JPS60131434A - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPS60131434A
JPS60131434A JP24052083A JP24052083A JPS60131434A JP S60131434 A JPS60131434 A JP S60131434A JP 24052083 A JP24052083 A JP 24052083A JP 24052083 A JP24052083 A JP 24052083A JP S60131434 A JPS60131434 A JP S60131434A
Authority
JP
Japan
Prior art keywords
oscillation
crystal
self
crystal resonator
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24052083A
Other languages
Japanese (ja)
Inventor
Toshitsugu Ueda
敏嗣 植田
Fusao Kosaka
幸坂 扶佐夫
Toshio Iino
俊雄 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP24052083A priority Critical patent/JPS60131434A/en
Publication of JPS60131434A publication Critical patent/JPS60131434A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To detect temperature, and to divide the resonance frequency of flexural oscillation and display time by putting one crystal oscillation in flexural oscillation and torsional oscillation, and calculating the ratio of two kinds of frequency signal. CONSTITUTION:The crystal oscillator 1 is formed by rotating a two-cut crystal plate by + or -10 deg. around an X axis and by + or -10 deg. around an Y axis. This crystal oscillator 1 is put in flexural oscillation by the 1st self-oscillation loop OSC1 and in torsional oscillation by th 2nd self-oscillation loop OSC2. An arithmetic display circuits 5 performs specific arithmetics including the calculation of the ratio of both frequency signals from resonance frequency signals f1 and f2 from said self-oscillation loops OSC1 and OSC2 to output a measured temperature signal, and also counts a frequency signal relating to the resonance frequency signal f1 to output a time signal.

Description

【発明の詳細な説明】 1 〔発明の属する技術分野〕 本発明は、水晶振動子を利用して温度を検出する温度セ
yi省関′讐るものである。更に詳しくは、□ び 、
・□ ″ ・ 、□、、1゜本発明は、温度表示ととも
に時刻表示を行なうととのできる温度センサに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION 1 [Technical Field to which the Invention Pertains] The present invention is directed to a temperature sensor that detects temperature using a crystal resonator. For more details, □ and
・□ ″ ・ , □, , 1° The present invention relates to a temperature sensor that can display the time as well as the temperature.

青門来技術〕 □ □パ従来公iの水晶振動子を利用した温度センナとして
、特開昭57−26725号公報に記載されているも1
1 のがある。
Seimonrai Technology] □ □A temperature sensor using a conventional crystal resonator is described in Japanese Patent Application Laid-Open No. 57-26725.
There is 1.

□1 °−り□・、り′門得茗温門9影響を受けない基準水晶
振動子との2個の壺晶振動子で構成されている。
□1 °-ri□・, ri'montokumeionmon9 Consists of two pot crystal oscillators and a reference crystal oscillator that is not affected.

水晶は周知−通石結晶□異方性を有しているので、切り
tb L’角′番i当に選択するととKよって、温度□
係数番大き七゛することも、零に近い値にすること永+
き―゛。こ゛の装置においては、測温水晶振動子i、と
の一一係□数が大きなものを、基準水晶振動子は、温度
係数が零のものが使用され、高分解能。
Quartz has a well-known anisotropy, so if you select the cut tb L'angle' number i, then the temperature □
The coefficient number can be increased to 7, or it can be set to a value close to zero.
Ki-゛. In this device, a temperature-measuring crystal oscillator i is used with a large coefficient of coefficient □, and a reference crystal oscillator is used with a temperature coefficient of zero, resulting in high resolution.

高安定性1周波数出力等の特徴がある。Features include high stability and single frequency output.

しかしながら、この様な構成の従来装置においては、2
個の水晶振動子が必要で、構成が複雑であること、2個
の水晶振動子間の温度差を一定に維持するか、基準水晶
振動子の温度特性が完全に零にしないと誤差が生ずるこ
と等の欠点がある。
However, in a conventional device with such a configuration, 2
Errors occur unless the temperature difference between the two crystal oscillators is kept constant or the temperature characteristics of the reference crystal oscillator are completely zero. There are drawbacks such as:

〔本発明の目的〕[Object of the present invention]

本発明け、従来装置におけるこの様な欠点に鑑みてなさ
れたもので、構成が簡単で、高分解能の温度表示と時刻
表示とが行なえる低消費電力の温度センナを実現しよ2
と、するものである・〔本発明の概要〕 本発明に係る装置は、ひとつの水晶振動子を用い、これ
に屈曲振動とねじり振動とを同時に行なわせ、得られた
2種の周波数信号の比を演算することによって温度を検
出するとともに、屈曲振動の共振周波数信号を分周して
時刻表示を行なわせる点に特徴がある。
The present invention has been made in view of these drawbacks of conventional devices, and aims to realize a low power consumption temperature sensor that has a simple configuration, can display high resolution temperature and time.
[Summary of the present invention] The device according to the present invention uses one crystal resonator, causes it to simultaneously perform bending vibration and torsional vibration, and generates two types of frequency signals obtained. The device is characterized in that temperature is detected by calculating a ratio, and the time is displayed by dividing the resonance frequency signal of the bending vibration.

〔実施例〕〔Example〕

第1図は本発明に係る温度センナの一例を示す構成プロ
、り図である。図において、1は測定温度個所に設置さ
れる水晶振動子で、水晶の2板から、ここでは音叉状の
形状に製作したものを示す。
FIG. 1 is a structural diagram showing an example of a temperature sensor according to the present invention. In the figure, reference numeral 1 denotes a crystal resonator installed at a temperature measurement location, which is manufactured from two crystal plates into a tuning fork shape.

この水晶振動子には、図示して々いがこれを励振させる
励振電極と、振動を検出するための検出電・極とが設け
られている。水晶振動子1は、例えば、厚さtが0.0
25〜0.2 mmm程度1腕腕1a lbの長さtが
2.5〜20 mm (:LOO,t )程度、両腕1
a、 lbの幅Wが0.05〜0.5mm程度の大きさ
であって、形状の製作及び各電極の形成は、ホトリソグ
ラフ8工。
This crystal oscillator is provided with an excitation electrode for exciting it and a detection electrode/pole for detecting vibration, as shown in the figure. For example, the crystal resonator 1 has a thickness t of 0.0
Approximately 25 to 0.2 mm, 1 arm, arm 1a, lb length t, approximately 2.5 to 20 mm (:LOO,t), both arms 1
The width W of a and lb is approximately 0.05 to 0.5 mm, and the manufacturing of the shape and the formation of each electrode required 8 photolithography steps.

アンプの技術を利用して行なわれる。21.22はml
動検出電極に結合するフィルタ回路で、一方のフィルタ
回路21は、水晶振動子1の屈曲振動周波数f1が通過
する低域フィルタであシ、他方のフィルタ回路22け、
水晶振動子1のねじシ振動周波数f2が通過する帯域フ
ィルタとなっている。31.32a各フィルタ回路21
.22からの周波数信号を増幅するアンプ、4け各アン
プ31.32がらの信号を加算し、この加算信号を励振
用の電極に出方する加算回路である。
This is done using amplifier technology. 21.22 is ml
Among the filter circuits coupled to the motion detection electrodes, one filter circuit 21 is a low-pass filter through which the bending vibration frequency f1 of the crystal resonator 1 passes, and the other filter circuit 22 is
It serves as a bandpass filter through which the screw vibration frequency f2 of the crystal resonator 1 passes. 31.32a Each filter circuit 21
.. This is an adder circuit that adds the signals from each of the four amplifiers 31 and 32, and outputs this added signal to the excitation electrode.

低域フィルタ回路21、アンプ31、加算回路4を含ん
で形成され、・°るループは、水晶振動子1を屈曲振動
させる自励発振ループ08C1を構成し、低域フィルタ
回路22、アンプ32、カシ算回路4を含んで形成され
るループは、水晶振動子1を、ねじシ振動させる自励発
振ループ08C2を構成している。
The loop formed including the low-pass filter circuit 21, the amplifier 31, and the adder circuit 4 constitutes a self-excited oscillation loop 08C1 that bends the crystal resonator 1, and includes the low-pass filter circuit 22, the amplifier 32, The loop formed including the pulse calculation circuit 4 constitutes a self-excited oscillation loop 08C2 that causes the crystal resonator 1 to vibrate in a circular motion.

5は2つの自励発振ループ08CI、 08C2から得
られる周波数信号f□、f2を入力し、両者の比を演算
する演算表示回路で、ここでは周波数信号f□を分周す
る分周器51と、分周器51からの信号によってゲート
52が開となっている間、周波数信号f2を計数するカ
ウンタ531.カウンタ53.の計竺値を入力し、所′
定の演算を行なって温壺信i!表示する温度表示器54
及び分周器51からの信号を計数し時豐表示を行なう時
刻表示器55と、で−成されている。
5 is an arithmetic and display circuit that inputs the frequency signals f□ and f2 obtained from the two self-excited oscillation loops 08CI and 08C2 and calculates the ratio between the two; here, a frequency divider 51 that divides the frequency signal f□; , a counter 531 . . . which counts the frequency signal f2 while the gate 52 is open due to the signal from the frequency divider 51 . Counter 53. Enter the estimated value of
After performing certain calculations, it is safe to say! Temperature display 54 to display
and a time display 55 that counts the signal from the frequency divider 51 and displays the hour.

第2図は、水晶振動子1の屈曲振動の説明図である。音
叉状の水晶振動子1の両腕1a、 lbが矢印■に示す
ように振動(振動モードは対称振動)するのが屈曲振動
であって、その共振周波数f工は、振動子1の各寸法を
図示するようKとれば、(1)式%式% ( ただし、α:固有竺 、 k:補男係数 ρ:水晶振動子の密度 S2□:水晶振動子のヤング率に関連した値 S′44:水晶振動子のねじシ剛性に関連した値 。
FIG. 2 is an explanatory diagram of the bending vibration of the crystal resonator 1. Flexural vibration is when the arms 1a and lb of the tuning fork-shaped crystal oscillator 1 vibrate as shown by the arrow (■) (the vibration mode is symmetrical vibration), and its resonant frequency f depends on each dimension of the oscillator 1. If we take K as shown in the diagram, we obtain the formula (1)% formula % (where α: characteristic coefficient, k: complementary coefficient ρ: density of crystal resonator S2□: value related to Young's modulus of crystal resonator S' 44: Value related to screw rigidity of crystal resonator.

第3図は、水晶振動子、1のねじシ振動の説明図である
。音叉状振動子1の両腕1ユ、 lbが矢印■に、示す
ように振動(振動モードは対称でも非対称でもよい)ス
るのがねじシ振動であって、その共振周波数f2は、(
2)式で表わすことができる。
FIG. 3 is an explanatory diagram of screw vibration of the crystal resonator 1. Both arms 1 and lb of the tuning fork-shaped vibrator 1 vibrate (the vibration mode may be symmetrical or asymmetrical) as shown by the arrow ■, which is screw vibration, and its resonant frequency f2 is (
2) It can be expressed by the following equation.

(2) ただし、β:固有値 Sム:水晶振動子のねじり剛性に関連したた値 n:振動モードの次数 本発明においては、水晶振動子1を作る水晶基板として
、2板(2カツト板)を基準として、1回目の回転がX
軸に対して±10@、 Y軸に対して±10’の範囲の
ものを使用するものである。
(2) However, β: Eigenvalue Sm: Value related to torsional rigidity of the crystal resonator n: Order of vibration mode In the present invention, two crystal substrates (two cut plates) are used for making the crystal resonator 1. Based on , the first rotation is
A range of ±10@ for the axis and ±10' for the Y axis is used.

第4図は、水晶振動子1を前記した水晶基板で音叉状に
作シ、これを屈曲振動させた場合の共振周波数f1の温
度特性を示す線図である。
FIG. 4 is a diagram showing the temperature characteristics of the resonant frequency f1 when the crystal resonator 1 is made in the shape of a tuning fork using the above-mentioned crystal substrate and subjected to bending vibration.

この線図において、屈曲振動の共振周波数f工の温度に
対する変化は全体として小さく、特に20℃〜30Cの
常温付近での温度係数α、は非常に小さくなり、例えば
α1−0・O4ppm/℃2程度となる。
In this diagram, the change in the resonant frequency f of bending vibration with respect to temperature is small overall, and in particular the temperature coefficient α near normal temperature of 20°C to 30°C is very small, for example α1-0・O4ppm/°C2 It will be about.

ここで、2次以後の温度係数を無視すれば、屈曲振動の
共振周波数f1と、屈曲振動の1次温度係数α1とは、
温度Tに対して(3)式に示す関係がある。
Here, if we ignore the temperature coefficients after the second order, the resonance frequency f1 of the bending vibration and the first order temperature coefficient α1 of the bending vibration are:
For temperature T, there is a relationship shown in equation (3).

f1111fo□(1+α□(T−To) l (s>
ただしf。1:温度T。の時の屈曲振動の周波数また、
f□は(1)式から明らかなように、形状寸法W/Z等
によっても変わるもので、これらを特定な値に選定する
ことKよシ、f工を温度T。において、2nに相当する
例えば32.768 kHzとすることができる。
f1111fo□(1+α□(T-To) l (s>
However, f. 1: Temperature T. The frequency of bending vibration when
As is clear from equation (1), f□ changes depending on the shape and dimensions W/Z, etc., and it is important to select these to specific values. For example, it can be set to 32.768 kHz, which corresponds to 2n.

第5図は、前記の水晶振動子1をねじり振動させた場合
の共振周波数12の温度特性を示す線図であるO この線図において、ねじり振動の共振周波数f2の温度
に対する変化は、直線的に変化し、その温度係数α2ハ
、水晶振動子の寸法形状を例えばt/w#0.4+ 1
= 2.5mmとした場合、α2= 40ppm /’
c程度となる。
FIG. 5 is a diagram showing the temperature characteristics of the resonant frequency 12 when the crystal resonator 1 is subjected to torsional vibration. In this diagram, the change in the resonant frequency f2 of torsional vibration with respect to temperature is linear. For example, the size and shape of the crystal resonator are t/w#0.4+1.
= 2.5mm, α2 = 40ppm /'
It will be about c.

第1図において、水晶振動子1は、2つの自励発振ルー
プ08CI、 08C2によって、屈曲振動と、ねしり
振動とを同時に行ない、各自励発振ループ09CI、 
08C2から周波数信号f工と、f2とを出力する。
In FIG. 1, the crystal resonator 1 simultaneously performs bending vibration and torsional vibration through two self-excited oscillation loops 08CI and 08C2, and each self-excited oscillation loop 09CI,
08C2 outputs frequency signals f and f2.

通常、ねじシ振動の共振周波数f2け、屈曲振動の共振
周波数でよよりも高< (f2 > fl )、これら
の周波数信号は低域フィルタ回路21と、帯域フィルタ
回路22とによって分離され、i自励発振ループは互い
に非同期で自励発振を接続する。
Usually, the resonant frequency f2 of screw vibration is higher than the resonant frequency of bending vibration (f2 > fl), and these frequency signals are separated by a low-pass filter circuit 21 and a bandpass filter circuit 22, and i The self-oscillation loop connects the self-oscillations asynchronously to each other.

演算表示回路5け、各自励発振ループ05C1。5 calculation display circuits, each with self-excited oscillation loop 05C1.

08C2からの周波数信号f□、f2を入力し、(5)
式のような演算を行なう。すなわち、第1図の例では、
カウンタ53の計数値(演算結果)Vcは(5)式の通
シとなる。
Input frequency signals f□ and f2 from 08C2, (5)
Performs expression-like operations. That is, in the example of Figure 1,
The count value (calculation result) Vc of the counter 53 is the result of equation (5).

2 (5) fま ただし、k:分周器51の分局率によシ決まる定数 (5)式において、(3)式、(4)式を代入すると、
(6)式が得られる。
2 (5) where f is a constant determined by the division ratio of frequency divider 51 In equation (5), substituting equations (3) and (4), we get
Equation (6) is obtained.

(6)式を整理すると、(7)式が得られる。When formula (6) is rearranged, formula (7) is obtained.

演算表示回路54は、(7)式に示す演算を行ない、こ
の演算結果を測定温度Tとして表示する。また゛時刻表
示回路55は、分周器51からの信号f /kを入力し
、これを計数して時刻表示を行なう。
The calculation display circuit 54 performs the calculation shown in equation (7) and displays the calculation result as the measured temperature T. Further, the time display circuit 55 receives the signal f/k from the frequency divider 51, counts it, and displays the time.

・なお、上記の説明では、説明を簡略化するために、屈
曲振動とねじれ振動の各温度係数の2次係数以後を省略
したが、これらの係数を考慮して演算を行なえば、更に
正確な温度信号を得ることができる。
・In the above explanation, in order to simplify the explanation, we have omitted the second-order coefficients and subsequent temperature coefficients for bending vibration and torsional vibration, but if we take these coefficients into consideration, we can obtain even more accurate calculations. A temperature signal can be obtained.

第6図は、水晶振動子1を封入する場合の一例を示す構
成斜視図である。
FIG. 6 is a perspective view showing an example of the structure in which the crystal resonator 1 is enclosed.

この例では、水晶振動子1を真空又けHe、Arあるい
はN2などの活性の低いガスを封入した容器6内に設置
したものである。
In this example, a crystal resonator 1 is placed in a container 6 filled with a gas with low activity such as He, Ar, or N2 across a vacuum.

第7図及び第8図は水晶振動子1に設ける電極の形成例
を示したもので、■ずれも(a)は斜視図、(b)は(
、)図におけるx−X断面図である。
7 and 8 show examples of forming electrodes provided on the crystal resonator 1, in which (a) is a perspective view and (b) is a (
, ) is a sectional view taken along line xx in the figure.

いずれのものも、水晶振動子1の両腕の両表面に、互い
に平行して並ぶ対向電極15.16及び17゜18を形
成させたものである。周知のように水晶は弾性体であシ
、シかも圧電体であることから、例えば電極15.16
間に加算回路4からの励振信号を与えることによって屈
曲振動及びねじり振動をし、また、電極17.18間に
は水晶振動子1の振動に応じた電圧信号が発生する。 
In each case, opposing electrodes 15, 16 and 17° 18 are formed on both surfaces of both arms of the crystal resonator 1 in parallel to each other. As is well known, crystal is an elastic material, and is also a piezoelectric material.
By applying an excitation signal from the adder circuit 4 between them, bending vibration and torsional vibration are caused, and a voltage signal corresponding to the vibration of the crystal resonator 1 is generated between the electrodes 17 and 18.
.

なお、電極は6腕1a、 lbの側面に設けてもよい。Note that the electrodes may be provided on the sides of the six arms 1a and lb.

また、水晶振動子1の形状は、音叉形でなくともよく、
例えば両極自由な棒状の形状でもよい。
Further, the shape of the crystal resonator 1 does not have to be a tuning fork shape,
For example, it may have a rod-like shape with free polarity.

〔本発明の効果〕[Effects of the present invention]

以上説明したように、本発明は、2板を基準として、1
回目の回転がX軸に対して±10’、Y軸に対して±1
0°の範囲の水晶基板から作ったひとつの水晶振動子を
使用するもので、構成が簡単で、かつ、正確な時刻表示
が行なえる消費電力の少ない温度センサが実現できる。
As explained above, the present invention is based on two boards, and one
The second rotation is ±10' for the X axis and ±1 for the Y axis.
By using a single crystal resonator made from a 0° range crystal substrate, a temperature sensor with a simple configuration, accurate time display, and low power consumption can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の一例を示す構成ブロック図
、第2図は水晶振動子の屈曲振動の説明図、第3図は水
晶振動子のねじり振動の説明図、第4図は本発明におい
て用いられている水晶振動子の屈曲振動の共振周波数f
1と温度との関係を示す線図、第5図はねじり振動の共
振周波数f2と温度との関係を示す線図、第6図は水晶
振動子を封入する場合の一例を示す構成斜視図、第7図
及び第8図は水晶振動子に設ける電極の形成例を示す説
明図である。 1・・・水晶振動子、0sc1.osc2・・・自励発
振ループ、4・・・加算回路、5・・・演算表示回路。
Fig. 1 is a configuration block diagram showing an example of the device according to the present invention, Fig. 2 is an explanatory diagram of bending vibration of a crystal resonator, Fig. 3 is an explanatory diagram of torsional vibration of a crystal resonator, and Fig. 4 is an illustration of the present invention. Resonance frequency f of bending vibration of the crystal oscillator used in the invention
5 is a diagram showing the relationship between the resonant frequency f2 of torsional vibration and temperature, FIG. 6 is a perspective view of the configuration showing an example of a case where a crystal resonator is enclosed, FIGS. 7 and 8 are explanatory diagrams showing examples of forming electrodes provided on a crystal resonator. 1...Crystal resonator, 0sc1. osc2...Self-excited oscillation loop, 4...Addition circuit, 5...Calculation display circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)zカット水晶板をX@<対して±10°、Y軸に
対して±10″それぞれ回転させた水晶基板から作られ
た測定温度個所に設置される水晶振動子、この水晶振動
子誉含み当該水晶振動子を屈曲振動させる鯖1の自励発
振ループ、自励発振ループから得ら五る共振周波数信号
f1と前記第2の自励iループから得られる共振周波数
信号f2を入力し画周波数信号の比□ ′□ を込る演
算を含む所定の演算を行ない測定温度信号を出力すると
ともに、前記共振周波数信号f□に関連した周波数信号
を計数し時刻信号を出力する演算表示1路を具備した温
度センサ。
(1) A crystal resonator installed at the measurement temperature point made from a crystal substrate made by rotating a z-cut crystal plate by ±10° with respect to X@< and ±10″ with respect to the Y axis, this crystal resonator Input the resonant frequency signal f1 obtained from the self-excited oscillation loop of the mackerel 1 that bends and vibrates the crystal resonator, the resonant frequency signal f1 obtained from the self-excited oscillation loop, and the resonant frequency signal f2 obtained from the second self-excited i-loop. 1 calculation display circuit that performs predetermined calculations including calculations involving the ratio □ ′□ of image frequency signals and outputs a measured temperature signal, and also counts frequency signals related to the resonance frequency signal f□ and outputs a time signal; Temperature sensor equipped with
(2)水晶振動子の厚さを0.025〜0.2mmの範
囲にした特許請求の範囲第1項の温度センサ
(2) The temperature sensor according to claim 1, in which the thickness of the crystal oscillator is in the range of 0.025 to 0.2 mm.
JP24052083A 1983-12-20 1983-12-20 Temperature sensor Pending JPS60131434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24052083A JPS60131434A (en) 1983-12-20 1983-12-20 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24052083A JPS60131434A (en) 1983-12-20 1983-12-20 Temperature sensor

Publications (1)

Publication Number Publication Date
JPS60131434A true JPS60131434A (en) 1985-07-13

Family

ID=17060744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24052083A Pending JPS60131434A (en) 1983-12-20 1983-12-20 Temperature sensor

Country Status (1)

Country Link
JP (1) JPS60131434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010675A (en) * 1999-11-02 2007-01-18 Eta Sa Manufacture Horlogere Suisse Temperature compensating mechanism of micromechanical ring vibrator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594122A (en) * 1979-01-12 1980-07-17 Yokogawa Hokushin Electric Corp Thermometer
JPS56158928A (en) * 1980-05-13 1981-12-08 Seiko Instr & Electronics Ltd Temperature detector
JPS5797419A (en) * 1980-12-10 1982-06-17 Seiko Epson Corp Quartz thermometer
JPS58166230A (en) * 1982-03-26 1983-10-01 Miyota Seimitsu Kk Quartz thermometer
JPS58166229A (en) * 1982-03-26 1983-10-01 Miyota Seimitsu Kk Crystal oscillator
JPS58206935A (en) * 1982-04-30 1983-12-02 Yokogawa Hokushin Electric Corp Crystal thermometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594122A (en) * 1979-01-12 1980-07-17 Yokogawa Hokushin Electric Corp Thermometer
JPS56158928A (en) * 1980-05-13 1981-12-08 Seiko Instr & Electronics Ltd Temperature detector
JPS5797419A (en) * 1980-12-10 1982-06-17 Seiko Epson Corp Quartz thermometer
JPS58166230A (en) * 1982-03-26 1983-10-01 Miyota Seimitsu Kk Quartz thermometer
JPS58166229A (en) * 1982-03-26 1983-10-01 Miyota Seimitsu Kk Crystal oscillator
JPS58206935A (en) * 1982-04-30 1983-12-02 Yokogawa Hokushin Electric Corp Crystal thermometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010675A (en) * 1999-11-02 2007-01-18 Eta Sa Manufacture Horlogere Suisse Temperature compensating mechanism of micromechanical ring vibrator

Similar Documents

Publication Publication Date Title
JPS60239638A (en) Resonator temperature transducer and resonator temperature measuring device
JPS593695B2 (en) crystal thermometer
JPS60131434A (en) Temperature sensor
Schmitt et al. Bulk acoustic wave modes in quartz for sensing measurand-induced mechanical and electrical property changes
JPS62190905A (en) Surface acoustic wave device
JPS6129652B2 (en)
US4234812A (en) Thickness-width shear quartz crystal vibrator
JPS60131433A (en) Temperature sensor
JPH0434090B2 (en)
JPH02293620A (en) Vibration gyro
JPS6326853B2 (en)
Nosek et al. Quartz strip resonators as a temperature sensor
JP3401112B2 (en) Oscillation circuit for piezoelectric crystal oscillation type film thickness meter
JPS6039911A (en) Electrode structure of tuning fork type piezoelectric bending vibrator
JPS60196634A (en) Crystal thermometer
JPS61138131A (en) Crystal thermometer
JPH03243840A (en) Temperature compensation system for piezoelectric vibrator type pressure sensor
JPH035876Y2 (en)
JPS59153130A (en) Vibration type transducer
JP3732602B2 (en) Energy-confined piezoelectric vibration gyroscope
JP2003023339A (en) Quartz vibrator
JPH06174476A (en) Rotation angular velocity sensor
JPS59128405A (en) Crystal strain gage
JPS58155321A (en) Surface wave device for temperature sensor
JPS60130904A (en) Frequency signal output device