JPS6326853B2 - - Google Patents

Info

Publication number
JPS6326853B2
JPS6326853B2 JP4958682A JP4958682A JPS6326853B2 JP S6326853 B2 JPS6326853 B2 JP S6326853B2 JP 4958682 A JP4958682 A JP 4958682A JP 4958682 A JP4958682 A JP 4958682A JP S6326853 B2 JPS6326853 B2 JP S6326853B2
Authority
JP
Japan
Prior art keywords
crystal
axis
temperature
frequency
thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4958682A
Other languages
Japanese (ja)
Other versions
JPS58166230A (en
Inventor
Yoritake Ooya
Mitsuo Nakazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MYOTA SEIMITSU KK
Original Assignee
MYOTA SEIMITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MYOTA SEIMITSU KK filed Critical MYOTA SEIMITSU KK
Priority to JP4958682A priority Critical patent/JPS58166230A/en
Publication of JPS58166230A publication Critical patent/JPS58166230A/en
Publication of JPS6326853B2 publication Critical patent/JPS6326853B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は水晶温度計に関するものであり、さら
に詳しくは、広い温度範囲で周波数温度特性が直
線性を示す水晶振動子をセンサーに使用した水晶
温度計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a quartz thermometer, and more particularly to a quartz thermometer using a quartz crystal resonator whose sensor exhibits linear frequency-temperature characteristics over a wide temperature range.

従来より、水晶振動子の振動周波数の温度依存
性を利用して温度計をつくることが考えられてい
た。水晶は異方性の六方晶系結晶であり、切出角
により特性が大きく変化するが、水晶結晶そのも
のの物理的性質は非常に安定であり、広い温度範
囲で周波数温度特性が直線性を示す切出角を発見
できれば、すばらしい温度測定素子として使用で
きる。現在、実用化されている水晶温度計はセン
サーである水晶振動子の周波数温度特性が直線性
を示されない為に、マイコンにて補正する必要が
あり、補正をしても測定できる温度範囲は狭いも
のであつた。Ysカツトと称する振動子で−50℃
〜+120℃、LCカツトでも−80℃〜+250℃程度
であつた。又マイコンを使用する為に温度計が高
価になつてしまつていた。
Conventionally, it has been considered to make a thermometer by utilizing the temperature dependence of the vibration frequency of a crystal resonator. Quartz is an anisotropic hexagonal crystal whose properties vary greatly depending on the cutting angle, but the physical properties of the quartz crystal itself are extremely stable, and its frequency-temperature characteristics exhibit linearity over a wide temperature range. If the cutting angle can be found, it can be used as an excellent temperature measurement element. Crystal thermometers currently in practical use do not exhibit linearity in the frequency-temperature characteristics of the crystal oscillator that serves as the sensor, so they must be corrected using a microcomputer, and even after correction, the temperature range that can be measured is narrow. It was hot. -50℃ with a vibrator called Ys cut
The temperature was ~+120℃, and even the LC cut was around -80℃~+250℃. Additionally, thermometers have become expensive due to the use of microcontrollers.

本発明は前記欠点に鑑みてなされたものであ
る。本発明に使用する水晶のカツトは、厚み振動
理論をベースにした計算で発見され、二重回転に
より得られる。この振動子には、「a」モードと
呼ばれる縦波と「b」モード、「c」モードと呼
ばれる2つの横波が存在する。そのうち「b」モ
ードと「c」モードは広い温度範囲で周波数温度
特性がすばらしい直線性を示す。
The present invention has been made in view of the above drawbacks. The crystal cut used in the present invention was discovered through calculations based on thickness vibration theory, and obtained by double rotation. This vibrator has two transverse waves: a longitudinal wave called "a" mode and two transverse waves called "b" mode and "c" mode. Among them, the "b" mode and the "c" mode exhibit excellent linearity in frequency-temperature characteristics over a wide temperature range.

薄い水晶板の厚み振動モードの周波数式は、 で与えられる。ρとypはそれぞれ水晶板の密度と
厚さであり、Cは固有値である。
The frequency formula for the thickness vibration mode of a thin crystal plate is: is given by ρ and y p are the density and thickness of the quartz plate, respectively, and C is the eigenvalue.

どんなカツト角の水晶板の周波数も温度Tに関
してテーラー展開できる。式(1)を使用して近似的
に (T)(Tp){1−α(T−Tp) +1/2β(T−Tp2+1/6γ(T−Tp3}−(2
) で表わされる。ここで Tpは基準温度であり、係数α、β、γは α≡(1/(T)δ(T)/δT)Tp β≡(1/(T)δ2(T)/δT2)Tp γ≡(1/(T)δ3(T)/δT3)Tpで定義さ
れる。
The frequency of a crystal plate of any cut angle can be Taylor expanded with respect to temperature T. Using equation (1), approximately (T) (T p ) {1−α(T−T p ) +1/2β(T−T p ) 2 +1/6γ(T−T p ) 3 }− (2
). Here, T p is the reference temperature, and the coefficients α, β, and γ are α≡(1/(T)δ(T)/δT)T p β≡(1/(T)δ 2 (T)/δT 2 ) T p γ≡(1/(T) δ 3 (T)/δT 3 ) T p is defined.

α、β、γは夫々水晶の一次、二次、三次温度
係数である。
α, β, and γ are the primary, secondary, and tertiary temperature coefficients of crystal, respectively.

第1図は水晶のカツト角を説明する為の図であ
り、X軸、Y軸、Z軸はそれぞれ水晶の電気軸、
機械軸、光軸である。Y軸に直交する平面に平行
な板(Y板)をZ軸の回りに角度φ回転し、新し
くできたX′軸の回りにθ回転する。それぞれ、
反時計方向に回転するのを正とする。
Figure 1 is a diagram to explain the cut angle of the crystal, and the X, Y, and Z axes are the electric axis of the crystal, and
These are the mechanical axis and the optical axis. A plate parallel to the plane perpendicular to the Y-axis (Y plate) is rotated by an angle φ around the Z-axis, and then rotated θ around the newly created X'-axis. Each,
Counterclockwise rotation is positive.

第2図は水晶板に発生する振動のCモード振動
において、α=0、β=0、γ=0になる点を角
度φと角度θの関係で表わした軌跡であり、厚み
振動理論により計算したものである。
Figure 2 shows the locus of the points where α=0, β=0, and γ=0 in the C-mode vibration generated in the crystal plate, expressed by the relationship between angle φ and angle θ, and is calculated using thickness vibration theory. This is what I did.

水晶振動子を温度計のセンサーとして使用する
場合、水晶振動子に要求されるのは 1 特性の温度依存性が大きいこと 2 特性のばらつき及び経年変化が小さいこと 3 温度以外の物理量に対して鈍感なこと 4 適当な大きさであること 5 検出しやすい出力特性、量であること 6 機械的、化学的、熱的に強いこと 7 量産性があり、価格が安いこと 8 広い温度範囲で周波数温度特性がリニアであ
ること 等々である。
When using a crystal oscillator as a thermometer sensor, the following requirements are required for the crystal oscillator: 1. Characteristics should have high temperature dependence. 2. Characteristic variations and changes over time should be small. 3. Insensitivity to physical quantities other than temperature. 4. Appropriate size 5. Output characteristics and quantity that are easy to detect 6. Mechanically, chemically, and thermally strong 7. Mass production possible and low price 8. Frequency temperature in a wide temperature range The characteristics are linear, etc.

この中で水晶振動子の特性として 2、3、4、5、6はすでに従来技術でカバー
されている。1、8の要求を満足させるには、
β、γが零で、αが大きければ良い。又、7を満
足するには、カツト角の許容範囲が広く、且つ小
型化できれば良い。
Among these, characteristics 2, 3, 4, 5, and 6 of the crystal resonator are already covered by the conventional technology. To satisfy requirements 1 and 8,
It is sufficient that β and γ are zero and α is large. In order to satisfy the requirement 7, it is sufficient that the cut angle has a wide allowable range and that the size can be reduced.

第2図から判るように、β、γが共に零になる
点ではいが、θ=5゜、φ=5゜近傍及びθ=5゜、φ
=−5゜近傍(以下5゜−5゜カツトという)は、β及
びγが近接しており、α零の軌跡から遠くにあ
る。この近傍において、αに対するβ、γの影響
は、0.01%程度であり、無視できることが計算に
より判つている。第4図は5゜−5゜カツトの水晶振
動子を12m×14.7mmの方形水晶で製造し、周波数
温度特性を測定したグラフである。
As can be seen from Fig. 2, at the point where both β and γ become zero, there is a point near θ=5°, φ=5°, and around θ=5°, φ
In the vicinity of =-5° (hereinafter referred to as 5°-5° cut), β and γ are close to each other, and it is far from the locus of α zero. In this vicinity, it has been calculated that the influence of β and γ on α is about 0.01% and can be ignored. Figure 4 is a graph showing the frequency-temperature characteristics of a 5°-5° cut crystal resonator manufactured using a 12 m x 14.7 mm rectangular crystal.

−200℃〜+250℃ですばらしい直線性を示し、
基本波、3次波とも約60PPm/℃であり大差は
ない。どちらを使用するかは、測定精度の必要性
と水晶片の加工性を考慮して決めれば良い。
Shows excellent linearity from -200℃ to +250℃,
Both the fundamental wave and the tertiary wave are about 60PPm/℃, and there is no big difference. Which one to use may be determined by considering the need for measurement accuracy and the workability of the crystal piece.

周波数―温度特性の直線性であるが、0.01℃の
精度で使用する為のカツト角の許容範囲は、θ=
5゜、φ=5゜に対して、夫々±3゜の巾があり、水晶
の量産時の加工精度±3′に対し60倍の巾があるの
で水晶の切出し角度は問題なく達成できる。
Regarding the linearity of frequency-temperature characteristics, the allowable range of cut angle for use with an accuracy of 0.01℃ is θ=
5° and φ=5°, each has a width of ±3°, which is 60 times the machining accuracy of ±3′ during mass production of crystals, so the cutting angle of the crystal can be achieved without any problems.

第3図は温度計のブロツク線図であり、11は
センサー発振回路、12はビート検出部、13は
温度表示の為の変換器、14は表示部、15は基
準発振回路である。16は温度計により制御され
るもの基準発振回路15の周波数0とセンサー発
振回路11の周波数Tをビート検出器により測定
T0=△を出す。ビート△を変換器13
により温度に変換して表示部14で表示する構成
であるが、構成そのものは種々の方法が考えら
れ、又本発明の要旨ではない。
FIG. 3 is a block diagram of the thermometer, in which 11 is a sensor oscillation circuit, 12 is a beat detection section, 13 is a converter for temperature display, 14 is a display section, and 15 is a reference oscillation circuit. 16 is controlled by a thermometer. The frequency 0 of the reference oscillation circuit 15 and the frequency T of the sensor oscillation circuit 11 are measured by a beat detector and T - 0 = △ is obtained. Beat △ converter 13
Although the configuration is such that the temperature is converted into a temperature and displayed on the display unit 14, various methods can be considered for the configuration itself, and this is not the gist of the present invention.

本発明によれば、水晶振動子の周波数温度特性
をそのまま使用でき、補正をする必要がないので
水晶温度計の構成は簡単になると共に、広い温度
範囲での測定が可能であり、安価で高精度の水晶
温度計が製造できる。
According to the present invention, the frequency-temperature characteristics of the crystal oscillator can be used as is, and there is no need for correction, so the configuration of the crystal thermometer is simplified, measurement can be performed over a wide temperature range, and it is inexpensive and high-performance. Accurate crystal thermometers can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水晶のカツト角を説明する為の図であ
り、X軸、Y軸、Z軸はそれぞれ水晶の電気軸、
機械軸、光軸である。第2図は温度係数(α、
β、γ)が零になる点を角度φと角度θの関数で
表わした軌跡、第3図は本発明の温度計のブロツ
ク線図であり11はセンサー発振回路、12はビ
ート検出器、13は温度表示の為の変換器。14
は表示部、15は基準発振回路である。第4図は
本発明に使用した5゜−5゜カツト水晶振動子の周波
数―温度特性を示すグラフである。
Figure 1 is a diagram to explain the cut angle of the crystal, and the X, Y, and Z axes are the electric axis of the crystal, and
These are the mechanical axis and the optical axis. Figure 2 shows the temperature coefficient (α,
Figure 3 is a block diagram of the thermometer of the present invention, where 11 is a sensor oscillation circuit, 12 is a beat detector, and 13 is a block diagram of the thermometer of the present invention. is a converter for temperature display. 14
1 is a display section, and 15 is a reference oscillation circuit. FIG. 4 is a graph showing the frequency-temperature characteristics of the 5°-5° cut crystal resonator used in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 センサーに水晶振動子を使用した水晶温度計
において、水晶振動子に使用する水晶振動片は、
水晶のY軸(機械軸)に垂直な板(Y板)をZ軸
(光軸)を回転軸として反時計方向にφ=5゜±3゜
回転し、さらに新しくできたX′軸(電気軸)を
回転軸として反時計方向にθ=5゜±3゜回転して得
られる水晶板であることを特徴とする水晶温度
計。
1. In a crystal thermometer that uses a crystal oscillator as a sensor, the crystal vibrating piece used for the crystal oscillator is
The plate (Y plate) perpendicular to the Y axis (mechanical axis) of the crystal is rotated counterclockwise by φ = 5° ± 3° with the Z axis (optical axis) as the rotation axis, and then the newly created X' axis (electrical A crystal thermometer characterized in that it is a crystal plate obtained by rotating the crystal plate counterclockwise by θ=5°±3° with the axis of rotation as the rotation axis.
JP4958682A 1982-03-26 1982-03-26 Quartz thermometer Granted JPS58166230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4958682A JPS58166230A (en) 1982-03-26 1982-03-26 Quartz thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4958682A JPS58166230A (en) 1982-03-26 1982-03-26 Quartz thermometer

Publications (2)

Publication Number Publication Date
JPS58166230A JPS58166230A (en) 1983-10-01
JPS6326853B2 true JPS6326853B2 (en) 1988-05-31

Family

ID=12835322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4958682A Granted JPS58166230A (en) 1982-03-26 1982-03-26 Quartz thermometer

Country Status (1)

Country Link
JP (1) JPS58166230A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127670A (en) * 1988-11-08 1990-05-16 Sanyo Electric Co Ltd Toner developing device
JPH0566657U (en) * 1992-02-10 1993-09-03 アキレス株式会社 Brush roll

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131434A (en) * 1983-12-20 1985-07-13 Yokogawa Hokushin Electric Corp Temperature sensor
US5607236A (en) * 1987-02-27 1997-03-04 Seiko Epson Corporation Quartz oscillator temperature sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127670A (en) * 1988-11-08 1990-05-16 Sanyo Electric Co Ltd Toner developing device
JPH0566657U (en) * 1992-02-10 1993-09-03 アキレス株式会社 Brush roll

Also Published As

Publication number Publication date
JPS58166230A (en) 1983-10-01

Similar Documents

Publication Publication Date Title
US4039969A (en) Quartz thermometer
US4741213A (en) Quartz-type gas pressure gauge
US4398115A (en) Temperature probe using a plate of quartz
JPS60239638A (en) Resonator temperature transducer and resonator temperature measuring device
US4472656A (en) Temperature sensor and method using a single rotated quartz crystal
GB2176892A (en) Quartz resonator thermometer
JPS6326853B2 (en)
JPS62194718A (en) Contour shear crystal resonator
JPS62194720A (en) Contour shear crystal resonator
JPS6129652B2 (en)
JPS6367364B2 (en)
JPS58111515A (en) Crystal oscillator
JPH0151135B2 (en)
JPS59128422A (en) Crystal thermometer
CN116429281B (en) Resonator based on array structure and temperature measurement method
JPS5912584Y2 (en) crystal temperature sensitive transducer
JPH11177376A (en) Sc-cut crystal resonator
JPH0333203B2 (en)
JPS63316509A (en) Oscillating circuit
JPS6326852B2 (en)
Nakazawa et al. Stress-Compensated Quartz Resonators Having Ultra-Linear Frequency-Temperature Responses
JPS61138131A (en) Crystal thermometer
JPS60131433A (en) Temperature sensor
JPH02132905A (en) Quartz oscillator and electronic clock
JPS58155321A (en) Surface wave device for temperature sensor