JPH026654Y2 - - Google Patents

Info

Publication number
JPH026654Y2
JPH026654Y2 JP1984124293U JP12429384U JPH026654Y2 JP H026654 Y2 JPH026654 Y2 JP H026654Y2 JP 1984124293 U JP1984124293 U JP 1984124293U JP 12429384 U JP12429384 U JP 12429384U JP H026654 Y2 JPH026654 Y2 JP H026654Y2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
oscillator
delay
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984124293U
Other languages
Japanese (ja)
Other versions
JPS6140021U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12429384U priority Critical patent/JPS6140021U/en
Publication of JPS6140021U publication Critical patent/JPS6140021U/en
Application granted granted Critical
Publication of JPH026654Y2 publication Critical patent/JPH026654Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、同一基板上に基準用及び温度測定用
の各発振器として用いられる弾性表面波遅延素子
をそれぞれ設定した弾性表面波発振器に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a surface acoustic wave oscillator in which surface acoustic wave delay elements used as a reference oscillator and a temperature measurement oscillator are respectively set on the same substrate.

(従来の技術) 第1図は、弾性表面波発振器のブロツク構成図
を示し、1は弾性表面波遅延素子、2は増幅器で
あり、該増幅器の利得をG、位相遅延量をφA
し、前記弾性表面波遅延素子の損失をIL、位相
遅延量をφSとしたとき、つぎの(1)式で発振する。
(Prior Art) FIG. 1 shows a block diagram of a surface acoustic wave oscillator, in which 1 is a surface acoustic wave delay element, 2 is an amplifier, the gain of the amplifier is G, the amount of phase delay is φ A , When the loss of the surface acoustic wave delay element is IL and the amount of phase delay is φ S , oscillation occurs according to the following equation (1).

GIL φA+φS=2nπ(n:整数) ……(1) (1)式において、発振周波数をとし、温度によ
る発振周波数の変化量△は、(2)式によつて表わ
される。
GIL φ AS =2nπ (n: integer) (1) In equation (1), the oscillation frequency is taken as the oscillation frequency, and the amount of change Δ in the oscillation frequency due to temperature is expressed by equation (2).

△=×(−TCD)×△T ……(2) ここで、TCDは弾性表面波遅延素子の遅延量
温度係数 △Tは温度差である。
Δ=×(−TCD)×ΔT (2) Here, TCD is the delay amount temperature coefficient of the surface acoustic wave delay element, and ΔT is the temperature difference.

(考案が解決しようとする問題点) 一般の弾性表面波遅延素子の場合、前記遅延量
温度係数TCDは、使用する圧電基板材料、カツ
ト角、弾性表面波の伝播方向によつて決定され、
層状構造弾性表面波素子の場合、その表面層の膜
厚にも依存することが知られている。従来、この
弾性表面波の遅延量温度係数TCDが比較的大き
いことを利用して、弾性表面波発振器による温度
測定が行われてきた。しかし、発振周波数の変化
量△を測定するため、比較すべき基準発振器の
精度によつて温度測定の精度が決定されるため、
基準発振器は高精度のものが必要となり、比較
的、高価になるという欠点があつた。
(Problems to be solved by the invention) In the case of a general surface acoustic wave delay element, the temperature coefficient of delay TCD is determined by the piezoelectric substrate material used, the cut angle, and the propagation direction of the surface acoustic wave,
In the case of a layered surface acoustic wave element, it is known that the thickness also depends on the thickness of the surface layer. Conventionally, temperature measurements have been performed using a surface acoustic wave oscillator, taking advantage of the fact that the temperature coefficient of delay TCD of this surface acoustic wave is relatively large. However, in order to measure the amount of change △ in the oscillation frequency, the accuracy of temperature measurement is determined by the accuracy of the reference oscillator to be compared.
The reference oscillator needs to be highly accurate, which has the disadvantage of being relatively expensive.

(問題点を解決するための手段) 本考案は、このような欠点を除去するため、基
準発振器用遅延線を、温度測定用発振器の弾性表
面波遅延素子の同一基板上に設け、該弾性表面波
遅延線を層状構造とし、前記基板上に2つの遅延
素子の表面層の膜厚を異ならせることによつて、
遅延量温度係数TCDに差をもたせるように構成
したものである。以下、図面により詳細に説明す
る。
(Means for Solving the Problems) In order to eliminate such drawbacks, the present invention provides a reference oscillator delay line on the same substrate as the surface acoustic wave delay element of the temperature measurement oscillator. By forming the wave delay line into a layered structure and by varying the thickness of the surface layer of the two delay elements on the substrate,
The structure is such that there is a difference in the delay amount temperature coefficient TCD. A detailed explanation will be given below with reference to the drawings.

(実施例) 第2図は本考案の一実施例の斜視図で、11は
圧電基板、12は基準発振器用入出力すだれ電
極、13は温度測定用発振器用入出力すだれ電極
で、図示のとおり同一の圧電基板11上に設けら
れている。また14及び15はそれぞれ基準発振
器及び温度測定用発振器のための増幅器である。
(Embodiment) Fig. 2 is a perspective view of an embodiment of the present invention, in which 11 is a piezoelectric substrate, 12 is an input/output blind electrode for a reference oscillator, and 13 is an input/output blind electrode for a temperature measurement oscillator, as shown in the figure. They are provided on the same piezoelectric substrate 11. Further, 14 and 15 are amplifiers for a reference oscillator and a temperature measurement oscillator, respectively.

また、前記圧電基板11上の層16はSiO2
で、入出力すだれ状電極12及び13はその膜厚
を異にし、遅延量温度係数TCDをそれぞれ異な
るようにしてある。
Further, the layer 16 on the piezoelectric substrate 11 is a SiO 2 film, and the input/output interdigital electrodes 12 and 13 have different film thicknesses and have different delay amount temperature coefficients TCD.

いま、入出力すだれ状電極12及び13の遅延
量温度係数をTCDRe及びTCDtnpとすると、基準
発振器は、入出力すだれ状電極12及び増幅器1
4によつて、(1)式の条件のもとに発振する。
Now, if the delay amount temperature coefficients of the input/output interdigital electrodes 12 and 13 are TCD Re and TCD tnp , the reference oscillator is the input/output interdigital electrode 12 and the amplifier 1.
4, oscillation occurs under the condition of equation (1).

また温度測定用発振器は、入出力すだれ状電極
13及び増幅器15によつて同じく(1)式の条件の
もとに発振する。これら2つの発振器の発振周波
Retnpの温度差△Tによる発振周波数の変
化量△Re,△tnpは、(2)式によつて、 △ReRe×(−TCDRe)×△T ……(3) △tnptnp×(−TCDtnp)×△T ……(4) となる。また(4)及び(3)式より △tnp−△Re={tnp× (−TCDtnp)−Re× (−TCDRe)}×△T ……(5) となり、基準発振器と温度測定用発振器の発振周
波数の変化量の差は、温度差△Tに比例している
ことがわかる。
Further, the temperature measuring oscillator oscillates by the input/output interdigital interdigital electrode 13 and the amplifier 15 under the condition of equation (1). The amount of change in the oscillation frequency △ Re , △ tnp due to the temperature difference △T between the oscillation frequencies Re , tnp of these two oscillators is determined by equation (2) as follows: △ Re = Re × (-TCD Re ) × △T... ...(3) △ tnp = tnp × (−TCD tnp ) × △T ... (4). Also, from equations (4) and (3), △ tnp −△ Re = { tnp × (−TCD tnp ) − Re × (−TCD Re )}×△T ...(5), and the reference oscillator and temperature measurement oscillator It can be seen that the difference in the amount of change in the oscillation frequency is proportional to the temperature difference ΔT.

本考案は上述したように2つの発振器の遅延線
が同一基板上に設けられているため、2つの遅延
線の温度差は極めて小さいので、基準発振器自体
の温度安定度によらず、正確な温度測定が可能と
なる。
As mentioned above, in this invention, the delay lines of the two oscillators are provided on the same board, so the temperature difference between the two delay lines is extremely small, so the accurate temperature can be determined regardless of the temperature stability of the reference oscillator itself. Measurement becomes possible.

一実施例として、Zカツト、Y方向伝播ニオブ
酸リチウム酸基板上にSiO2膜を付着した場合、
膜厚がkh=2.1(k:弾性表面波の波数、h:
SiO2膜厚)のとき、TCD=0となり、△Re
0となるので、特に基準発振器の遅延線に適す
る。また、kh=0の基板自体のTCDは、TCD=
76ppm/℃であり、温度測定用発振器の遅延線と
して、kh=0〜2.1に選ぶことにより、△/
/△T=−76ppm/℃〜0ppm/℃、kh=2.1以
上とすることにより、△//△Tを正の値に
とることもできる。従つてSiO2膜厚を適当に選
べば比較的自由に測定温度の感度を得ることがで
きる。
As an example, when a SiO 2 film is deposited on a Z-cut, Y-direction propagation lithium niobate substrate,
The film thickness is kh=2.1 (k: wave number of surface acoustic wave, h:
SiO 2 film thickness), TCD = 0 and △ Re =
0, so it is particularly suitable for the delay line of the reference oscillator. Also, the TCD of the board itself with kh=0 is TCD=
76ppm/℃, and by selecting kh=0 to 2.1 as the delay line of the temperature measurement oscillator, △/
By setting /ΔT=-76ppm/°C to 0ppm/°C and kh=2.1 or more, Δ//ΔT can also be set to a positive value. Therefore, if the SiO 2 film thickness is appropriately selected, the sensitivity of the measurement temperature can be obtained relatively freely.

なお、遅延素子の製作は、1回のフオト・リン
グラフイー工程及びSiO2エツチング工程を加え
ることで、基準発振器用及びある範囲内で任意の
温度感度の発振器用弾性表面波遅延線を同時に簡
単に製作できる。
In addition, the delay element can be easily manufactured by adding a single photo linkage process and a SiO 2 etching process to simultaneously create a surface acoustic wave delay line for a reference oscillator and for an oscillator with any temperature sensitivity within a certain range. can be produced.

(考案の効果) 以上説明したように本考案は、膜厚の異なる少
くとも2つの層状構造弾性表面波素子を同一基板
上に設定し、その遅延時間温度係数TCDが膜厚
により差異があることを利用して、基準用及び温
度測定用の各発振器としたものであるから、高価
な高精度の基準発振器を別途に用いることなく温
度測定ができ、さらに2つの遅延性の温度差が極
めて小さいので正確な温度測定が可能である。
(Effects of the invention) As explained above, the invention provides at least two layered surface acoustic wave elements with different film thicknesses on the same substrate, and the delay time temperature coefficient TCD differs depending on the film thickness. Since the oscillators for reference and temperature measurement are made using Therefore, accurate temperature measurement is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の弾性表面波発振器のブロツク構
成図、第2図は本考案の一実施例にかかる弾性表
面波発振器の構成を示す斜視図である。 11……圧電基板、12……基準発振器用入出
力すだれ状電極、13……温度測定用発振器の入
出力すだれ状電極、14及び15……増幅器、1
6……SiO2薄膜。
FIG. 1 is a block diagram of a conventional surface acoustic wave oscillator, and FIG. 2 is a perspective view showing the construction of a surface acoustic wave oscillator according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 11... Piezoelectric substrate, 12... Input/output interdigitated electrode for reference oscillator, 13... Input/output interdigitated electrode for temperature measurement oscillator, 14 and 15... Amplifier, 1
6... SiO2 thin film.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧電体上にすだれ状電極を対向配置し、圧電体
表面に非圧電体(例えばSiO2)の膜を付着した
層状構造弾性表面波素子を遅延素子に利用する弾
性表面波発振器において、層状構造弾性表面波素
子の遅延時間温度係数が前記膜の膜厚に依存する
ことを利用して前記膜厚の異なる少なくとも2つ
の層状構造弾性表面波素子を同一基板上に形成し
て基準用及び温度測定用の各発振器の遅延素子と
したことを特徴とする弾性表面波発振器。
In a surface acoustic wave oscillator that uses a layered surface acoustic wave element as a delay element, in which interdigital electrodes are arranged facing each other on a piezoelectric material and a film of a non-piezoelectric material (for example, SiO 2 ) is attached to the surface of the piezoelectric material, the layered structure elastic Utilizing the fact that the temperature coefficient of delay time of the surface wave element depends on the film thickness of the film, at least two layered structure surface acoustic wave elements having different film thicknesses are formed on the same substrate for reference and temperature measurement. A surface acoustic wave oscillator characterized in that the delay element of each oscillator is used as a delay element.
JP12429384U 1984-08-14 1984-08-14 surface acoustic wave oscillator Granted JPS6140021U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12429384U JPS6140021U (en) 1984-08-14 1984-08-14 surface acoustic wave oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12429384U JPS6140021U (en) 1984-08-14 1984-08-14 surface acoustic wave oscillator

Publications (2)

Publication Number Publication Date
JPS6140021U JPS6140021U (en) 1986-03-13
JPH026654Y2 true JPH026654Y2 (en) 1990-02-19

Family

ID=30683020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12429384U Granted JPS6140021U (en) 1984-08-14 1984-08-14 surface acoustic wave oscillator

Country Status (1)

Country Link
JP (1) JPS6140021U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142380A1 (en) * 2010-05-13 2011-11-17 株式会社村田製作所 Temperature sensor
JP5652343B2 (en) * 2011-06-24 2015-01-14 株式会社デンソー Surface acoustic wave device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112043A (en) * 1979-02-22 1980-08-29 Seiko Instr & Electronics Ltd Standard signal generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112043A (en) * 1979-02-22 1980-08-29 Seiko Instr & Electronics Ltd Standard signal generator

Also Published As

Publication number Publication date
JPS6140021U (en) 1986-03-13

Similar Documents

Publication Publication Date Title
US6378370B1 (en) Temperature compensated surface-launched acoustic wave sensor
US5003822A (en) Acoustic wave microsensors for measuring fluid flow
JPH0218614B2 (en)
JPS593695B2 (en) crystal thermometer
CN101135674B (en) Method for improving sonic surface wave gas sensors temperature stability
JPS5829645B2 (en) Onpahatsushinki
US4317372A (en) Surface acoustic wave pressure gauge
CN106895803A (en) A kind of device and methods influenceed using two SAW resonator separation temperatures
JPH026654Y2 (en)
JPS62194718A (en) Contour shear crystal resonator
JPS62190905A (en) Surface acoustic wave device
JPS6129652B2 (en)
US4631437A (en) Stress compensated piezoelectric crystal device
JPH0410764B2 (en)
JP2508264B2 (en) Vibrating gyro
JPH0136725B2 (en)
JPS5930332B2 (en) surface acoustic wave device
JPH0640056B2 (en) Humidity sensor
JPH0434090B2 (en)
JPS58155321A (en) Surface wave device for temperature sensor
JPH0228921B2 (en)
JPS6184105A (en) Surface acoustic wave device
JPH025329B2 (en)
Joshi Surface-acoustic-wave (SAW) voltage sensor with improved sensitivity
JPH06174476A (en) Rotation angular velocity sensor