JPS61138131A - Crystal thermometer - Google Patents

Crystal thermometer

Info

Publication number
JPS61138131A
JPS61138131A JP26146484A JP26146484A JPS61138131A JP S61138131 A JPS61138131 A JP S61138131A JP 26146484 A JP26146484 A JP 26146484A JP 26146484 A JP26146484 A JP 26146484A JP S61138131 A JPS61138131 A JP S61138131A
Authority
JP
Japan
Prior art keywords
temperature
crystal resonator
insertion loss
crystal
arithmetic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26146484A
Other languages
Japanese (ja)
Inventor
Toshitsugu Ueda
敏嗣 植田
Fusao Kosaka
幸坂 扶佐夫
Toshio Iino
俊雄 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP26146484A priority Critical patent/JPS61138131A/en
Publication of JPS61138131A publication Critical patent/JPS61138131A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To measure the temperature with high precision and high resolution in a very low temperature area by utilizing the insertion loss of a crystal resonator having the large temperature coefficient in the very low temperature area and improving the temperature resolution. CONSTITUTION:A crystal thermometer is composed of the crystal resonator 1 with about 40kHz of the natural frequency through a production process of photolithography, an AGC amplifier 2 generating the self-excited vibration for this crystal resonator 1, a counter 3 detecting the resonant frequency of the crystal resonator 1, an arithmetic circuit 4 detecting the insertion loss and an arithmetic circuit 5, etc. calculating the ambient temperature. Then, the crystal resonator 1 generates the self-excited vibration by the amplifier 2 and makes the bending vibration and the counter 3 detects its resonant frequency and the arithmetic circuit 4 detects the insertion loss. Further, the arithmetic circuit 5 calculates the ambient temperature from the natural frequency and in case the temperature is lower than 20 deg.K, the temperature can be measured with high precision by calculating the ambient temperature based on the insertion loss.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水晶振動子の共振周波数の変化を利用して周
囲温度の計測を行なう水晶I1度計の測定範囲の改善に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in the measurement range of a quartz I1 degree meter that measures ambient temperature by utilizing changes in the resonance frequency of a quartz crystal resonator.

(従来の技術) 水晶振動子の共振周波数の変化を利用して周囲温度の計
測を行なう場合、極低温領域で周波数縮度係数は水晶の
カットアングルや振動姿態に拘らず小さくなるため、こ
の領域での高精度濃度計測は困難である。
(Prior art) When measuring ambient temperature using changes in the resonant frequency of a crystal resonator, the frequency contraction coefficient becomes small in the extremely low temperature region regardless of the cut angle or vibration mode of the crystal. High precision concentration measurement is difficult.

(発明が解決しようとする@照点) 本発明は上記の問題点を解決するためになされたもので
、極低温領域を含めた広範囲のfA度領領域高精度の温
度計測が可能な水晶温度計を実現することを目的として
いる。
(@Illustration point to be solved by the invention) The present invention was made to solve the above problems, and the crystal temperature enables high-precision temperature measurement in a wide range of fA degrees including the cryogenic region. The aim is to realize the goal.

(問題点を解決するための手段) 本発明の水晶温度計は、水晶振動子と、この水晶振動子
に自励振動を発生させる手段と、前記水晶振動子の共振
周波数を検出する手段と、前記水晶振動子の挿入損失を
検出する手段と、水晶撮動子の共振周波数と挿入損失か
ら温度を演算する演算手段とを具備し、水晶撮動子の共
振周波数と挿入損失から温度を計測することを特徴とす
る。
(Means for Solving the Problems) A crystal thermometer of the present invention includes a crystal resonator, means for generating self-excited vibration in the crystal resonator, and means for detecting a resonant frequency of the crystal resonator. The method includes means for detecting insertion loss of the crystal resonator, and calculation means for calculating temperature from the resonant frequency and insertion loss of the crystal sensor, and measures temperature from the resonant frequency and insertion loss of the crystal sensor. It is characterized by

(作用) 本発明の構成によれば、極低温領域において大きな温度
係数を有する水晶振動子の挿入損失を利用することによ
り、極低温領域においても高精度高分解能の温度計測を
行なうことができる。
(Function) According to the configuration of the present invention, by utilizing the insertion loss of the crystal resonator having a large temperature coefficient in the cryogenic temperature range, it is possible to perform temperature measurement with high precision and high resolution even in the cryogenic temperature range.

(実施例) 以下本発明を図面を用いて詳しく説明する。(Example) The present invention will be explained in detail below using the drawings.

第1図は本発明に係る水晶温度計の一実施例を示すブロ
ック構成図である。1はフォトリソグラフィの工程を経
て製作した固有振動数的40 K 1−12の水晶振動
子、2はこの水晶振動子1の入出力端子間に接続し自励
振を発生させるAGO増幅器、3はこのAGC増幅器2
の出力信号を入力して水晶振動子の共振周波数を検出す
るカウンタ、4は前記水晶振動子の入出力信号から前記
水晶撮動子の挿入損失を検出する演算回路、5は前記カ
ウンタ3および演算器4の出力から周囲温度を算出する
第2の演算回路、6はこの演算回路からの温度出力を表
示する表示手段である。
FIG. 1 is a block diagram showing an embodiment of a crystal thermometer according to the present invention. 1 is a crystal resonator with a natural frequency of 40K 1-12 manufactured through a photolithography process, 2 is an AGO amplifier connected between the input and output terminals of this crystal resonator 1 to generate self-oscillation, and 3 is this AGC amplifier 2
4 is an arithmetic circuit that detects the insertion loss of the crystal sensor from the input/output signal of the crystal oscillator; 5 is the counter 3 and an arithmetic operation circuit; A second arithmetic circuit 6 calculates the ambient temperature from the output of the device 4, and 6 is a display means for displaying the temperature output from this arithmetic circuit.

このような構成の装置の動作を次に説明する。The operation of the device having such a configuration will be explained next.

水晶振動子1とAGO(Automatic  Ga1
n  Control)増幅器2とで形成される正帰還
ループにより水晶振動子1はその周囲温度に対応する共
振周波数で自励振を発生する。この結果水晶振動子1は
屈曲振動(バルク振動の一種)を行なう。カウンタ3は
このAGC増幅器2の出力信号vOの周波数を検出する
。演算回路4はiiO記AGC増幅器2の入力信号vL
および出力信号VaからV L / V oを求め前記
水晶振動子1において生じる挿入損失を検出する。演算
回路5は第1の温度領域、(後述)において前記カウン
タ3から出力される水晶撮動子の共振周波数に基づいて
周囲温度を演算するとともに、第2の温度領域(I述)
において前記演算器4がら出力される挿入損失に基づい
て周囲温度を演算する。表示手段6はこの演算回路5の
出力内容を表示する。
Crystal unit 1 and AGO (Automatic Ga1
The crystal resonator 1 generates self-oscillation at a resonant frequency corresponding to its ambient temperature due to the positive feedback loop formed with the amplifier 2. As a result, the crystal resonator 1 performs bending vibration (a type of bulk vibration). Counter 3 detects the frequency of output signal vO of AGC amplifier 2. The arithmetic circuit 4 receives the input signal vL of the AGC amplifier 2 described in iiO.
Then, V L /V o is determined from the output signal Va, and the insertion loss occurring in the crystal resonator 1 is detected. The calculation circuit 5 calculates the ambient temperature based on the resonance frequency of the crystal sensor output from the counter 3 in a first temperature range (described later), and also calculates the ambient temperature in a second temperature range (described in I).
Ambient temperature is calculated based on the insertion loss output from the calculation unit 4. The display means 6 displays the output contents of the arithmetic circuit 5.

第2図は第1図の水晶Tx勤子1の周波数変化率一温度
特性および挿入損失一温度特性を示す特性曲線図である
。通常水晶の固、有撮動数と挿入損失は無関係であるが
、低温領域において角速度(2π×固有振動数)とフォ
ノン散乱、熱緩和などの緩和時間の積が1になる付近で
大きな吸収ピークが生じる。このため周囲湿度20°に
以下で挿入損失の変化が特に急峻となっており、この部
分を以下に示すように温度計測の一つのパラメータとし
て利用すれば、温度分解能を向上させることができる。
FIG. 2 is a characteristic curve diagram showing the frequency change rate-temperature characteristic and the insertion loss-temperature characteristic of the crystal Tx shifter 1 of FIG. 1. Normally, the natural and active numbers of crystals are unrelated to insertion loss, but in the low temperature region there is a large absorption peak near the product of angular velocity (2π x natural frequency) and relaxation time of phonon scattering, thermal relaxation, etc. occurs. Therefore, the change in insertion loss becomes particularly steep when the ambient humidity is below 20°, and if this portion is used as one parameter for temperature measurement as shown below, temperature resolution can be improved.

第2図における水晶振動子の固有撮動数fと周囲温度T
、および挿入損失■と周囲温度Tの間の関係は次の(1
)(2)式のように表わすことができる。
Specific motion number f of the crystal resonator and ambient temperature T in Figure 2
, and the relationship between insertion loss ■ and ambient temperature T is as follows (1
) (2).

f=ΣAnT”    ”(1) ■−ΣBnT”    −(2> 但し、An 、 Bn  (n、= 1 、2.−)は
カットアングルや振動姿態で決まる定数である。ここで
af/aTは20’ K以下では小さくなるので、測定
分解能が低下する。しかしこの領域ではal/aTが大
きな値となるので■の値から温度を決定すれば測定分解
能を低下させないで済む。
f=ΣAnT""(1)■-ΣBnT"-(2> However, An, Bn (n, = 1, 2.-) are constants determined by the cut angle and vibration mode.Here, af/aT is 20 ' Below K, the measurement resolution decreases.However, in this region, al/aT takes a large value, so if the temperature is determined from the value of ■, the measurement resolution does not decrease.

第1図の演算回路5ではまず固有撮動数fから温度Tを
計算する。この温度Tがあらかじめ定められた温度To
  (上記の実施例では20’ K>より高い場合、そ
の演算結果を表示器6に出力するが、温度Toより低い
場合、挿入損失■から温度を演算しその結果を表示器6
に出力する。このときの固有振動数f、挿入損失■から
温度への換算式は(1)、(2)式の逆関数であり、必
要な精度を満足する多項式で(3)、(4)式のように
表わされる。
The arithmetic circuit 5 in FIG. 1 first calculates the temperature T from the specific imaging number f. This temperature T is a predetermined temperature To
(In the above embodiment, if the temperature is higher than 20'K>, the calculation result is output to the display 6, but if it is lower than the temperature To, the temperature is calculated from the insertion loss ■ and the result is output to the display 6.
Output to. At this time, the conversion formula from natural frequency f and insertion loss ■ to temperature is an inverse function of equations (1) and (2), and is a polynomial that satisfies the required accuracy as shown in equations (3) and (4). is expressed in

T=ΣAn′f”    ・=(3) T=Σan I”    −(4) 温度測定範囲が広い場合の関数近似にはスプライン関数
などが有用である。
T=ΣAn′f”·=(3) T=Σan I”−(4) A spline function or the like is useful for function approximation when the temperature measurement range is wide.

なお上記の実施例において、演算回路4はAGC増幅器
の入出力信号を用いて挿入損失を求めているが、AGC
増幅器の出力信号VOの振幅は−定に保たれているから
入力信号vLのみを用いて行なうこともできる。
In the above embodiment, the arithmetic circuit 4 calculates the insertion loss using the input/output signals of the AGC amplifier.
Since the amplitude of the output signal VO of the amplifier is kept constant, it is also possible to perform the process using only the input signal vL.

また上記の実施例では温度T0を境として共振周波数f
およびこ挿入損失Iを使い分けているが、両者を協調さ
せて使用することもできる。
Further, in the above embodiment, the resonant frequency f is set at the temperature T0 as a boundary.
Although insertion loss I and insertion loss I are used separately, it is also possible to use both in coordination.

また上記の実施例では、水晶振動子のi動モードとして
屈曲振動を用いているが、これに限らず、厚みすべり1
輪郭、m振動などの各種バルク振動モードを利用できる
Furthermore, in the above embodiment, bending vibration is used as the i-mode of the crystal resonator, but the invention is not limited to this.
Various bulk vibration modes such as contour and m-vibration can be used.

(発明の効果) 以上述べたように本発明によれば、穫低温領域を含めた
広範囲の温度領域で高精度・高分解能の温度計測が可能
な水晶温度計を、1(6)の振動子を用いた簡単な構成
で実現することができる。
(Effects of the Invention) As described above, according to the present invention, a crystal thermometer capable of high-accuracy and high-resolution temperature measurement in a wide range of temperature ranges including the cryogenic temperature range can be used with one (6) oscillators. This can be realized with a simple configuration using .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる水晶温度計の一実施例を示す構
成ブロック図、第2図は第1図装置の動作を説明するた
めの特性曲線図である。 1・・・水晶撮動子、2・・・自励振動を発生させる手
段、3・・・共振周波数を検出する手段、4・・・挿入
損失を検出する手段、5・・・温度を演算する演算手段
。 第1図 第2図
FIG. 1 is a block diagram showing an embodiment of the crystal thermometer according to the present invention, and FIG. 2 is a characteristic curve diagram for explaining the operation of the device shown in FIG. 1... Crystal camera, 2... Means for generating self-excited vibration, 3... Means for detecting resonance frequency, 4... Means for detecting insertion loss, 5... Calculating temperature. calculation means. Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)水晶振動子と、この水晶振動子に自励振動を発生
させる手段と、前記水晶振動子の共振周波数を検出する
手段と、前記水晶振動子の挿入損失を検出する手段と、
水晶振動子の共振周波数と挿入損失から温度を演算する
演算手段とを具備し、水晶振動子の共振周波数と挿入損
失から温度を計測することを特徴とする水晶温度計。
(1) a crystal resonator, means for generating self-excited vibration in the crystal resonator, means for detecting the resonant frequency of the crystal resonator, and means for detecting insertion loss of the crystal resonator;
A crystal thermometer comprising a calculating means for calculating temperature from the resonant frequency and insertion loss of a crystal resonator, and measuring temperature from the resonant frequency and insertion loss of the crystal resonator.
(2)0°K〜20°Kまでは主として挿入損失を利用
し、20°K〜700°Kまでは主として共振周波数を
利用して温度を計測する特許請求の範囲第1項記載の水
晶温度計。
(2) Crystal temperature according to claim 1, in which the temperature is measured mainly by using insertion loss from 0°K to 20°K, and mainly by using resonance frequency from 20°K to 700°K. Total.
(3)水晶振動子のバルク振動を利用した特許請求の範
囲第1項記載の水晶温度計。
(3) The crystal thermometer according to claim 1, which utilizes bulk vibration of a crystal resonator.
(4)フォトリソグラフィを用いて製作された水晶振動
子を用いる特許請求の範囲第1項記載の水晶温度計。
(4) The crystal thermometer according to claim 1, which uses a crystal resonator manufactured using photolithography.
JP26146484A 1984-12-11 1984-12-11 Crystal thermometer Pending JPS61138131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26146484A JPS61138131A (en) 1984-12-11 1984-12-11 Crystal thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26146484A JPS61138131A (en) 1984-12-11 1984-12-11 Crystal thermometer

Publications (1)

Publication Number Publication Date
JPS61138131A true JPS61138131A (en) 1986-06-25

Family

ID=17362258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26146484A Pending JPS61138131A (en) 1984-12-11 1984-12-11 Crystal thermometer

Country Status (1)

Country Link
JP (1) JPS61138131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986670A (en) * 1988-11-19 1991-01-22 Agency Of Industrial Science & Technology Temperature measurement device
WO2022211935A1 (en) * 2021-03-31 2022-10-06 Microsoft Technology Licensing, Llc Temperature sensing of regions within a superconducting integrated circuit using in-situ resonators

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986670A (en) * 1988-11-19 1991-01-22 Agency Of Industrial Science & Technology Temperature measurement device
WO2022211935A1 (en) * 2021-03-31 2022-10-06 Microsoft Technology Licensing, Llc Temperature sensing of regions within a superconducting integrated circuit using in-situ resonators

Similar Documents

Publication Publication Date Title
US4535638A (en) Resonator transducer system with temperature compensation
US4741213A (en) Quartz-type gas pressure gauge
JPH112571A (en) Temperature measuring method and temperature measuring device operated at low-consumed current
US20040065485A1 (en) Electronic weighing apparatus utilizing surface acoustic waves
JPS61138131A (en) Crystal thermometer
KR100189223B1 (en) Method for measuring pressure using a tuning fork crystal oscillation
JPS6129652B2 (en)
JPS5895230A (en) Method and apparatus for electronic type temperature measurement
Dong et al. Self-temperature-testing of the quartz resonant force sensor
Kaya et al. Integrated temperature sensor for temperature compensation of inertial sensors
JPH03243840A (en) Temperature compensation system for piezoelectric vibrator type pressure sensor
JPS59128422A (en) Crystal thermometer
Möller et al. SAW resonator temperature sensor
JPS6326853B2 (en)
JPS60196634A (en) Crystal thermometer
JPH0641888B2 (en) SAW force sensor
JPH0257928A (en) Detecting method of temperature and temperature detector using quartz oscillator
JP2003106906A (en) Temperature measuring method
SU1435968A1 (en) Pressure transducer
Pulsford The analysis of binary gas mixtures by a sonic method
Langfelder et al. Temperature Sensing for MEMS Sensors: A Review, and Chances for the Frequency-Control Community
JPS60131433A (en) Temperature sensor
US4918372A (en) Method of measuring the thermal hysteresis of quartz crystal resonators
JPS6141925A (en) Crystal oscillation type electronic balance
JPH0321055B2 (en)