JP3255502B2 - Highly stable surface acoustic wave device - Google Patents

Highly stable surface acoustic wave device

Info

Publication number
JP3255502B2
JP3255502B2 JP20461693A JP20461693A JP3255502B2 JP 3255502 B2 JP3255502 B2 JP 3255502B2 JP 20461693 A JP20461693 A JP 20461693A JP 20461693 A JP20461693 A JP 20461693A JP 3255502 B2 JP3255502 B2 JP 3255502B2
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
wave device
cut
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20461693A
Other languages
Japanese (ja)
Other versions
JPH0746079A (en
Inventor
勇次 鈴木
Original Assignee
東洋通信機株式会社
勇次 鈴木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社, 勇次 鈴木 filed Critical 東洋通信機株式会社
Priority to JP20461693A priority Critical patent/JP3255502B2/en
Publication of JPH0746079A publication Critical patent/JPH0746079A/en
Application granted granted Critical
Publication of JP3255502B2 publication Critical patent/JP3255502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は共振子あるいはフィルタ
として用いる弾性表面波素子、殊に温度変化に対して周
波数変動の少ない高安定弾性表面波素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave device used as a resonator or a filter, and more particularly to a highly stable surface acoustic wave device having a small frequency variation with respect to a temperature change.

【0002】[0002]

【従来の技術】近年、弾性体の表面付近を伝搬する弾性
表面波(SAW:Surface Acoustic
Wave)を利用したエレクトロメカニカル機能素子が
電子・通信機器の分野を中心に共振子あるいはフィルタ
として用いられており、例えば、最近ではページャ、携
帯電話等の移動体通信用フィルタとしての応用も進めら
れている。このような通信の分野に於いては周波数有効
利用の要請から、素子の高周波化並びに温度に対する周
波数の高安定化が強く求められている。
2. Description of the Related Art In recent years, a surface acoustic wave (SAW: Surface Acoustic) propagating near the surface of an elastic body has been developed.
Electromechanical functional elements using Wave) are used as resonators or filters mainly in the field of electronic and communication devices. For example, recently, applications as filters for mobile communication such as pagers and mobile phones have been advanced. ing. In the field of such communication, there is a strong demand for higher frequency devices and higher frequency stability with respect to temperature due to the demand for effective use of frequency.

【0003】周波数温度特性が安定な共振子としてはバ
ルク波を利用したATカット(オイラー角θ=125
゜;35゜回転Yカット)水晶共振子が一般的であり、
図1に示す如く常温近傍を変曲点とする3次曲線の周波
数温度特性を呈し、前記変曲点を中心として比較的広い
温度範囲に亘って温度変化に対する周波数変動率(周波
数温度変化率)を小さくすることが可能であって、−4
0〜80゜Cの温度変化に対し周波数温度変化率が約2
0ppmとなることが知られている。ところが水晶のバ
ルク波を利用した共振子は温度変化に対する周波数安定
性は優れているものの、その共振周波数が基板の厚さに
反比例するため、高周波用共振子を得ようとすると基板
を薄く加工しなければならず、結果として機械的強度が
低下するため製造が困難となり、基本波振動では数十M
Hz程度が高周波化の限界であった。これに対し、弾性
表面波素子はその共振周波数が電極周期で決定するた
め、基本波振動において1GHz程度の高周波化が容易
であり、更なる高周波化が期待されている。
As a resonator having a stable frequency-temperature characteristic, an AT cut using a bulk wave (Euler angle θ = 125)
{; 35 ° rotation Y-cut) Quartz resonator is common,
As shown in FIG. 1, it exhibits a frequency temperature characteristic of a cubic curve having an inflection point near normal temperature, and a frequency fluctuation rate (frequency temperature change rate) with respect to a temperature change over a relatively wide temperature range around the inflection point. Can be reduced, and -4
The frequency temperature change rate is about 2 for a temperature change of 0 to 80 ° C.
It is known to be 0 ppm. However, although resonators using bulk waves of quartz have excellent frequency stability against temperature changes, the resonance frequency is inversely proportional to the thickness of the substrate. And as a result, the mechanical strength is reduced, making the production difficult.
Hz is the limit of high frequency. On the other hand, since the surface acoustic wave element has its resonance frequency determined by the electrode period, it is easy to raise the frequency of the fundamental wave vibration to about 1 GHz, and further higher frequency is expected.

【0004】しかしながら、一般に弾性表面波素子用圧
電基板はATカット水晶に比べて周波数温度特性が著し
く劣ると云う欠点があり、図2に示す如く比較的周波数
温度特性が良好であるとしてSAW共振子あるいはSA
Wフィルタ等に広く用いられているSTカット(オイラ
ー角θ=132.75゜;42.75゜回転YカットX
伝搬)水晶基板を用いた弾性表面波素子の場合であって
も、−40〜80゜Cの温度変化に対する周波数温度変
化率が約120ppmとATカットに比して6倍もの変
動を呈すると云う欠陥があった。
However, a piezoelectric substrate for a surface acoustic wave device generally has a drawback that the frequency temperature characteristic is significantly inferior to that of an AT-cut quartz crystal, and as shown in FIG. Or SA
ST cut (Eulerian angle θ = 132.75 °; 42.75 ° rotation Y cut X widely used in W filters and the like)
Propagation) Even in the case of a surface acoustic wave device using a quartz substrate, the frequency temperature change rate with respect to a temperature change of -40 to 80 ° C. is about 120 ppm, which is 6 times as large as the AT cut. There were defects.

【0005】[0005]

【発明の目的】本発明は上述した如き従来の弾性表面波
素子の欠点を除去するためになされたものであって、常
温近傍の比較的広い温度範囲に亘って周波数温度特性を
改善し、STカット水晶を用いた弾性表面波素子よりも
はるかに優れた、望ましくはバルク波を利用するATカ
ットと同等あるいはそれ以上の周波数温度特性を呈する
弾性表面波素子を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional surface acoustic wave device, and has an object to improve the frequency-temperature characteristics over a relatively wide temperature range near room temperature, and to improve the ST characteristics. It is an object of the present invention to provide a surface acoustic wave device which is far superior to a surface acoustic wave device using cut quartz, and preferably exhibits a frequency temperature characteristic equal to or higher than that of an AT cut using a bulk wave.

【0006】[0006]

【発明の概要】上述の目的を達成するため本発明は、圧
電基板表面近傍を伝搬するSH 型弾性表面波を利用す
べく前記圧電基板表面に少なくとも一の比較的質量の重
い金属材料から成るインタディジタルトランスジューサ
(IDT )電極を配設した弾性表面波素子に於いて、
結晶X 軸を回転の中心としてXY 平面に対するカット
アングルθが27 ゜乃至37 ゜の範囲となるように切
り出した水晶基板を前記圧電基板として用いたものであ
って、前記SH 型弾性表面波の位相速度伝搬方向と結
晶X 軸との成す面内回転角ψが75 ゜≦|ψ|<90
゜となるよう前記IDT 電極を構成したものであっ
て、更には前記面内回転角ψと前記カットアングルθが
|ψ|=(1 .1 θ+48 )±5 (deg .)但
し、|ψ|<90 ゜を満足するよう構成した、あるい
は前記SH 型弾性表面波の波長をλ、前記IDT 電極
の膜厚をh としたとき、h /λが0 .01 乃至0
.018 となるよう構成した、あるいは前記IDT
電極の材料として金を用いたもの、理想的には圧電基板
表面近傍を伝搬するSH 型弾性表面波を利用すべく前
記圧電基板表面に金を材料とする少なくとも一のインタ
ディジタルトランスジューサ(IDT )電極を配設し
た弾性表面波素子に於いて、結晶X 軸を回転の中心と
してXY 平面に対するカットアングルθが30 ゜とな
るように切り出した水晶基板を前記圧電基板として用い
たものであって、前記SH 型弾性表面波の位相速度伝
搬方向と結晶X 軸との成す面内回転角ψが81 .6
゜となるよう前記IDT 電極を構成したものであり、
前記SH 型弾性表面波の群速度伝搬方向に沿って前記
IDT電極を配置したものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a piezoelectric substrate having at least one relatively heavy metal material on its surface to utilize SH-type surface acoustic waves propagating near the surface of the substrate. In a surface acoustic wave device provided with a digital transducer (IDT) electrode,
A quartz substrate cut out so that a cut angle θ with respect to an XY plane is in a range of 27 ° to 37 ° with respect to a crystal X axis as a center of rotation, is used as the piezoelectric substrate, and a phase of the SH type surface acoustic wave is used. The in-plane rotation angle 成 between the velocity propagation direction and the crystal X axis is 75 ゜ ≦ | ゜ | <90
ID, and the IDT electrode is configured such that the in-plane rotation angle ψ and the cut angle θ are | ψ | = (1.1 θ + 48) ± 5 (deg.), Where | ψ | <90 °, or when the wavelength of the SH type surface acoustic wave is λ and the thickness of the IDT electrode is h 2, h / λ is 0. 01 through 0
. 018 or the IDT
At least one interdigital transducer (IDT) electrode made of gold on the surface of the piezoelectric substrate in order to utilize SH-type surface acoustic waves that propagate near the surface of the piezoelectric substrate, ideally using gold as the material of the electrode Wherein the quartz substrate cut out so that the cut angle θ with respect to the XY plane is 30 ° with respect to the XY plane with the crystal X axis as the center of rotation is used as the piezoelectric substrate. The in-plane rotation angle す between the phase velocity propagation direction of the SH type surface acoustic wave and the crystal X axis is 81. 6
The IDT electrode is configured to be ゜,
The IDT electrodes are arranged along the group velocity propagation direction of the SH type surface acoustic wave.

【0007】[0007]

【実施例】以下、本発明を実施例を示す図面に基づいて
詳細に説明する。本発明は図3に示す如く、互いに直交
する2つの回転Yカット水晶基板の一方をATカット基
板1と想定したとき、他方の基板2の表面にIDT電極
を配設することにより、周波数温度特性の優れたATカ
ット基板1のバルク波と同じ図中黒ヌリの矢印で示す伝
搬方向をもち、この伝搬方向に対し垂直な図中白ヌキの
矢印で示す方向に粒子変位を有するSH型弾性表面波
(例えば、所謂Love波の如き弾性表面波)が存在す
るとの知見に基づきなされたものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments. According to the present invention, as shown in FIG. 3, when one of two rotating Y-cut quartz substrates orthogonal to each other is assumed to be an AT-cut substrate 1, an IDT electrode is provided on the surface of the other substrate 2 to obtain a frequency-temperature characteristic. SH type elastic surface having the same propagation direction as the bulk wave of the AT-cut substrate 1 shown by the black arrow in the figure and having particle displacement in the direction shown by the white arrow in the figure perpendicular to this propagation direction. This is based on the knowledge that a wave (for example, a surface acoustic wave such as a so-called Love wave) exists.

【0008】まず、周波数温度特性についての理論的解
析の結果を示し、次いでこれに基づいて行った実験結果
を示す。水晶基板の切断面および表面波の伝搬特性を論
ずる際には、一般にオイラー角を用いる。ここでは図4
に示す如き右手系のオイラー角(φ,θ,ψ)を用い
た。これは図中X,Y,Zを夫々水晶の結晶軸とする
と、第1回転角φはZ軸を中心に、第2回転角θはφに
よる変換後のX軸であるX′軸を中心にXY平面を夫々
回転した角度であり、第3回転角ψは前記2つの回転で
決まった平面内でのX′軸からの回転角で表面波の伝搬
方向である。このオイラー角を用いて新しい座標系(X
1,X2,X3)に対する材料係数を求めることができ
る。例えば、−60゜回転YカットZ′伝搬水晶基板の
場合は(0゜,30゜,90゜)と表記され、以下θを
カットアングル、ψを面内回転角と称する。
First, the results of a theoretical analysis of the frequency-temperature characteristics will be described, and then the results of experiments performed based on the results will be described. In discussing the cut surface of the quartz substrate and the propagation characteristics of surface waves, Euler angles are generally used. Here, FIG.
The Euler angles (φ, θ, ψ) of the right-handed system shown in FIG. In this figure, when X, Y and Z are crystal axes of quartz, respectively, the first rotation angle φ is centered on the Z axis, and the second rotation angle θ is centered on the X ′ axis which is the X axis converted by φ. The third rotation angle ψ is the rotation angle from the X ′ axis in the plane determined by the two rotations, and is the propagation direction of the surface wave. Using this Euler angle, a new coordinate system (X
1 , X 2 , X 3 ). For example, in the case of a −60 ° rotated Y-cut Z ′ propagation quartz substrate, it is described as (0 °, 30 °, 90 °), and θ is hereinafter referred to as a cut angle, and ψ as an in-plane rotation angle.

【0009】回転Yカット水晶基板の表面に膜厚hの金
属膜を設け、X1方向に伝搬するSH型弾性表面波につ
いて解析を行う。この場合SH型弾性表面波はX2方向
に粒子変位を持つ横波であり、所謂Love波を利用す
るものとする。図5は解析モデルを示す図であって、L
ove波を励起するには比較的質量の重いIDT電極を
必要とするため膜厚hを有する金属膜の材料として金
(Au)を用いた場合につき解析を行なった。
[0009] surface of the rotating Y-cut quartz substrate provided with a metal film having a thickness h, and analyzes the SH type surface acoustic wave propagating in the X 1 direction. In this case the SH type surface acoustic wave is a transverse wave having a particle displacement in the X 2 direction, and utilizes the so-called Love waves. FIG. 5 is a diagram showing an analysis model,
Since an IDT electrode having a relatively large mass is required to excite an ove wave, an analysis was performed using gold (Au) as a material of a metal film having a film thickness h.

【0010】解析には、水晶基板内並びに金属膜内で夫
々独立の変位および電位を仮定し、各領域で構成方程式 Tij=CE ijklkl−ekljk (1) Di=εS ijj+eijkjk (2) 但し、CE:電界一定の時の弾性スティフネス定数 T :応力 εS:ひずみ一定の時の誘電率 e :圧電定数 E :電界 S :ひずみ D :電束蜜度 およびニュートンの運動方程式
In the analysis, independent displacements and potentials are assumed in the quartz substrate and the metal film, respectively, and a constitutive equation T ij = C E ijkl S kl -e klj E k (1) D i = ε in each region. S ij E j + e ijk S jk (2) where C E : elastic stiffness constant at constant electric field T: stress ε S : dielectric constant at constant strain e: piezoelectric constant E: electric field S: strain D: electric Bundle degree and Newton's equation of motion

【数1】を用いた。但し、文字上のドットは時間積分
を、コンマはその後の数字の方向への空間積分を表して
いる。さらにガウスの法則 Di,j=0 (i=1、2、3) (4) をこれらと連立させ、各境界における境界条件を (1)粒子変位が連続であること (2)応力が連続であること (3)電束密度の法線成分が連続であること (4)電位が連続であること として解析を行った。
Equation 1 was used. However, the dot on the character indicates the time integration, and the comma indicates the spatial integration in the direction of the subsequent numeral. Furthermore, Gauss's law D i, j = 0 (i = 1, 2, 3) (4) is simultaneously established with these, and the boundary conditions at each boundary are (1) particle displacement is continuous (2) stress is continuous (3) The normal component of the electric flux density is continuous. (4) The analysis was performed assuming that the potential was continuous.

【0011】X1方向に伝搬する波動の位相速度をV、
IDTの1周期長をLとするとその中心周波数fは、 f=V/L (5) となる。位相速度Vは基板と金属膜厚の材料定数によっ
て決まるが、材料定数は温度によって変動するから、結
果としてVが温度によって変化することとなる。ここ
で、温度によって変化するためVに影響を及ぼす材料定
数として 1)基板材料の弾性定数 2)基板材料の密度 3)電極金属膜の弾性定数 4)電極金属膜の膜厚 5)電極金属膜の密度 さらに、IDTの周期Lに影響を与えるものとして 6)基板材料の熱膨張 7)電極金属膜の熱膨張 と云った事項を考慮した。
[0011] of the wave propagating in the X 1 direction of the phase velocity V,
Assuming that one cycle length of the IDT is L, the center frequency f is f = V / L (5). Although the phase velocity V is determined by the material constant of the substrate and the metal film thickness, the material constant fluctuates depending on the temperature. As a result, V changes depending on the temperature. Here, as a material constant that changes with temperature and affects V, 1) an elastic constant of the substrate material 2) a density of the substrate material 3) an elastic constant of the electrode metal film 4) a film thickness of the electrode metal film 5) an electrode metal film Further, the following factors were considered as affecting the period L of the IDT: 6) thermal expansion of the substrate material; and 7) thermal expansion of the electrode metal film.

【0012】上述の理論式に基づき解析した結果を以下
に示す。まず面内回転角ψが90゜(Z伝搬)の場合に
ついて解析した結果を図6に示す。同図に於いて横軸は
カットアングルθ、縦軸は伝搬するSH型弾性表面波の
波長λで正規化した膜厚h/λであって、等値線中の数
字は−40〜80゜Cに於ける周波数温度変化率の変化
量であり、単位はppmである。尚、斜線で示す部分は
周波数温度変化率が100ppm以下となる領域であ
る。面内回転角ψ=90゜の場合はSTカットの時と同
様に2次的な曲率の周波数温度特性を呈するものの最適
なカットを選択することにより周波数温度変化量がST
カットの場合の1/2以下となる。しかしながら、これ
はATカットの周波数温度変化率の約3倍であり、更な
る周波数温度特性の改善をすべく面内回転角ψの条件を
段階的に変化せしめて解析を行った。
The results of analysis based on the above theoretical formula are shown below. First, FIG. 6 shows the result of analysis when the in-plane rotation angle ψ is 90 ° (Z propagation). In the figure, the horizontal axis is the cut angle θ, and the vertical axis is the film thickness h / λ normalized by the wavelength λ of the propagating SH type surface acoustic wave, and the numbers in the contour lines are −40 to 80 °. It is the amount of change of the frequency temperature change rate in C, and the unit is ppm. The hatched portion is a region where the frequency temperature change rate is 100 ppm or less. When the in-plane rotation angle ψ = 90 °, the frequency temperature change amount becomes ST by selecting the optimal cut although the frequency temperature characteristic of the secondary curvature is exhibited as in the case of the ST cut.
It is 以下 or less of the cut. However, this is about three times the frequency temperature change rate of the AT cut, and the analysis was performed by changing the condition of the in-plane rotation angle ψ stepwise in order to further improve the frequency temperature characteristics.

【0013】図7はその結果をまとめたものであって、
横軸にはカットアングルθ、縦軸には面内回転角ψをと
り、各組合せにおいて−40〜80゜Cでの周波数温度
変化率の変化量が最小となる正規化膜厚h/λをプロッ
トしたものである。同図によれば、カットアングルθが
27゜乃至37゜の範囲となるように切り出した水晶基
板において、 ψ≒1.1θ+48 (deg.) (6) なる式を満足する場合には、膜厚を適当に選択すれば最
適な周数温度特性が得られる。図8は正規化膜厚h/λ
=0.015の時の−40〜80゜Cでの周波数温度変
化率の変化量を等値線図として示したもので、等値線上
の数字は周波数温度変化率の変化量であり、単位はpp
mである。斜線で示す部分は周波数温度変化率の変化量
がSTカット水晶基板を用いた弾性表面波素子のそれよ
り小さい100ppm以下となる領域であって、カット
アングルθが27゜乃至42゜の範囲であり、面内回転
角ψが概ね70゜より大きく90゜より小さい範囲に存
在する。図9および図10は、夫々正規化膜厚h/λ=
0.015の時のカットアングルθおよび面内回転角ψ
による−40〜80゜Cでの周波数温度変化率曲線の違
いを求めたものであり、図11は両者の結果より最も周
波数温度変化率の少なかったオイラー角(0゜,29.
9゜,81.55゜)なる条件に於いて正規化膜厚h/
λを変化せしめた場合の周波数温度変化率曲線である。
上述した最小となる条件に於いては、ATカットの1/
3以下の約6ppm以下と極めて高安定なSAWデバイ
スの実現を示唆するものである。
FIG. 7 summarizes the results.
The horizontal axis represents the cut angle θ, and the vertical axis represents the in-plane rotation angle ψ. In each combination, the normalized film thickness h / λ at which the variation of the frequency temperature change rate at −40 to 80 ° C. is minimum is defined as It is a plot. According to the figure, when the crystal substrate cut out so that the cut angle θ is in the range of 27 ° to 37 ° satisfies the following expression: {1.1θ + 48 (deg.) (6) Optimum frequency temperature characteristics can be obtained by appropriately selecting. FIG. 8 shows the normalized film thickness h / λ.
= 0.015 ° C. The amount of change of the frequency temperature change rate at −40 ° C. to 80 ° C. is shown as an isometric diagram, and the number on the isoline is the amount of change of the frequency temperature change rate. Is pp
m. The shaded portion is a region where the variation of the frequency temperature change rate is 100 ppm or less which is smaller than that of the surface acoustic wave device using the ST cut quartz substrate, and the cut angle θ is in the range of 27 ° to 42 °. , The in-plane rotation angle 存在 is generally in a range larger than 70 ° and smaller than 90 °. 9 and 10 show the normalized film thickness h / λ =
Cut angle θ and in-plane rotation angle ψ at 0.015
FIG. 11 shows the difference between the frequency temperature change rate curves at −40 ° C. to 80 ° C., and FIG. 11 shows the Euler angles (0 °, 29.
9 ゜, 81.55 ゜), the normalized film thickness h /
7 is a frequency temperature change rate curve when λ is changed.
Under the above-mentioned minimum condition, 1/1 / AT cut
This indicates the realization of a SAW device having an extremely high stability of about 6 ppm or less of 3 or less.

【0014】上述の最適条件に対してカットアングルθ
のみを変化させた場合は約±0.85゜、面内回転角ψ
のみを変化させた場合は約±1.4゜、膜厚のみを変化
させた場合は正規化膜厚h/λにして約±5%と云う比
較的広範囲に亘って、−40〜80゜Cでの周波数温度
変化率の変化量が30ppm以下となる。このような広
範囲に亘って良好な周波数温度特性が存在するならば、
実際に基板をカットする際、あるいは基板上に電極を形
成する際のマスク合わせにずれが生じた場合であっても
これを許容し十分な周波数温度特性のデバイスを実現す
る上で有利である。従って、従来のSTカット水晶基板
を用いた弾性表面波素子の周波数温度特性より優れた特
性を得る為に実質的には ψ=(1.1θ+50)±5 (deg.) 但し、ψ<90゜ (7) なる式を満足するよう構成すればよい。
The cut angle θ with respect to the above optimum conditions
When only the value is changed, about ± 0.85 ゜, the in-plane rotation angleψ
When only the thickness is changed, about ± 1.4 °, and when only the film thickness is changed, the normalized film thickness h / λ is about ± 5% in a relatively wide range of −40 to 80 °. The amount of change in the frequency temperature change rate at C is 30 ppm or less. If such good frequency temperature characteristics exist over a wide range,
This is advantageous in realizing a device having a sufficient frequency-temperature characteristic by permitting even a misalignment in mask alignment when actually cutting the substrate or forming an electrode on the substrate. Therefore, in order to obtain a characteristic superior to the frequency temperature characteristic of the conventional surface acoustic wave element using the ST cut quartz substrate, は = (1.1θ + 50) ± 5 (deg.) Where ψ <90 ゜(7) What is necessary is just to comprise so that the following formula may be satisfied.

【0015】明細書が煩雑となるので個別のデータは省
略するが、図7に示す各プロット点に於いて、上述した
正規化膜厚h/λ=0.015の時とほぼ同等の解析結
果を得ることができ、同図より面内回転角ψが90゜に
近づく若しくはカットアングルθが大きくなるにしたが
って膜厚の最適条件は薄くなる。また、−40〜80゜
Cでの周波数温度変化率の変化量が30ppm以下とな
るためにカットアングルθ、面内回転角ψ並びに正規化
膜厚h/λがとり得る領域は膜厚が厚いほど広くなり、
膜厚が薄くなるにしたがって狭くなる傾向があった。
Although individual data are omitted because the specification becomes complicated, the analysis results at each plot point shown in FIG. 7 are substantially the same as those when the normalized film thickness h / λ = 0.015. The optimum condition of the film thickness decreases as the in-plane rotation angle ψ approaches 90 ° or the cut angle θ increases as shown in FIG. Further, since the amount of change in the frequency temperature change rate at -40 to 80 ° C. is 30 ppm or less, the region where the cut angle θ, the in-plane rotation angle ψ, and the normalized film thickness h / λ can take is thick. It becomes wider,
There was a tendency to become narrower as the film thickness became thinner.

【0016】以上、周波数温度特性のみに着目し、その
解析結果について述べてきたが、SAWデバイスとして
他の特性、例えば電気機械結合係数(K2)、パワーフ
ロー角についても考慮する必要がある。ここで、周知の
通り電気機械結合係数は圧電効果の大小を示す量であ
り、弾性表面波素子の基板として利用する上で大きいほ
うが望ましい。図12は正規化膜厚h/λ=0.015
の時の電気機械結合係数の解析結果を示す等値線図であ
って、実線はSH型弾性表面波の、破線は一般的なレー
リー波の電気機械結合係数を示している。SH型弾性表
面波の電気機械結合係数はSTカット水晶基板の一般的
な値のおよそ2倍と大きく、今回利用するSH型弾性表
面波にとってレーリー波は不要なスプリアス応答となる
ものの、SH型弾性表面波の電気機械結合係数はレーリ
ー波のそれに比して十分大きく、レーリー波による影響
は少ないと考えられるが、カットアングルθを小さく且
つ面内回転角ψを90゜に近づけたほうが望ましく、7
5゜以下では弾性表面波素子を構成するのに十分な電気
機械結合係数を得ることが困難であると考えられる。ま
た図示は省略するが膜厚を厚くするほどSH型弾性表面
波の電気機械結合係数が大きく、レーリー波のレスポン
スが小さくなることを見い出した。
Although the analysis results have been described focusing only on the frequency temperature characteristics, other characteristics such as the electromechanical coupling coefficient (K 2 ) and the power flow angle of the SAW device also need to be considered. Here, as is well known, the electromechanical coupling coefficient is an amount indicating the magnitude of the piezoelectric effect, and is preferably large when used as a substrate of a surface acoustic wave element. FIG. 12 shows the normalized film thickness h / λ = 0.015.
7 is an isometric diagram showing an analysis result of the electromechanical coupling coefficient at the time of (1), wherein a solid line indicates an electromechanical coupling coefficient of an SH-type surface acoustic wave and a broken line indicates an electromechanical coupling coefficient of a general Rayleigh wave. The electromechanical coupling coefficient of SH-type surface acoustic waves is about twice as large as the general value of ST-cut quartz substrates, and although the Rayleigh wave has an unnecessary spurious response for the SH-type surface acoustic waves used in this study, The electromechanical coupling coefficient of the surface wave is sufficiently large as compared with that of the Rayleigh wave, and it is considered that the influence of the Rayleigh wave is small. However, it is desirable that the cut angle θ is small and the in-plane rotation angle 近 is close to 90 °.
If the angle is 5 ° or less, it is considered that it is difficult to obtain an electromechanical coupling coefficient sufficient to constitute a surface acoustic wave device. Although not shown, it has been found that as the film thickness increases, the electromechanical coupling coefficient of the SH-type surface acoustic wave increases and the response of the Rayleigh wave decreases.

【0017】一方、パワーフロー角は図13に示す如く
基板上に配設したIDT電極により励起される弾性表面
波の位相速度の伝搬方向と群速度の伝搬方向とのなす角
度であって、パワーフロー角が大きくなると伝搬損失が
増大する原因となることから零とすることが望ましいと
されている。図14はパワーフロー角の解析結果を示す
等値線図であって、SH型弾性表面波の場合は面内回転
角ψが90゜の時パワーフロー角が零となり、90゜か
らずれるにしたがってパワーフロー角が大きくなる傾向
を呈する。即ち、電気機械結合係数及びパワーフロー角
の影響を勘案すればカットアングルθを27゜乃至37
゜の範囲、面内回転角ψを概ね75゜より大きく90゜
より小さい範囲で選ぶことが弾性表面波素子として実用
的であると言えよう。
On the other hand, the power flow angle is the angle between the propagation direction of the phase velocity and the propagation velocity of the group velocity of the surface acoustic wave excited by the IDT electrode disposed on the substrate as shown in FIG. It is considered that it is desirable to set the value to zero because a larger flow angle causes an increase in propagation loss. FIG. 14 is an isometric diagram showing the analysis result of the power flow angle. In the case of the SH type surface acoustic wave, the power flow angle becomes zero when the in-plane rotation angle ψ is 90 °, and as the deviation from 90 ° occurs. The power flow angle tends to increase. That is, taking into account the effects of the electromechanical coupling coefficient and the power flow angle, the cut angle θ is 27 ° to 37 °.
It can be said that it is practical to select the range of ゜ and the in-plane rotation angle で in the range of approximately greater than 75 ° and smaller than 90 ° as the surface acoustic wave element.

【0018】以上の解析結果に基づき、サンプルを試作
し−40〜80゜Cの温度範囲に於ける周波数温度変化
率の測定を行なった。以下煩雑となるのを避ける意味か
らオイラー角(0゜,30゜,ψ)の水晶基板(−60
゜回転Yカット水晶基板)上に電極を形成した場合につ
いて説明する。金と水晶基板との付着力が弱いことから
基板上に薄い(数100オングストロームの)チタンを
蒸着した上に金を蒸着し、これをフォトエッチングする
ことにより電極形成した。IDT電極は送・受波用それ
ぞれ60対と40対とし、交差幅は20波長分とした。
また、送・受波用IDT間には20波長分のグレーティ
ングを、両IDTの外側には50波長分の一様膜を設け
た。図15は実験に用いた電極パターンの概略配置図で
あって、パワーフロー角を勘案して群速度伝搬方向に沿
って配置した。
On the basis of the above analysis results, a sample was made as a prototype, and the rate of frequency temperature change in the temperature range of -40 to 80 ° C. was measured. Hereinafter, in order to avoid complication, a quartz substrate (−60) having an Euler angle (0 °, 30 °, ψ) is used.
A case where electrodes are formed on a (rotated Y-cut quartz substrate) will be described. Since the adhesion between gold and the quartz substrate was weak, thin (several hundred angstroms) titanium was deposited on the substrate, and then gold was deposited, followed by photoetching to form electrodes. The IDT electrodes were 60 pairs and 40 pairs for transmission and reception, respectively, and the intersection width was 20 wavelengths.
A grating for 20 wavelengths is provided between the transmitting and receiving IDTs, and a uniform film for 50 wavelengths is provided outside the IDTs. FIG. 15 is a schematic layout diagram of the electrode patterns used in the experiment, and was arranged along the group velocity propagation direction in consideration of the power flow angle.

【0019】図16は面内回転角ψが81.53゜、電
極膜厚が8720オングストローム,波長λが52μ
m、IDT電極のピッチに対する電極指の幅の比率w/
pが47%であるサンプルについて、IDTによる周波
数伝送特性を50Ω系のネットワーク・アナライザにて
測定した結果である。同図より、SH型弾性表面波の中
心周波数から約4.5%低い周波数側にレイリー波の応
答が確認できるが、レイリー波の周波数温度変化率に比
してSH型弾性表面波のそれが非常に小さいことがわか
る。
FIG. 16 shows that the in-plane rotation angle 8 is 81.53 °, the electrode film thickness is 8720 Å, and the wavelength λ is 52 μm.
m, the ratio of the width of the electrode finger to the pitch of the IDT electrode w /
It is the result of having measured the frequency transmission characteristic by IDT with the 50 ohm network analyzer about the sample which p is 47%. From the figure, the response of the Rayleigh wave can be confirmed on the frequency side about 4.5% lower than the center frequency of the SH type surface acoustic wave, but the response of the SH type surface acoustic wave is smaller than the frequency temperature change rate of the Rayleigh wave. It turns out that it is very small.

【0020】図17は面内回転角ψを81.6゜とした
サンプルについての周波数温度変化率の変化を示す図で
あり、理論値を示す図18と同様に電極の膜厚hが薄い
場合には周波数温度変化特性は傾きの大きい右下がりの
直線的な変化を示し、膜厚を徐々に厚くするに従って傾
きが小さくなると共に20゜C近傍に変曲点をもつ3次
曲線を呈すると云う傾向が見られた。グラフが煩雑とな
るためサンプル数を間引いて示したが、この例では80
00乃至8600オングストロームの範囲で−40〜8
0゜Cでの周波数温度変化率の変化量が70ppm以下
となり、特に図中白抜きの三角印で示すサンプルは約2
0ppmと、目標とするATカット水晶基板に於けるバ
ルク波の場合とほぼ同等の特性が得られた。而してさら
に膜厚を厚くするとこれも理論値と同様に再び右下がり
の直線を呈するようになる。
FIG. 17 is a graph showing the change in the rate of temperature change of the frequency of the sample in which the in-plane rotation angle 81 is 81.6 °. It shows that the frequency temperature change characteristic shows a linear change with a large slope and a downward slope, and the slope decreases as the film thickness gradually increases and exhibits a cubic curve having an inflection point near 20 ° C. A trend was seen. Although the graph is complicated, the number of samples has been thinned out.
-40 to 8 in the range of 00 to 8600 angstroms
The amount of change in the frequency temperature change rate at 0 ° C. is 70 ppm or less.
0 ppm, almost the same characteristics as in the case of a bulk wave in a target AT-cut quartz substrate were obtained. When the film thickness is further increased, the line again shows a downward-sloping straight line similarly to the theoretical value.

【0021】面内回転角ψ、w/p、金薄膜の下地とし
て用いたチタンの膜厚及びマスク精度等の製造上のばら
つきを原因とするサンプル毎の周波数温度変化率のばら
つきも見られたが、これらのばらつきを考慮し補正を行
なってみるとほぼ理論値通りの結果を得ることができ
た。さらに、面内回転角ψを83.0゜及び85.0゜
としたサンプルによる実験結果を夫々図19及び図20
に示す。この場合も理論値とほぼ同等の結果を得ること
ができた。また、実験結果は省略したがカットアングル
θが30゜以外の条件についてもほぼ同等の結果が得ら
れることを確認した。
Variations in the rate of temperature change of each sample due to variations in manufacturing such as the in-plane rotation angle ψ, w / p, the film thickness of titanium used as the base of the gold thin film, and mask accuracy were also observed. However, when the correction was performed in consideration of these variations, a result almost equivalent to the theoretical value could be obtained. 19 and 20 show the experimental results of the samples in which the in-plane rotation angles 83 were 83.0 ° and 85.0 °, respectively.
Shown in Also in this case, a result almost equal to the theoretical value could be obtained. Although the experimental results were omitted, it was confirmed that substantially the same results were obtained under conditions other than the cut angle θ of 30 °.

【0022】尚、以上本発明を面内回転角ψが正の場合
を例に説明してきたが、本発明はこれのみに限定される
ものではなく、結晶の対称性からψを負の方向に回転せ
しめた場合であっても同等の特性が得られることは当然
であり説明するまでもない。即ち、周波数温度変化率の
変化量が100ppm以下であり、電気機械結合係数及
びパワーフロー角の影響を勘案した弾性表面波素子とし
て実用的な領域は、カットアングルθが27゜乃至42
゜の範囲で、面内回転角ψが概ね75゜≦|ψ|<90
゜となる範囲に存在し、前記(7)式は |ψ|=(1.1θ+48)±5 (deg.) 但し、|ψ|<90゜ と書き換えることが可能である。また、実施例として水
晶基板上に2つのIDT電極を形成した弾性表面波共振
子を例に本発明を説明してきたが、本発明はこれのみに
限定されるものではなく、水晶基板上に1つのIDT電
極とその両側に反射器を配置するタイプあるいは多数の
IDT電極を配置しこれらを縦続接続するタイプ等のあ
らゆる弾性表面波素子に適用可能なこと言うまでもな
い。
Although the present invention has been described with reference to the case where the in-plane rotation angle ψ is positive, the present invention is not limited to this, and ψ is shifted in the negative direction due to crystal symmetry. It goes without saying that the same characteristics can be obtained even when rotated. That is, the frequency temperature change rate change amount is 100 ppm or less, and a practical region as a surface acoustic wave element in consideration of the influence of the electromechanical coupling coefficient and the power flow angle is a cut angle θ of 27 ° to 42 °.
In the range of ゜, the in-plane rotation angle ψ is approximately 75 ° ≦ | ψ | <90.
Equation (7) can be rewritten as | | = (1.1θ + 48) ± 5 (deg.) Where | ψ | <90 ゜. Although the present invention has been described by way of an example of a surface acoustic wave resonator in which two IDT electrodes are formed on a quartz substrate, the present invention is not limited to this. Needless to say, the present invention can be applied to any surface acoustic wave element such as a type in which one IDT electrode and a reflector are arranged on both sides thereof, or a type in which a number of IDT electrodes are arranged and cascade-connected.

【0023】[0023]

【発明の効果】本発明は、以上説明した如く構成するも
のであるから、SH型弾性表面波を利用するSAWデバ
イスを、カットアングルθが27゜乃至37゜の範囲と
なるように切り出した水晶基板を前記圧電基板として用
い、面内回転角ψが概ね75゜≦|ψ|<90゜となる
よう適宜選択して電極を構成するのみで何ら格別の手段
を講じることなく、ATカット水晶のバルク波と同等の
周波数温度特性を実現可能とする上で著しい効果を奏す
る。
Since the present invention is constructed as described above, a SAW device using an SH type surface acoustic wave is cut out so that the cut angle θ is in the range of 27 ° to 37 °. The substrate is used as the piezoelectric substrate, and the in-plane rotation angle ψ is appropriately selected so as to be approximately 75 ° ≦ | ψ | <90 °, and the electrode is formed only by forming an electrode. This has a remarkable effect in realizing frequency temperature characteristics equivalent to those of bulk waves.

【0024】[0024]

【図面の簡単な説明】[Brief description of the drawings]

【図1】ATカット水晶共振子の周波数温度特性を示す
図。
FIG. 1 is a diagram showing frequency temperature characteristics of an AT-cut quartz resonator.

【図2】STカット水晶基板を用いた弾性表面波共振子
の周波数温度特性を示す図。
FIG. 2 is a diagram showing frequency temperature characteristics of a surface acoustic wave resonator using an ST cut quartz substrate.

【図3】SH型弾性表面波を説明する図。FIG. 3 is a diagram illustrating an SH-type surface acoustic wave.

【図4】オイラー角の定義を示す図。FIG. 4 is a diagram showing a definition of Euler angles.

【図5】解析に用いた解析モデルを示す図。FIG. 5 is a view showing an analysis model used for analysis.

【図6】オイラー角(0,θ,90゜)に於ける解析結
果を示す図。
FIG. 6 is a diagram showing analysis results at Euler angles (0, θ, 90 °).

【図7】面内回転角ψを段階的に変化せしめたときの解
析結果を示す図。
FIG. 7 is a diagram showing an analysis result when the in-plane rotation angle ψ is changed stepwise.

【図8】正規化膜厚h/λ=0.015の時の周波数温
度変化率の変化量を等値線図として示した図。
FIG. 8 is a diagram showing an amount of change of a frequency temperature change rate when a normalized film thickness h / λ = 0.015 as an iso-diagram.

【図9】カットアングルθを段階的に変化せしめたとき
の周波数温度変化率曲線を示す図。
FIG. 9 is a diagram showing a frequency temperature change rate curve when the cut angle θ is changed stepwise.

【図10】面内回転角ψを段階的に変化せしめたときの
周波数温度変化率曲線を示す図。
FIG. 10 is a diagram showing a frequency temperature change rate curve when the in-plane rotation angle ψ is changed stepwise.

【図11】正規化膜厚h/λを段階的に変化せしめたと
きの周波数温度変化率曲線を示す図。
FIG. 11 is a diagram showing a frequency temperature change rate curve when the normalized film thickness h / λ is changed stepwise.

【図12】正規化膜厚h/λ=0.015の時の電気機
械結合係数の解析結果を等値線図として示した図。
FIG. 12 is a diagram showing, as a contour map, an analysis result of an electromechanical coupling coefficient when a normalized film thickness h / λ = 0.015.

【図13】パワーフロー角を説明する図。FIG. 13 is a diagram illustrating a power flow angle.

【図14】パワーフロー角の解析結果を等値線図として
示した図。
FIG. 14 is a diagram showing an analysis result of a power flow angle as a contour map.

【図15】電極パターンの概略配置図。FIG. 15 is a schematic layout diagram of an electrode pattern.

【図16】周波数伝送特性を測定した結果を示す図。FIG. 16 is a diagram showing a result of measuring frequency transmission characteristics.

【図17】面内回転角ψが81.6゜のサンプルの周波
数温度変化率曲線を示す図。
FIG. 17 is a diagram showing a frequency temperature change rate curve of a sample whose in-plane rotation angle ψ is 81.6 °.

【図18】解析により求めた面内回転角ψが81.6゜
のときの周波数温度変化率曲線を示す図。
FIG. 18 is a diagram showing a frequency temperature change rate curve when the in-plane rotation angle に よ り obtained by analysis is 81.6 °.

【図19】面内回転角ψが83.0゜のサンプルの周波
数温度変化率曲線を示す図。
FIG. 19 is a diagram illustrating a frequency temperature change rate curve of a sample having an in-plane rotation angle ψ of 83.0 °.

【図20】面内回転角ψが85.0゜のサンプルの周波
数温度変化率曲線を示す図。
FIG. 20 is a diagram showing a frequency temperature change rate curve of a sample whose in-plane rotation angle ψ is 85.0 °.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧電基板表面近傍を伝搬するSH型弾性表
面波を利用すべく前記圧電基板表面に少なくとも一の比
較的質量の重い金属材料から成るインタディジタルトラ
ンスジューサ(IDT)電極を配設した弾性表面波素子
に於いて、結晶X軸を回転の中心としてXY平面に対す
るカットアングルθが27゜乃至37゜の範囲となるよ
うに切り出した水晶基板を前記圧電基板として用いたも
のであって、前記SH型弾性表面波の位相速度伝搬方向
と結晶X軸との成す面内回転角ψが75゜≦|ψ|<9
0゜となるよう前記IDT電極を構成したことを特徴と
する高安定弾性表面波素子。
1. An elastic substrate having an interdigital transducer (IDT) electrode made of at least one relatively heavy metal material on the surface of a piezoelectric substrate in order to utilize an SH-type surface acoustic wave propagating near the surface of the piezoelectric substrate. In the surface acoustic wave device, a quartz substrate cut out so that a cut angle θ with respect to an XY plane is in a range of 27 ° to 37 ° with respect to a crystal X axis as a rotation center is used as the piezoelectric substrate, The in-plane rotation angle の between the phase velocity propagation direction of the SH-type surface acoustic wave and the crystal X-axis is 75 ゜ ≦ | ψ | <9
A highly stable surface acoustic wave device, wherein the IDT electrode is configured to be at 0 ° .
【請求項2】前記面内回転角ψと前記カットアングルθ
が|ψ|=(1.1θ+48)±5(deg.)但し、
|ψ|<90゜を満足するよう構成したことを特徴とす
る請求項1記載の高安定弾性表面波素子。
2. The in-plane rotation angle ψ and the cut angle θ.
Is | ψ | = (1.1θ + 48) ± 5 (deg.) Where
2. The highly stable surface acoustic wave device according to claim 1, wherein | ψ | <90 ゜ is satisfied.
【請求項3】前記SH型弾性表面波の波長をλ、前記I
DT電極の膜厚をhとしたとき、h/λが0.01乃至
0.018となるよう構成したことを特徴とする請求項
1あるいは請求項2記載の高安定弾性表面波素子。
3. The wavelength of the SH surface acoustic wave is λ,
When the thickness of the DT electrode is h, h / λ is 0.01 to
The highly stable surface acoustic wave device according to claim 1 or 2, wherein the surface acoustic wave device is configured to be 0.018 .
【請求項4】前記IDT電極の材料として金を用いたこ
とを特徴とする請求項1乃至請求項3記載の高安定弾性
表面波素子。
4. The highly stable surface acoustic wave device according to claim 1, wherein gold is used as a material of said IDT electrode.
【請求項5】圧電基板表面近傍を伝搬するSH型弾性表
面波を利用すべく前記圧電基板表面に金を材料とする少
なくとも一のインタディジタルトランスジューサ(ID
T)電極を配設した弾性表面波素子に於いて、結晶X軸
を回転の中心としてXY平面に対するカットアングルθ
が30゜となるように切り出した水晶基板を前記圧電基
板として用いたものであって、前記SH型弾性表面波の
位相速度伝搬方向と結晶X軸との成す面内回転角ψが8
1.6゜となるよう前記IDT電極を構成したことを特
徴とする高安定弾性表面波素子。
5. An at least one interdigital transducer (ID) made of gold on the surface of the piezoelectric substrate so as to utilize an SH-type surface acoustic wave propagating near the surface of the piezoelectric substrate.
T) In a surface acoustic wave device provided with electrodes, the cut angle θ with respect to the XY plane with the crystal X axis as the center of rotation.
Is used as the piezoelectric substrate, and the in- plane rotation angle ψ between the phase velocity propagation direction of the SH surface acoustic wave and the crystal X axis is 8 °.
A highly stable surface acoustic wave device, wherein the IDT electrode is configured to be 1.6 ° .
【請求項6】前記SH型弾性表面波の群速度伝搬方向に
沿って前記IDT電極を配置したことを特徴とする請求
項1乃至請求項5記載の高安定弾性表面波素子。
6. The highly stable surface acoustic wave device according to claim 1, wherein said IDT electrode is arranged along a group velocity propagation direction of said SH type surface acoustic wave.
JP20461693A 1993-07-26 1993-07-26 Highly stable surface acoustic wave device Expired - Lifetime JP3255502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20461693A JP3255502B2 (en) 1993-07-26 1993-07-26 Highly stable surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20461693A JP3255502B2 (en) 1993-07-26 1993-07-26 Highly stable surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPH0746079A JPH0746079A (en) 1995-02-14
JP3255502B2 true JP3255502B2 (en) 2002-02-12

Family

ID=16493430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20461693A Expired - Lifetime JP3255502B2 (en) 1993-07-26 1993-07-26 Highly stable surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP3255502B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339350B2 (en) * 1997-02-20 2002-10-28 株式会社村田製作所 Surface acoustic wave device
JP3301399B2 (en) * 1998-02-16 2002-07-15 株式会社村田製作所 Surface acoustic wave device
KR100858324B1 (en) * 2004-04-01 2008-09-17 엡슨 토요콤 가부시키가이샤 Surface Acoustic Wave device
US7382217B2 (en) 2004-12-03 2008-06-03 Epson Toyocom Corporation Surface acoustic wave device
JP4148220B2 (en) 2005-01-06 2008-09-10 エプソントヨコム株式会社 Surface acoustic wave device, composite device, oscillation circuit and module
JP4001157B2 (en) 2005-07-22 2007-10-31 株式会社村田製作所 Boundary acoustic wave device
JP4569447B2 (en) * 2005-11-18 2010-10-27 エプソントヨコム株式会社 Surface acoustic wave element and surface acoustic wave device
JP4582150B2 (en) * 2008-01-11 2010-11-17 エプソントヨコム株式会社 Surface acoustic wave device and module device or oscillation circuit using the same

Also Published As

Publication number Publication date
JPH0746079A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
JP3339350B2 (en) Surface acoustic wave device
CN1902817B (en) Boundary acoustic wave device
CN109075770B (en) Composite substrate and elastic wave device using same
JP4645957B2 (en) Surface acoustic wave element and surface acoustic wave device
JPH0218614B2 (en)
US20040135650A1 (en) Surface acoustic wave device and filter using the same
JP4158650B2 (en) Surface acoustic wave device and manufacturing method thereof
JP2002100959A (en) Surface acoustic wave device
JPH08125485A (en) Love wave device
JP3360541B2 (en) Surface acoustic wave device and design method thereof
JP2006295311A (en) Surface acoustic wave element chip and surface acoustic wave device
JP2000151352A (en) Low loss surface acoustic wave filter on crystal substrate having optimized cut
JP2000323956A (en) Surface acoustic wave device and communication equipment
JP3255502B2 (en) Highly stable surface acoustic wave device
JP2000188521A (en) Surface acoustic wave device and two port surface acoustic wave resonator
US5302877A (en) Surface acoustic wave device
US6346761B1 (en) Surface acoustic wave device capable of suppressing spurious response due to non-harmonic higher-order modes
JP4127170B2 (en) Surface wave device
JP3188480B2 (en) Surface acoustic wave device
JP4058044B2 (en) Single crystal substrate and cutting method thereof
JP4465464B2 (en) Lamb wave type elastic wave device
US8085117B1 (en) Slotted boundary acoustic wave device
JP2007221840A (en) Surface acoustic device and module device or oscillation circuit using the same
JP4148216B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2009027671A (en) Sh type bulk wave resonator

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 12

EXPY Cancellation because of completion of term