JPH0151135B2 - - Google Patents

Info

Publication number
JPH0151135B2
JPH0151135B2 JP24162983A JP24162983A JPH0151135B2 JP H0151135 B2 JPH0151135 B2 JP H0151135B2 JP 24162983 A JP24162983 A JP 24162983A JP 24162983 A JP24162983 A JP 24162983A JP H0151135 B2 JPH0151135 B2 JP H0151135B2
Authority
JP
Japan
Prior art keywords
cut
temperature
crystal
axis
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24162983A
Other languages
Japanese (ja)
Other versions
JPS60131435A (en
Inventor
Mitsuo Nakazawa
Naonori Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MYOTA SEIMITSU KK
Original Assignee
MYOTA SEIMITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MYOTA SEIMITSU KK filed Critical MYOTA SEIMITSU KK
Priority to JP24162983A priority Critical patent/JPS60131435A/en
Publication of JPS60131435A publication Critical patent/JPS60131435A/en
Publication of JPH0151135B2 publication Critical patent/JPH0151135B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal

Description

【発明の詳細な説明】 本発明は、広い温度範囲にわたり周波数−温度
特性が直線性を示し、感度の高い水晶温度センサ
ーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly sensitive quartz temperature sensor that exhibits linear frequency-temperature characteristics over a wide temperature range.

従来から水晶振動子の温度依存性を利用して温
度計を作ることが考えられていた。水晶は異方性
の六方晶系結晶で、物理的に非常に安定であり、
且つ、切り出される方位によつて多様な特性を示
す。
It has long been thought to make thermometers by exploiting the temperature dependence of crystal oscillators. Quartz is an anisotropic hexagonal crystal that is physically very stable.
Moreover, it exhibits various characteristics depending on the direction in which it is cut out.

もし、高い精度の直線的周波数−温度特性を持
ち、温度に対する感度の高い切り出し方位が見つ
かれば、すばらしい温度センサーとなる。
If a cutting direction with highly accurate linear frequency-temperature characteristics and high sensitivity to temperature can be found, it will become an excellent temperature sensor.

感温素子としての水晶温度センサーに要求され
るのは、 1 特性の温度依存性すなわち感度が大きいこ
と。
The requirements for a crystal temperature sensor as a temperature-sensitive element are: 1. High temperature dependence of characteristics, that is, high sensitivity.

2 特性のバラツキ及び経年変化が小さいこと 3 温度以外の物理量に対して鈍感なこと 4 適当な大きさであること 5 検出しやすい出力特性・量であること 6 機械的・化学的・熱的に強いこと 7 広い温度範囲で周波数−温度特性が直線性を
示すこと 等々である。この中で水晶振動子の特性として
2,3,4,5,6は全て従来技術でカバーされ
ている。現在実用化されている水晶温度センサー
は、周波数−温度特性が広い範囲で十分な直線性
が得られない。例えば5゜Yカツトと称する水晶温
度センサーは周波数−温度特性の直線性は0〜
100℃の範囲で3%、感度は94PPm/℃である。
LCカツトの水晶温度センサーの周波数−温度特
性の直線性は−40〜230℃の範囲で0.05%、感度
は36ppm/℃である。このため、これらの水晶温
度センサーを用いた温度計ではマイコンによる補
正をしなければならなかつた。
2. Small variations in characteristics and changes over time 3. Insensitive to physical quantities other than temperature 4. Appropriate size 5. Output characteristics and quantities that are easy to detect 6. Mechanically, chemically, and thermally Strong 7. Frequency-temperature characteristics exhibit linearity over a wide temperature range. Among these, characteristics 2, 3, 4, 5, and 6 of the crystal resonator are all covered by the conventional technology. Crystal temperature sensors currently in practical use do not have sufficient linearity over a wide range of frequency-temperature characteristics. For example, the linearity of the frequency-temperature characteristic of a crystal temperature sensor called 5°Y cut is 0~
3% in the range of 100°C, the sensitivity is 94PPm/°C.
The linearity of the frequency-temperature characteristic of LC Cut's crystal temperature sensor is 0.05% in the range of -40 to 230°C, and the sensitivity is 36ppm/°C. For this reason, thermometers using these crystal temperature sensors had to be corrected by a microcomputer.

本発明は、前記欠点に鑑みてなされたものであ
る。本発明における水晶温度センサーの水晶片は
2重回転の方位によつて切り出される。これは厚
味振動理論の計算により発見され応用された。
The present invention has been made in view of the above drawbacks. The crystal piece of the crystal temperature sensor in the present invention is cut out in a direction of double rotation. This was discovered and applied through calculations based on Atsushi vibration theory.

厚味振動においては、aモードと呼ばれる縦波
と、bモード、cモードと呼ばれる2つの横波が
存在する。この内bモードとcモードが周波数−
温度特性において、良好な直線性を示す。
In thickness vibration, there are a longitudinal wave called a mode and two transverse waves called b mode and c mode. Of these, b mode and c mode have a frequency of -
Shows good linearity in temperature characteristics.

水晶の薄板において、厚味振動モードの周波数
は、次式で与えられる。
In a thin crystal plate, the frequency of the thickness vibration mode is given by the following equation.

上式で、ρは密度、y0は水晶片の厚味、cは固
有値である。上式は、どの方位のカツトに対して
も温度Tに関して次の様にテーラー展開できる。(T)(T0){1+a(T−T0) +1/2β(T−T02+1/6γ(T−T03} 上式において、(T)は温度Tにおける周波数で
ありT0は基準温度である。α,β,γは夫々1
次、2次、3次の温度係数であり、次式で定義さ
れる。
In the above equation, ρ is the density, y 0 is the thickness of the crystal piece, and c is the eigenvalue. The above equation can be expanded as follows with respect to the temperature T for the cut in any direction. (T) = (T0) {1+a(T-T 0 ) +1/2β(T-T 0 ) 2 +1/6γ(T-T 0 ) 3 } In the above equation, (T) is the frequency at temperature T. T 0 is the reference temperature. α, β, γ are each 1
It is the second-order, second-order, and third-order temperature coefficient, and is defined by the following formula.

α=〔1/(T)・∂(T)/∂T〕T0 β=〔1/(T)・∂(T)/∂T2〕T0 γ=〔1/(T)・∂(T)/∂T3〕T0 第1図は水晶のカツト角を説明するための図で
あり、X軸、Y軸、Z軸は夫々水晶の電気軸、機
械軸、光軸である。Y軸に直交する平面に平行な
板(Y板)をZ軸の回りに角度φ回転し、新しく
できたX′軸の回りに角度θ回転する。
α=[1/(T)・∂(T)/∂T]T 0 β=[1/(T)・∂(T)/∂T 2 ]T 0 γ=[1/(T)・∂( T)/∂T 3 ]T 0 FIG. 1 is a diagram for explaining the cut angle of a crystal, and the X-axis, Y-axis, and Z-axis are the electrical axis, mechanical axis, and optical axis of the crystal, respectively. A plate parallel to a plane perpendicular to the Y-axis (Y-plate) is rotated by an angle φ around the Z-axis, and then rotated by an angle θ around the newly created X'-axis.

夫々、反時計方向に回転するものを正とする。 In each case, those rotating counterclockwise are positive.

第2図は、水晶片に発生する振動のCモード振
動において、α=0,β=0,γ=0になる点を
角度φと角度θの関係で表わした軌跡であり、厚
味振動理論により計算したものである。第2図か
ら判る様に、β=0の軌跡とγ=0の軌跡が交差
するのはθ=0゜,φ=4゜の近傍及びθ=0゜,φ=
−4゜の近傍であり、β=0の軌跡とγ=0の軌跡
が非常に接近するのはθ=31゜,φ=19゜の近傍及
びθ=31゜,φ=−19゜の近傍である。φ=0゜に対
して対称であるのは水晶の特徴であり、Z軸の回
りで3回対称とする。すなわち、本発明の説明で
は1つの角度だけを説明するがφに関して120゜ず
れたところは本発明と同一である。
Figure 2 shows the locus of the points where α=0, β=0, and γ=0 in the C-mode vibration of the vibration generated in the crystal piece, expressed by the relationship between the angle φ and the angle θ. It was calculated by As can be seen from Figure 2, the locus of β = 0 and the locus of γ = 0 intersect near θ = 0°, φ = 4° and at θ = 0°, φ =
-4°, and the locus of β = 0 and γ = 0 are very close to each other near θ = 31°, φ = 19° and in the vicinity of θ = 31°, φ = -19°. It is. It is a characteristic of crystal that it is symmetrical about φ=0°, and it is assumed to be 3-fold symmetrical about the Z axis. That is, in the description of the present invention, only one angle will be explained, but the part shifted by 120 degrees with respect to φ is the same as the present invention.

θ=0゜,φ=4゜近傍をNL−Oカツトと呼ぶこ
とにする。NL−Oカツトの代表的なカツト角と
してθ=−0゜20′,φ=4゜16′の時温度係数はα=
6.492444×10-5/℃ β=7.670672×10-13/℃2
γ=9.241893×10-17/℃3である。
The area around θ=0° and φ=4° will be called the NL-O cut. When θ=-0゜20' and φ=4゜16' as typical cut angles of NL-O cut, the temperature coefficient is α=
6.492444×10 -5 /℃ β=7.670672×10 -13 /℃ 2
γ=9.241893×10 -17 /℃ 3 .

従来技術による水晶温度センサーのLCカツト
が α=3.748539×10-5/℃ β=−1.064300×10-9/℃ γ=3.035529×10-10/℃3 5゜Yカツトが α≒9.2×10-5/℃ β≒8.6×10-8/℃2 γ≒4.4×10-10/℃3 の温度係数であることと比較してNL−Oカツト
がLCカツト、5゜Yカツトよりβ及びγが極端に小
さいことが判る。これはNL−Oカツトが良好な
直線性を示すことに他ならない。
The LC cut of the conventional crystal temperature sensor is α=3.748539×10 -5 /℃ β=−1.064300×10 -9 /℃ γ=3.035529×10 -10 /℃ 35 °Y cut is α≒9.2×10 - 5 /℃ β≒8.6×10 -8 /℃ 2 γ≒4.4×10 -10 /℃ Compared to the temperature coefficient of 3 , the NL-O cut has a lower β and γ than the LC cut and the 5°Y cut. It turns out to be extremely small. This simply means that the NL-O cut exhibits good linearity.

θ=31゜,φ=19゜近傍をNL−3カツトと呼ぶ
ことにする。NL−3カツトの代表的なカツト角
としてθ=31゜,φ=19゜24′の時温度係数は α=8.987716×10-6/℃ β=4.127429×10-11/℃2 γ=1.533113×10-11/℃3である。
The area around θ=31° and φ=19° will be called the NL-3 cut. When θ=31° and φ=19°24′ as typical cut angles for NL-3 cut, the temperature coefficient is α=8.987716×10 -6 /℃ β=4.127429×10 -11 /℃ 2 γ=1.533113× 10 -11 /℃ 3 .

βとγが零でαが大きいものが温度センサーと
して適している。LCカツトに比べて NL−Oカツトではαは1.7倍、βは1/1400、γ
は1/3284532であり NL−3カツトではαは1/4と小さいが、βは
1/26、γは1/20である。
A sensor with zero β and γ and a large α is suitable as a temperature sensor. Compared to the LC cut, the NL-O cut has α 1.7 times, β 1/1400, and γ
is 1/3284532, and in the NL-3 cut, α is small at 1/4, but β is 1/26 and γ is 1/20.

よつてNL−0カツト、NL−3カツトとも従
来の水晶温度センサーより格段の性能を示すこと
が判る。又両者とも直線性を示す温度範囲が−
200〜300℃と広くリニアライザーなしでも十分正
確な温度測定が可能である。
Therefore, it can be seen that both NL-0 cut and NL-3 cut exhibit much better performance than conventional crystal temperature sensors. Also, the temperature range in which both show linearity is -
Temperature measurements can be made accurately over a wide range of 200 to 300 degrees Celsius even without a linearizer.

第3図は5゜Yカツト、LCカツト、NL−0カツ
ト、NL−3カツトの周波数−温度特性のグラフ
である。
Figure 3 is a graph of the frequency-temperature characteristics of the 5°Y cut, LC cut, NL-0 cut, and NL-3 cut.

本発明の優れている点は、NL−0カツト、
NL−3カツトともβ=0,γ=0の近傍の為、
カツト角が多少ずれても特性が変化しないという
ことである。一般的な温度測定であれば NL−0カツトではθ=4.5±1゜,φ=−2゜±6゜ NL−3カツトではθ31.4゜+2゜ −3゜,φ=19.4゜+3.5゜ −1.5゜ のカツト角で充分な精度であつた。
The advantages of the present invention are NL-0 cut,
Since both NL-3 cuts are near β=0 and γ=0,
This means that even if the cut angle slightly deviates, the characteristics do not change. For general temperature measurement, θ=4.5±1°, φ=−2°±6° for NL-0 cut, θ31.4°+2°−3°, φ=19.4°+3.5 for NL-3 cut A cut angle of -1.5° provided sufficient accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水晶のカツト角を説明するための図、
第2図はCモード振動のα=0,β=0,γ=0
の軌跡図、第3図は5゜Yカツト、LCカツト、NL
−0カツト、NL−3カツトの周波数−温度特性
のグラフである。
Figure 1 is a diagram to explain the cut angle of crystal.
Figure 2 shows C mode vibration α=0, β=0, γ=0
Figure 3 shows the trajectory of 5゜Y cut, LC cut, NL
It is a graph of frequency-temperature characteristics of -0 cut and NL-3 cut.

Claims (1)

【特許請求の範囲】[Claims] 1 水晶温度センサーに於いて、センサーとなる
水晶片がY軸(機械軸)に垂直な板を、Z軸(光
軸)を回転軸として反時計方向に4.5゜±1゜だけ回
転し、さらにこの回転によつて新しくできた
X′軸を回転軸として反時計方向に−2゜±6゜だけ回
転して得られることを特徴とする水晶温度センサ
ー。
1 In a crystal temperature sensor, the crystal piece serving as the sensor rotates a plate perpendicular to the Y axis (mechanical axis) counterclockwise by 4.5° ± 1° with the Z axis (optical axis) as the rotation axis, and then This rotation created a new
A crystal temperature sensor that is obtained by rotating -2°±6° counterclockwise around the X′ axis.
JP24162983A 1983-12-20 1983-12-20 Crystal temperature sensor Granted JPS60131435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24162983A JPS60131435A (en) 1983-12-20 1983-12-20 Crystal temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24162983A JPS60131435A (en) 1983-12-20 1983-12-20 Crystal temperature sensor

Publications (2)

Publication Number Publication Date
JPS60131435A JPS60131435A (en) 1985-07-13
JPH0151135B2 true JPH0151135B2 (en) 1989-11-01

Family

ID=17077160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24162983A Granted JPS60131435A (en) 1983-12-20 1983-12-20 Crystal temperature sensor

Country Status (1)

Country Link
JP (1) JPS60131435A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3703241C1 (en) * 1987-02-04 1988-07-14 Heraeus Gmbh W C Quartz crystal with temperature-dependent resonance frequency
US5607236A (en) * 1987-02-27 1997-03-04 Seiko Epson Corporation Quartz oscillator temperature sensor

Also Published As

Publication number Publication date
JPS60131435A (en) 1985-07-13

Similar Documents

Publication Publication Date Title
US4741213A (en) Quartz-type gas pressure gauge
JPS593695B2 (en) crystal thermometer
CA1193882A (en) Temperature sensor
JPH0151135B2 (en)
US4705979A (en) Stress and temperature compensated surface acoustic wave devices
JPS62194720A (en) Contour shear crystal resonator
US4631437A (en) Stress compensated piezoelectric crystal device
JPS6129652B2 (en)
Spassov Piezoelectric quartz resonators as highly sensitive temperature sensors
JPS6326853B2 (en)
JPS6367364B2 (en)
JPH11177376A (en) Sc-cut crystal resonator
JPS6326852B2 (en)
JPH0434090B2 (en)
JPH0443223B2 (en)
JPS6342596Y2 (en)
CN1162691C (en) Ultra-small resonance type quartz crystal wave temperature sensor having linear characteristics
JPH03252204A (en) Temperature compensated crystal oscillator
Flynn et al. An improved cryogenic thermometer
JP2003023339A (en) Quartz vibrator
JPS5837150Y2 (en) piezoelectric crystal resonator
JPH11225040A (en) Sc-cut crystal vibrator
SU1425488A1 (en) Pressure transducer
JP3260402B2 (en) Torsional crystal oscillator
JPS6184105A (en) Surface acoustic wave device