JPS58155321A - Surface wave device for temperature sensor - Google Patents

Surface wave device for temperature sensor

Info

Publication number
JPS58155321A
JPS58155321A JP3892982A JP3892982A JPS58155321A JP S58155321 A JPS58155321 A JP S58155321A JP 3892982 A JP3892982 A JP 3892982A JP 3892982 A JP3892982 A JP 3892982A JP S58155321 A JPS58155321 A JP S58155321A
Authority
JP
Japan
Prior art keywords
surface wave
temperature sensor
wave device
temperature
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3892982A
Other languages
Japanese (ja)
Inventor
Tsutomu Nishikawa
勉 西川
Atsushi Tani
谷 厚志
Shoichi Kishi
正一 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3892982A priority Critical patent/JPS58155321A/en
Publication of JPS58155321A publication Critical patent/JPS58155321A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal

Abstract

PURPOSE:To enhance productivity and conformity, by imparting a specified angle from a +Y axis to the phase propagating direction of the surface wave, which is generated by the excitation of electrodes provided on the surface of a substrate comprising an X cut crystal plate. CONSTITUTION:On the surface of a vibrator 1 comprising the X cut crystal plate, the cross finger type electrodes 2 and 3 constituting, e.g. an input and output transducer, are provided. A surface wave element 10 is combined with an amplifier 4 and a phase shifter 5. A resonant frequency (f) is extracted from a terminal 6. At this time, the angle between the phase propagating direction of the generated surface wave and the +Y axis of the vibrator 1 is specified in the range of 5-27 degrees in the counterclockwise direction.

Description

【発明の詳細な説明】 (a1発明の技術公費 本発明は温度センサとして使用して高精度かつ高感度の
水晶Xカット板を基板とした表面波デバイスに関す。
DETAILED DESCRIPTION OF THE INVENTION (a1 Technology of the Invention Public Funding) The present invention relates to a surface wave device using a highly accurate and sensitive crystal X-cut plate as a substrate for use as a temperature sensor.

伽)技術の背景 各種の監視あるいは制御用として使用される温度センサ
としては、温度変化に応じて電気抵抗の変化するものく
例えばサーミスタ)、発生電圧の炭化するもの(Nえぼ
熱電対)、又共振周波数の変化するもの(例えば水晶振
動子)等各種のものが、夫々の目的に応じて適宜選択使
用されているが、いずれにしろ温度変化に即応し、高精
度、高感度であることが望ましい。
伽)Technical Background Temperature sensors used for various monitoring or control purposes include those whose electrical resistance changes according to temperature changes (for example, thermistors), those whose generated voltage is carbonized (N-Ebo thermocouples), In addition, various types of devices such as those whose resonance frequency changes (for example, crystal oscillators) are selected and used depending on the purpose, but in any case, they must be able to quickly respond to temperature changes, have high precision, and high sensitivity. is desirable.

(C)従来技術と問題点 高精度を要求される温度センサとしては従来上として水
晶振動子、特に1次の周波数温度係数が大きく、かつ2
次の温度係数の小さなLCカット水晶振動子が使用され
てきた。
(C) Conventional technology and problems As a temperature sensor that requires high accuracy, a crystal oscillator is conventionally used, especially a crystal oscillator, which has a large first-order frequency temperature coefficient and a second-order
The following LC cut crystal resonators with small temperature coefficients have been used.

然しこのLCカット水晶振動子は2次の温度係数を零付
近にするためには切断方位を非常に厳しく選定する必要
があり、極めて製作し難いという欠点をもつ、又振動子
はその保護のため保持器に収容されているため、外気温
度に感応するのに時間的遅れがBEし、短時間での測定
が困難である。
However, this LC cut crystal resonator has the disadvantage that it is extremely difficult to manufacture as it is necessary to select the cutting direction very strictly in order to make the second-order temperature coefficient near zero. Since it is housed in a holder, there is a time delay BE in responding to the outside temperature, making it difficult to measure in a short period of time.

ld1発明の目的 本発明は水晶振動子の高精度の特徴を生かし、かつLC
カット振動子の持つ従来の欠点、即ち生産性の問題、お
よび即応性に欠ける点を除去した新規なこの櫨温度セン
サに適するものを得ることをその目的とする。
ld1 Purpose of the Invention The present invention takes advantage of the high precision characteristics of a crystal resonator, and
The purpose of this invention is to obtain a novel temperature sensor suitable for this oak tree temperature sensor that eliminates the conventional drawbacks of cut vibrators, ie, the problem of productivity and lack of quick response.

tQ)発明の構成 本発明においてはこの目的は、水晶Xカット板を基板と
し、その表面に設けられる電極の励振によって起生され
る表面波の位相伝搬方向が、+Y軸から反時計方向に5
°〜釘°の範囲に選定されるよう構成されてなる表面波
デバイスによって達成される。
tQ) Structure of the Invention In the present invention, the purpose is to use a crystal X-cut plate as a substrate, and to set the phase propagation direction of a surface wave generated by excitation of an electrode provided on the surface of the substrate to be 5 degrees counterclockwise from the +Y axis.
This is achieved by a surface wave device configured to be selected in the range of 10° to 30°.

表面波デバイスにおいては、表面波は文字通り振動子表
面にのみ起生さね、裏面の状態によって表面波の特性に
影響することがない故に、振動子保護の際にも裏面を直
接外気に接触させることができ、短時間に振動子温度は
外気温度となって即応的な測定が可能となる。
In surface wave devices, surface waves literally occur only on the surface of the transducer, and the characteristics of the surface waves are not affected by the condition of the back surface, so the back surface is brought into direct contact with the outside air even when protecting the transducer. This allows the transducer temperature to become the outside temperature in a short time, allowing immediate measurement.

又本発明者の研究によれば、表面波の位相伝搬方向が、
表面波周波数の1次、および2次温度係数に後述のよう
に著しく関係することが確認され、該方向が振動子の+
Y軸に対し、反時針方向に5゜〜27°の範囲にある際
、1次温度係数が比較的大きく、2次温度係数が著しく
小さく、従って直線性の優れた温度センサを得ることが
出来る。
Also, according to the research of the present inventor, the phase propagation direction of the surface wave is
It was confirmed that this direction is significantly related to the first and second order temperature coefficients of the surface wave frequency as described below, and the direction is
In the range of 5° to 27° counterclockwise with respect to the Y-axis, the primary temperature coefficient is relatively large and the secondary temperature coefficient is extremely small, making it possible to obtain a temperature sensor with excellent linearity. .

(f1発明の実施例 本発明の1実施例として第1図(イ)に示すように水晶
Xカット板よりなる振動子lの表面に、例えば入出カド
ランスジューサーを構成する交叉指形電極2.3を設け
てなる表両波素子10を、同図(ロ)に示す如く増幅器
4、フェイズシフタ5と組み合せて端子6より共振周波
数fを摘出する如く構成した場合、その隆起性される表
面波の位相伝搬方向(併設された交叉指形電極2.3に
垂直な方向)と振動子1のY結晶軸となす角θによって
、この振動子lの共振周波数の温度係数が第2図に示す
ように変化する。
(f1 Embodiment of the Invention As an embodiment of the present invention, as shown in FIG. 1(A), a cross-finger-shaped electrode 2. 3 is combined with an amplifier 4 and a phase shifter 5 as shown in FIG. The temperature coefficient of the resonant frequency of this oscillator 1 is shown in Figure 2, depending on the angle θ between the phase propagation direction of the oscillator 1 (perpendicular to the interdigitated electrodes 2.3 attached thereto) and the Y crystal axis of the oscillator 1. It changes like this.

第2図は横軸にθを、縦軸に1次周波数温度係数Tri
を10/Cのスケールで、2次温度係数Tf2を10’
/” C”のスケールで示すもので、温度センサとして
望ましい1次の温度係数が比較的大きく、2次の温度係
数の僅少な範囲は、θが略5°〜釘°を示す範囲、特に
10”付近が最適であることを示している。
In Figure 2, the horizontal axis is θ and the vertical axis is the primary frequency temperature coefficient Tri.
on a scale of 10/C, and the secondary temperature coefficient Tf2 is 10'
/"C" scale, and the first-order temperature coefficient, which is desirable for a temperature sensor, is relatively large, and the second-order temperature coefficient is within a small range where θ is approximately 5° to approximately 10°, especially 10°. ``It shows that the vicinity is optimal.

第3図はθ=10°に選定した振動子を使用した際の温
度範囲一5°C−55°Cにおける共振周波数変化率Δ
f/fを示すもので、略直線性を示している。この際の
直線からのずれの比率は1/8゜O以下であり(LCカ
ット振動子では約1/150)著しく改善されている。
Figure 3 shows the resonant frequency change rate Δ in the temperature range -5°C to 55°C when using a vibrator with θ = 10°.
It shows f/f and shows approximately linearity. At this time, the ratio of deviation from the straight line is less than 1/8°O (approximately 1/150 for the LC cut vibrator), which is a remarkable improvement.

猶第4図は温度センサとして好適な上記θ−5゜〜n°
におけるビームステアリング角度を示すもので本発明の
範囲内においては約6°以下であり特性的には殆ど問題
ないことを示している。
Figure 4 shows the above θ-5° to n°, which is suitable as a temperature sensor.
The beam steering angle is approximately 6° or less within the scope of the present invention, indicating that there is almost no problem in terms of characteristics.

以上入出力トランスジェーサー構成の表面波デバイスを
例に説明したが、共振器構成であっても本発明要旨がそ
のまま適用できることは勿論である。
Although the description has been made above using a surface wave device having an input/output transducer configuration as an example, it goes without saying that the gist of the present invention can be applied as is to a surface wave device having a resonator configuration.

(g1発明の詳細 な説明のように本発明による表面波デバイスは、裏面を
そのまま露出して使用できる故にデバイス(水晶基板)
の温度が外気温度になるのにさしたる時間を必要とせず
、又2次温度係数を僅少となすものを得るのにY結晶軸
に対して5°〜27°という広い範囲が許容されるので
製作が容易となり著しい効果を提供する。
(G1 As described in the detailed description of the invention, the surface wave device according to the present invention can be used with the back side exposed as it is, so the device (crystal substrate)
It does not require much time for the temperature of This makes it easy to use and provides remarkable effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のl実施例として入出力トランスジェー
サー構成の表面波デバイス(イ)とその発振回路(ロ)
を示し、第2図は共振周波数の位相伝搬方向(θ)と1
次、2次周波数温度係数Tf1、Tf2の関係を、第3
図は温度変化による共振周波数変化率Δf/fを、第4
図は位相伝搬方向(θ)とビームステアリング角度との
関係を示す特性曲線である。 図においてlは水晶基板、2.3は入出カドランスジュ
ーサ〜を構成する交叉指形電極、4は増幅器、5はフェ
イズシフタ、6は出力端子、10は第2図(イ)により
構成される表面波デバイスを示す。 第1 図 ”J 31121
Figure 1 shows a surface wave device (a) with an input/output transducer configuration and its oscillation circuit (b) as an embodiment of the present invention.
Figure 2 shows the phase propagation direction (θ) of the resonant frequency and 1
Next, the relationship between the secondary frequency temperature coefficients Tf1 and Tf2 is expressed as
The figure shows the resonant frequency change rate Δf/f due to temperature change.
The figure is a characteristic curve showing the relationship between the phase propagation direction (θ) and the beam steering angle. In the figure, l is a crystal substrate, 2.3 is an interdigital electrode that constitutes the input/output transducer, 4 is an amplifier, 5 is a phase shifter, 6 is an output terminal, and 10 is composed of the components shown in FIG. 2 (A). A surface wave device is shown. Figure 1 "J 31121"

Claims (1)

【特許請求の範囲】 水晶Xカット板を基板とし、その表面に設けられる電極
の励振によって起生される表面波の位相伝搬方向が、+
Y軸から反時針方向に5°〜υ。 の範囲に選定されることを特徴とする温度センサ用表面
波デバイス。
[Claims] A crystal X-cut plate is used as a substrate, and the phase propagation direction of a surface wave generated by excitation of an electrode provided on the surface thereof is +
5° to υ counterclockwise from the Y axis. A surface wave device for a temperature sensor, characterized in that it is selected within the range of.
JP3892982A 1982-03-12 1982-03-12 Surface wave device for temperature sensor Pending JPS58155321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3892982A JPS58155321A (en) 1982-03-12 1982-03-12 Surface wave device for temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3892982A JPS58155321A (en) 1982-03-12 1982-03-12 Surface wave device for temperature sensor

Publications (1)

Publication Number Publication Date
JPS58155321A true JPS58155321A (en) 1983-09-16

Family

ID=12538915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3892982A Pending JPS58155321A (en) 1982-03-12 1982-03-12 Surface wave device for temperature sensor

Country Status (1)

Country Link
JP (1) JPS58155321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387435B2 (en) 1999-12-10 2008-06-17 Fujitsu Limited Temperature sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387435B2 (en) 1999-12-10 2008-06-17 Fujitsu Limited Temperature sensor

Similar Documents

Publication Publication Date Title
US4039969A (en) Quartz thermometer
US4872765A (en) Dual mode quartz thermometric sensing device
US4342012A (en) Surface acoustic wave device
US4472656A (en) Temperature sensor and method using a single rotated quartz crystal
EP0463735B1 (en) Piezo electric resonator temperature sensor
US4349763A (en) Tuning fork type quartz resonator
JPS6182130A (en) Surface acoustic wave pressure sensor
JPH06326552A (en) Piezoelectric crystal element
JPS62190905A (en) Surface acoustic wave device
JPS58155321A (en) Surface wave device for temperature sensor
US4631437A (en) Stress compensated piezoelectric crystal device
JPS6129652B2 (en)
JPS6222041A (en) Resonator pressure transducer
US4609843A (en) Temperature compensated berlinite for surface acoustic wave devices
JPS6367364B2 (en)
JPH026654Y2 (en)
JPS5930332B2 (en) surface acoustic wave device
JPH0870232A (en) Surface acoustic wave element and oscillat0r
JPH035876Y2 (en)
JPH0434090B2 (en)
JPS6326853B2 (en)
JPS6067829A (en) Pressure detector
JPH04236336A (en) Quartz temperature sensor
JPH0443223B2 (en)
JPS5860278A (en) Frequency temperature compensation system