間距離
(Lc2)、反射器内有効距離(δ2 )及びアレイピッチ
(d2 )を規定の周波数差(F)が得られる寸法比
(K)をもつ相似パターンとし、一対のSAW共振器間
の頂点温度(T10,T20)の差(ΔT)を零又は最小に
抑えたことを特徴とする傾斜センサ。
1. A cantilever made of a quartz substrate having one end fixed and the other end free and a weight attached thereto, and a pair of SAW resonators having different resonance frequencies formed on both front and back surfaces of the cantilever, respectively. A pair of SAW oscillators that positively feed back the output of the SAW resonator to oscillate a signal having a frequency (f 1 , f 2 ) matching the resonance frequency, and a frequency difference (F) between the oscillation signals of the pair of SAW oscillators are A mixer to detect,
In a tilt sensor that detects a tilt angle θ with respect to a vertical axis of the cantilever based on a frequency difference (F) output from the mixer, the pair of SAW resonators includes a transmitter electrode array and a SAW resonator on the quartz substrate. A structure is provided in which receiving electrode arrays are arranged and reflector arrays are formed outside the transmitting electrodes and the receiving electrodes, and a distance between reflectors (L c1 ) in one SAW resonance,
Reflector within the effective distance ([delta] 1) and reflector distance of the other SAW resonators to the array pitch (d 1) (L c2) , the reflectors within the effective range ([delta] 2) and the array pitch (d 2) A similar pattern having a size ratio (K) that can obtain a specified frequency difference (F), and the difference (ΔT) between the apex temperatures (T 10 , T 20 ) between a pair of SAW resonators is suppressed to zero or minimum. Inclination sensor characterized by.
【請求項2】請求項1記載の傾斜センサに於いて、前記
一対のSAW共振器の反射器間距離(Lc )と反射器内
有効距離(δ)との構成比(Lc /δ)を、該構成比
(Lc/δ)の変化に対し頂点温度(T0 )の変化が最
小となる変曲点又はその近傍の値に設定したことを特徴
とする傾斜センサ。
2. The tilt sensor according to claim 1, wherein the composition ratio (L c / δ) of the inter-reflector distance (L c ) of the pair of SAW resonators and the intra-reflector effective distance (δ). Is set to a value at or near the inflection point where the change in the apex temperature (T 0 ) is the smallest with respect to the change in the composition ratio (L c / δ).
JP3310629A 1991-11-26 1991-11-26 Tilt sensor Expired - Fee Related JP3017344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3310629A JP3017344B2 (en) 1991-11-26 1991-11-26 Tilt sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3310629A JP3017344B2 (en) 1991-11-26 1991-11-26 Tilt sensor

Publications (2)

Publication Number Publication Date
JPH05141969A true JPH05141969A (en) 1993-06-08
JP3017344B2 JP3017344B2 (en) 2000-03-06

Family

ID=18007561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3310629A Expired - Fee Related JP3017344B2 (en) 1991-11-26 1991-11-26 Tilt sensor

Country Status (1)

Country Link
JP (1) JP3017344B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192553A (en) * 2006-01-17 2007-08-02 Epson Toyocom Corp Tilt sensor and tilt angle measuring method
JP2017156253A (en) * 2016-03-03 2017-09-07 Tdk株式会社 Elastic wave sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192553A (en) * 2006-01-17 2007-08-02 Epson Toyocom Corp Tilt sensor and tilt angle measuring method
JP2017156253A (en) * 2016-03-03 2017-09-07 Tdk株式会社 Elastic wave sensor

Also Published As

Publication number Publication date
JP3017344B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
US4594898A (en) Force sensors
US4447753A (en) Miniature GT-cut quartz resonator
US5412204A (en) Method for detecting an output of a gyroscope with dual synchronized detection circuit and dual smoothing circuit
US4262227A (en) Thickness-shear piezo-electric vibrator with additional mass for mode suppression
US4771202A (en) Tuning fork resonator
US4716332A (en) Piezoelectric vibrator
US5315874A (en) Monolithic quartz resonator accelerometer
JPH05141969A (en) Inclination sensor
JP5563378B2 (en) Elastic wave element
JP2003087087A (en) Crystal transducer
US4331022A (en) Sensor using two tunable oscillators connected to a frequency mixer comprising a device for calibrating the frequency of the output signal and a process for calibrating this frequency
US4388548A (en) Multiple mode piezoelectric resonator
US8368474B2 (en) Surface acoustic wave oscillator
TWI747636B (en) Acoustic wave device
JP2005269284A (en) Lamb wave type elastic wave element
JPS6367364B2 (en)
JPH08166302A (en) External-force sensor
JPH02177712A (en) Surface acoustic wave resonator and method for adjusting its resonance frequency
JP4314919B2 (en) Twin-tone type piezoelectric vibrator
JP4531953B2 (en) Small rectangular piezoelectric vibrator
JP3258078B2 (en) Crystal oscillator
JP7050387B2 (en) Manufacturing method of tuning fork type piezoelectric vibrator
JPH0434090B2 (en)
JPS5824968B2 (en) Onsagata Atsudenshindoushi
JPS58155321A (en) Surface wave device for temperature sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees