JP2006295311A - Surface acoustic wave element chip and surface acoustic wave device - Google Patents

Surface acoustic wave element chip and surface acoustic wave device Download PDF

Info

Publication number
JP2006295311A
JP2006295311A JP2005110022A JP2005110022A JP2006295311A JP 2006295311 A JP2006295311 A JP 2006295311A JP 2005110022 A JP2005110022 A JP 2005110022A JP 2005110022 A JP2005110022 A JP 2005110022A JP 2006295311 A JP2006295311 A JP 2006295311A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
frequency
wave element
pairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005110022A
Other languages
Japanese (ja)
Inventor
Keigo Iizawa
慶吾 飯澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005110022A priority Critical patent/JP2006295311A/en
Publication of JP2006295311A publication Critical patent/JP2006295311A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide technology capable of keeping the frequency of spurious radiation caused in a longitudinal mode at a distance from the principal resonant frequency by a prescribed frequency or over when exciting a crystal plate in an upper limit mode of the stop band. <P>SOLUTION: IDTs each comprising corded electrodes are provided to the front side of the crystal plate in the surface acoustic wave element chip. The cut angle of the crystal plate is expressed in the Euler's angle representation as (0°, θ, 0°≤¾ψ¾≤90°). The number of pairs of electrode digits in the surface acoustic wave element chip is made to be 140 or below in the case of H/λ=0.09, the number of pairs of the electrode digits is made to be 130 or below in the case of H/λ=0.10, and the number of pairs of the electrode digits is made to be 80 or below in the case of H/λ=0.11, wherein λ is the wavelength of a surface acoustic wave generated in the crystal plate by the IDTs, and H is the film thickness of the electrode digits of the IDTs. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、弾性表面波(Surface Acoustic Wave:SAW)を利用した弾性表面波素子片に係り、特に圧電基板が水晶からなる弾性表面波素子片および弾性表面波装置に関する。   The present invention relates to a surface acoustic wave element piece using surface acoustic wave (SAW), and more particularly to a surface acoustic wave element piece and a surface acoustic wave device in which a piezoelectric substrate is made of quartz.

SAW共振子、SAWフィルタなどの弾性表面波装置は、高周波への対応が容易であって、小型、量産性に優れているところから、種々の電子機器に使用されている。特に、最近は、通信の高速化、通信機器の小型、高周波化に伴って通信分野において広く利用されている。このような弾性表面波装置は、圧電基板の表面に設けたすだれ状電極によって圧電基板に弾性表面波を生成する弾性表面波素子片を備えている。   Surface acoustic wave devices such as SAW resonators and SAW filters are used in various electronic devices because they are easy to cope with high frequencies, and are small and mass-productive. In particular, recently, it has been widely used in the communication field with an increase in communication speed, a reduction in the size and frequency of communication devices. Such a surface acoustic wave device includes a surface acoustic wave element that generates surface acoustic waves on a piezoelectric substrate by interdigital electrodes provided on the surface of the piezoelectric substrate.

特に、STカットに代表される水晶基板を用いた弾性表面波素子片は、水晶が高い温度安定性を有するところから、高精度な弾性表面波素子片とすることができる。しかし、近年、普及の著しい携帯通信機器においては、より高周波であって、より小型、温度に対して安定した高精度な弾性表面波装置が要求されている。そこで、本願出願人は、面内回転STカット水晶板を用いた弾性表面波素子片を開発した(例えば特許文献1)。面内回転STカット水晶板は、3次関数の温度特性を有するところから、通常のSTカット水晶板と比較して、高精度な弾性表面波素子片とすることができる。   In particular, a surface acoustic wave element piece using a quartz substrate typified by ST cut can be a highly accurate surface acoustic wave element piece because quartz has high temperature stability. However, in recent years, portable communication devices that are remarkably popular have demanded surface acoustic wave devices with higher frequencies, smaller sizes, and higher accuracy that are stable with respect to temperature. Therefore, the present applicant has developed a surface acoustic wave element using an in-plane rotating ST-cut quartz plate (for example, Patent Document 1). Since the in-plane rotating ST-cut quartz plate has a temperature characteristic of a cubic function, it can be a highly accurate surface acoustic wave element piece as compared with a normal ST-cut quartz plate.

ところで、水晶などの圧電基板にすだれ状電極からなるIDT(Interdigital Transducer)を設けて圧電基板を励振して弾性表面波であるレイリー波を発生させた場合、計算によるとストップバンドと呼ばれる領域の下限と上限とに周波数解が得られることが知られている。ストップバンドの下限の周波数(下限モード)と上限の周波数(上限モード)とを比較すると、上限モードの方が周波数温度特性の2次温度係数の絶対値が下限モードより小さく、IDTの電極膜厚を増加させた場合に、2次温度係数の絶対値の変化も小さいことが知られている。したがって、圧電基板をストップバンドの上限モードで励振できれば、弾性表面波素子片の高周波化に有利であり、高精度化を図ることができる。   By the way, when an IDT (Interdigital Transducer) composed of interdigital electrodes is provided on a piezoelectric substrate such as quartz and the Rayleigh wave, which is a surface acoustic wave, is generated by exciting the piezoelectric substrate, the lower limit of a region called a stop band is calculated. It is known that a frequency solution can be obtained at the upper limit and the upper limit. Comparing the lower limit frequency of the stopband (lower limit mode) and the upper limit frequency (upper limit mode), the upper limit mode has a smaller absolute value of the secondary temperature coefficient of the frequency temperature characteristic than the lower limit mode, and the electrode film thickness of the IDT It is known that the change in the absolute value of the secondary temperature coefficient is small when the value is increased. Therefore, if the piezoelectric substrate can be excited in the upper limit mode of the stop band, it is advantageous for increasing the frequency of the surface acoustic wave element, and high accuracy can be achieved.

そこで、本願発明者らは、鋭意研究し、種々検討した結果、オイラー角表示を(φ,θ,ψ)としたときに、オイラー角が(0°,θ,ψ)の水晶板において、角度ψを適切に選択することにより、レイリー波をストップバンドの上限モードで励振できることを見出した。図6は、オイラー角が(0°,123°,42°)の水晶板を基板とした弾性表面波素子片のストップバンドの上限モードにおける周波数特性を示したものである。図6は、横軸が周波数(MHz)であり、縦軸がインピーダンス(Ω)である。   Therefore, the inventors of the present invention have made extensive studies and made various studies. As a result, when the Euler angle display is (φ, θ, ψ), the angle of the crystal plate is (0 °, θ, ψ). It was found that Rayleigh waves can be excited in the upper limit mode of the stop band by appropriately selecting ψ. FIG. 6 shows the frequency characteristics in the upper limit mode of the stop band of a surface acoustic wave element using a quartz plate with Euler angles (0 °, 123 °, 42 °) as a substrate. In FIG. 6, the horizontal axis represents frequency (MHz), and the vertical axis represents impedance (Ω).

図6に示したように、主共振(主振動)Sの高周波側近傍に縦モードによるスプリアスSが現れ、さらにスプリアスSの高周波側にスプリアスSが現れる。スプリアスSは、主共振Sに近いため、共振子やフィルタなどの弾性表面波装置に用いた場合に、スプリアスSにより特性が劣化する。このため、スプリアスSを主共振Sから遠ざける必要がある。そして、特許文献2には、圧電基板として36°YカットX伝搬LiTaOを用い、高域側弾性表面波共振子フィルタと低域側弾性表面波共振子フィルタとのIDTの数(電極指の対数)を異ならせ、スプリアスの位置を制御して最適なフィルタ特性が得られるようにしている。
特開2003−152487号公報 特開2000−59176号公報
As shown in FIG. 6, the spurious S 1 due to the longitudinal mode appears near the high frequency side of the main resonance (main vibration) S 0 , and the spurious S 2 appears further on the high frequency side of the spurious S 1 . Since the spurious S 1 is close to the main resonance S 0 , the characteristics are degraded by the spurious S 1 when used in a surface acoustic wave device such as a resonator or a filter. For this reason, it is necessary to keep the spurious S 1 away from the main resonance S 0 . In Patent Document 2, 36 ° Y-cut X-propagation LiTaO 3 is used as the piezoelectric substrate, and the number of IDTs of the high-frequency surface acoustic wave resonator filter and the low-frequency surface acoustic wave resonator filter (of the electrode finger) The logarithm) is made different, and the position of the spurious is controlled to obtain the optimum filter characteristic.
JP 2003-152487 A JP 2000-59176 A

ところで、IDTの電極指の対数と目標周波数(主共振周波数)に対するスプリアスの位置との関係は、圧電基板の種類、圧電基板のカット角などによって異なってくる。このため、特許文献2のように36°YカットX伝搬LiTaOに設けたIDTの電極指の対数を、カット角が(0°,123°,41°)の水晶板にそのまま適用したとしても、所望の特性を有する弾性表面波素子片が得られるわけではない。
本発明は、水晶板をストップバンドの上限モードで励振する場合に、縦モードによるスプリアスを主共振から所定周波数以上遠ざけることができるようにすることを目的としている。
By the way, the relationship between the number of IDT electrode fingers and the position of the spurious relative to the target frequency (main resonance frequency) varies depending on the type of piezoelectric substrate, the cut angle of the piezoelectric substrate, and the like. For this reason, even if the logarithm of the electrode finger of IDT provided in 36 ° Y-cut X-propagating LiTaO 3 as in Patent Document 2 is applied as it is to a crystal plate with cut angles (0 °, 123 °, 41 °). A surface acoustic wave element having desired characteristics is not necessarily obtained.
An object of the present invention is to enable the spurious due to the longitudinal mode to be separated from the main resonance by a predetermined frequency or more when the quartz plate is excited in the upper limit mode of the stop band.

上記の目的を達成するために、本発明に係る弾性表面波素子片は、圧電基板の表面にすだれ状電極が設けてある弾性表面波素子片であって、前記圧電基板は、オイラー角表示を(φ,θ,ψ)としたときに、カット角が(0°,θ,0°≦|ψ|≦90°)の水晶板からなり、前記水晶板に生成された弾性表面波の波長をλ、前記すだれ状電極を構成している電極指の膜厚をHとした場合、H/λ=0.09のとき、前記電極指の対数を140以下、H/λ=0.10のとき、前記電極指の対数を130以下、H/λ=0.11のとき、前記電極指の対数を80以下、である、ことを特徴としている。θは、0°以上、180°以下であってよいが、より望ましくは95°以上、155°以下である。   In order to achieve the above object, a surface acoustic wave element piece according to the present invention is a surface acoustic wave element piece in which interdigital electrodes are provided on the surface of a piezoelectric substrate, and the piezoelectric substrate displays an Euler angle display. When (φ, θ, ψ), the cut angle is (0 °, θ, 0 ° ≦ | ψ | ≦ 90 °), and the wavelength of the surface acoustic wave generated on the crystal plate is λ, where H is the film thickness of the electrode fingers constituting the interdigital electrode, H / λ = 0.09, the number of pairs of electrode fingers is 140 or less, and H / λ = 0.10 The number of pairs of electrode fingers is 130 or less, and when H / λ = 0.11, the number of pairs of electrode fingers is 80 or less. θ may be 0 ° or more and 180 ° or less, but is more preferably 95 ° or more and 155 ° or less.

このようになっている本発明は、水晶板にレイリー波のストップバンドにおける上限モードを生成することができるとともに、縦モードによるスプリアス周波数を主共振周波数から500ppm以上遠ざけることができる。なお、ppmは、(スプリアス周波数−主共振周波数)÷主共振周波数であって、主共振周波数に対するスプリアス周波数の偏差量を表している。
本発明に係る弾性表面波装置は、上記した弾性表面波素子片を備えていることを特徴としている。このようになっている本発明に係る弾性表面波装置は、縦モードによるスプリアスの影響を小さくすることができ、特性の劣化を避けることができる。
The present invention thus configured can generate an upper limit mode in the stopband of the Rayleigh wave on the quartz plate, and can keep the spurious frequency due to the longitudinal mode away from the main resonance frequency by 500 ppm or more. Note that ppm is (spurious frequency−main resonance frequency) ÷ main resonance frequency, and represents a deviation amount of the spurious frequency with respect to the main resonance frequency.
A surface acoustic wave device according to the present invention includes the above-described surface acoustic wave element. The surface acoustic wave device according to the present invention thus configured can reduce the influence of spurious due to the longitudinal mode, and can avoid deterioration of characteristics.

本発明の実施形態に係る弾性表面波素子片および弾性表面波装置の好ましい実施の形態を、添付図面に基づいて詳細に説明する。
図1は本発明の実施の形態に係る弾性表面波素子片を模式的に示した平面図であり、図2は図1のA−A線に沿った一部断面図である。これらの図において、弾性表面波素子片10は、圧電基板である矩形状の水晶板12からなり、水晶板12の表面中央部にIDT14が形成してある。また、弾性表面波素子片10は、一対の反射器16が設けてある。一対の反射器16は、IDT14によって励振される弾性表面波の伝播方向に沿って設けられ、IDT14を挟んで配置してある。
Preferred embodiments of a surface acoustic wave element piece and a surface acoustic wave device according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a plan view schematically showing a surface acoustic wave element according to an embodiment of the present invention, and FIG. 2 is a partial sectional view taken along the line AA of FIG. In these figures, the surface acoustic wave element piece 10 is composed of a rectangular crystal plate 12 which is a piezoelectric substrate, and an IDT 14 is formed at the center of the surface of the crystal plate 12. The surface acoustic wave element piece 10 is provided with a pair of reflectors 16. The pair of reflectors 16 are provided along the propagation direction of the surface acoustic wave excited by the IDT 14 and are disposed with the IDT 14 interposed therebetween.

水晶板12は、実施形態の場合、オイラー角表示を(φ,θ,ψ)としたときに、カット角が(0°,θ,0°≦|ψ|≦90°)となっている。すなわち、水晶板12は、水晶結晶において図3に示したようなカット角となっている。このカット角は、次のようにして得られる。水晶結晶の電気軸をX軸、機械軸をY軸、光軸をZ軸としたときに、水晶Z板18は、オイラー角が(0°,0°,0°)のZ軸に垂直な水晶板となる。この水晶Z板18を、X軸を回転軸として反時計方向に角度θだけ回転させたときに、新たに得られる座標軸をX軸、Y’軸、Z’軸とする。このXY’Z’座標系において、X軸とY’軸とのなす面に平行な水晶板20を、さらにZ’軸を中心に角度ψだけ回転させて得られる新たな座標軸をX’軸、Y”軸、Z’軸とする。このX’Y”Z’座標において、X’軸とY”軸とのなす面に平行な水晶板がオイラー角(0°,θ,ψ)の水晶板となる。   In the embodiment, the crystal plate 12 has a cut angle of (0 °, θ, 0 ° ≦ | ψ | ≦ 90 °) when the Euler angle display is (φ, θ, ψ). That is, the quartz plate 12 has a cut angle as shown in FIG. 3 in the quartz crystal. This cut angle is obtained as follows. The quartz crystal Z plate 18 is perpendicular to the Z axis with Euler angles (0 °, 0 °, 0 °), where the electrical axis of the crystal is the X axis, the mechanical axis is the Y axis, and the optical axis is the Z axis. It becomes a crystal plate. When this quartz crystal Z plate 18 is rotated counterclockwise by an angle θ about the X axis as a rotation axis, newly obtained coordinate axes are taken as an X axis, a Y ′ axis, and a Z ′ axis. In this XY′Z ′ coordinate system, a new coordinate axis obtained by rotating the quartz crystal plate 20 parallel to the plane formed by the X axis and the Y ′ axis by an angle ψ about the Z ′ axis is defined as the X ′ axis, The Y ″ axis and the Z ′ axis. In this X′Y ″ Z ′ coordinate, the crystal plate parallel to the plane formed by the X ′ axis and the Y ″ axis is the Euler angle (0 °, θ, ψ) crystal plate. It becomes.

そして、実施形態の水晶板12は、Z’軸を回転中心とした回転角ψが0°〜90°の水晶板である。なお、Z’軸を中心とした回転角ψは、水晶結晶がZ’軸を中心にどちらの方向に回転させても対称であるので、±(0°〜90°)とすることができる。すなわち、0°≦|ψ|≦90°である。また、X軸を中心とした回転角θは、発明者らの実験によると、0°≦θ≦180°とするのがよい。より望ましくは、95°≦θ≦155°、33°≦|ψ|≦46°、すなわちオイラー角が(0°,95°≦θ≦155°,33°≦|ψ|≦46°)の水晶板を用いることがより望ましい。   The quartz crystal plate 12 according to the embodiment is a quartz crystal plate having a rotation angle ψ with the Z ′ axis as the rotation center of 0 ° to 90 °. Note that the rotation angle ψ about the Z ′ axis can be ± (0 ° to 90 °) because the quartz crystal is symmetric regardless of which direction the crystal is rotated about the Z ′ axis. That is, 0 ° ≦ | ψ | ≦ 90 °. Further, the rotation angle θ about the X-axis is preferably 0 ° ≦ θ ≦ 180 ° according to experiments by the inventors. More desirably, the crystal is 95 ° ≦ θ ≦ 155 °, 33 ° ≦ | ψ | ≦ 46 °, that is, a crystal having Euler angles (0 °, 95 ° ≦ θ ≦ 155 °, 33 ° ≦ | ψ | ≦ 46 °). It is more desirable to use a plate.

弾性表面波素子片10のIDT14は、一対の櫛型電極22(22a、22b)からなる。各櫛型電極22は、それぞれの一端をバスバー24(24a、24b)に接続した複数の電極指26a、26bを備えている。各電極指26(26a、26b)は、水晶板12のY”軸に沿って形成してある。そして、IDT14は、すだれ状をなしている。すなわち、IDT14は、各櫛型電極22の櫛歯に相当する電極指26が噛み合うように交互に、かつ平行に等間隔で配置してある。そして、IDT14は、櫛型電極22aと櫛型電極22bとの間に信号電圧が印加されることにより、所定周波数の弾性表面波を水晶板12の表層部に発生させる。この弾性表面波は、電極指26に直行した水晶板12のX’軸に沿って伝播する。   The IDT 14 of the surface acoustic wave element piece 10 includes a pair of comb-shaped electrodes 22 (22a, 22b). Each comb-shaped electrode 22 includes a plurality of electrode fingers 26a and 26b each having one end connected to a bus bar 24 (24a and 24b). Each electrode finger 26 (26a, 26b) is formed along the Y ″ axis of the quartz plate 12. And, the IDT 14 has an interdigital shape. That is, the IDT 14 is a comb of each comb-shaped electrode 22. The electrode fingers 26 corresponding to the teeth are alternately arranged in parallel and at equal intervals so as to engage with each other, and the IDT 14 is applied with a signal voltage between the comb electrode 22a and the comb electrode 22b. Thus, a surface acoustic wave having a predetermined frequency is generated on the surface layer portion of the quartz plate 12. The surface acoustic wave propagates along the X ′ axis of the quartz plate 12 orthogonal to the electrode finger 26.

各反射器16は、両端が相互に連結された複数の導体ストリップ28からなり、格子状をなしている。これらの一対の反射器16とIDT14とは、実施形態の場合、アルミニウムまたはアルミニウム合金の薄膜から形成してある。すなわち、IDT14と反射器16とは、水晶ウエハの表面に蒸着やスパッタリングなどによって成膜されたアルミニウムまたはアルミニウム合金の薄膜を、所定の形状にフォトエッチングすることにより形成される。また、IDT14は、図1に図示しない接続パッドに電気的に接続してある。   Each reflector 16 includes a plurality of conductor strips 28 whose ends are connected to each other, and has a lattice shape. In the embodiment, the pair of reflectors 16 and the IDT 14 are formed from a thin film of aluminum or an aluminum alloy. That is, the IDT 14 and the reflector 16 are formed by photo-etching an aluminum or aluminum alloy thin film formed on the surface of a quartz wafer by vapor deposition or sputtering into a predetermined shape. The IDT 14 is electrically connected to a connection pad (not shown in FIG. 1).

各櫛型電極22a、22bのそれぞれの電極指26a、26bは、図2に一部断面図として示したように、形成間隔(ピッチ)がpとなっている。そして、IDT14によって水晶板12に生成される弾性表面波の波長λは、周知のように電極指26の形成ピッチpに依存する。また、IDT14は、実施形態の場合、各電極指26の厚み(電極膜厚)によって、電極指26a、26bからなる電極指の対数が異なっている。これは、主共振SとスプリアスSとの周波数偏差は、電極膜厚Hと電極指の対数とに依存していることによる。 The electrode fingers 26a and 26b of the comb-shaped electrodes 22a and 22b have a formation interval (pitch) of p as shown in a partial sectional view in FIG. The wavelength λ of the surface acoustic wave generated on the quartz plate 12 by the IDT 14 depends on the formation pitch p of the electrode fingers 26 as is well known. Further, in the case of the embodiment, the IDT 14 has a different number of pairs of electrode fingers 26a and 26b depending on the thickness of each electrode finger 26 (electrode film thickness). This is because the frequency deviation between the main resonance S 0 and the spurious S 1 depends on the electrode film thickness H and the number of pairs of electrode fingers.

発明者らの研究によると、電極指26の電極膜厚をH、弾性表面波の波長をλとすると、膜厚比をH/λとした場合、電極指26の対数と、スプリアスSの主共振Sからの周波数偏差量は、図4に示したようになる。図4は、横軸が電極指26の対数であり、縦軸がppmで示したスプリアスSの主共振Sからの周波数偏差量である。なお、fは主共振Sの周波数、ΔfはスプリアスSの周波数をfとした場合、Δf=f−fである。また、図4の実線の曲線AはH/λ=0.09(=9%)であり、1点鎖線の曲線BはH/λ=0.10(=10%)であり、2点鎖線の曲線CはH/λ=0.11(=11%)である。そして、用いた水晶板12は、オイラー角で(0°、123°,42°)水晶板であって、IDT14の電極指26の幅をB(図2参照)、電極間のピッチをp/2とした場合、η=B/(p/2)=0.7である。そして、電極間ピッチp/2は4.89μmである。また、IDT14は、アルミニウムによって形成してある。 According to the research by the inventors, when the electrode film thickness of the electrode finger 26 is H and the wavelength of the surface acoustic wave is λ, the logarithm of the electrode finger 26 and the spurious S 1 are obtained when the film thickness ratio is H / λ. frequency deviation from the main resonance S 0 is as shown in FIG. 4, the horizontal axis is the logarithm of the electrode finger 26, the vertical axis is the frequency deviation from the main resonance S 0 spurious S 1 shown in ppm. Here, f 0 is the frequency of the main resonance S 0 , and Δf is Δf = f S −f 0 , where f S is the frequency of the spurious S 1 . Also, the solid curve A in FIG. 4 is H / λ = 0.09 (= 9%), and the one-dot chain line curve B is H / λ = 0.10 (= 10%). The curve C of H / λ = 0.11 (= 11%). The quartz plate 12 used is a Euler angle (0 °, 123 °, 42 °) quartz plate, the width of the electrode finger 26 of the IDT 14 is B (see FIG. 2), and the pitch between the electrodes is p /. In the case of 2, η = B / (p / 2) = 0.7. The inter-electrode pitch p / 2 is 4.89 μm. The IDT 14 is made of aluminum.

図4に示されているように、スプリアスSによる影響を小さくするために、上記の周波数偏差量Δf/fを500ppm以上とするには、H/λ=0.09の場合、電極指26を140対以下にする必要があり、H/λ=0.10の場合130対以下、H/λ=0.11の場合80対以下にする必要がある。これにより、スプリアスSの周波数を主共振Sの周波数から500ppm以上離すことができ、スプリアスSの影響の小さい高精度な弾性表面波素子片10とすることができる。 As shown in FIG. 4, in order to reduce the influence of the spurious S 1 , the frequency deviation amount Δf / f 0 is set to 500 ppm or more. When H / λ = 0.09, the electrode finger 26 needs to be 140 pairs or less. When H / λ = 0.10, it is necessary to have 130 pairs or less, and when H / λ = 0.11 it is necessary to have 80 pairs or less. As a result, the frequency of the spurious S 1 can be separated from the frequency of the main resonance S 0 by 500 ppm or more, and the surface acoustic wave element piece 10 having a high accuracy with little influence of the spurious S 1 can be obtained.

図5は、本発明の実施の形態に係る弾性表面波装置の一例を示す断面図であって、SAW共振子の断面図である。図5において、SAW共振子30は、セラミックなどからなるパッケージ本体32を有する。パッケージ本体32は、上端が開口した箱型に形成してあり、パッケージ本体32の底面に弾性表面波素子片10が接着剤を介して固定してある。弾性表面波素子片10は、IDT14の両側に、IDT14に電気的に接続した接続パッド34が設けてある。これらの接続パッド34は、ボンディングワイヤ36を介してパッケージ本体32に設けた電極38に接続してある。そして、SAW共振子30は、弾性表面波素子片10を収容したパッケージ本体32の上端に、セラミックやガラス、金属などからなる蓋体40を配置し、図示しない封止材によってパッケージ本体32が気密に封止してある。   FIG. 5 is a cross-sectional view showing an example of a surface acoustic wave device according to an embodiment of the present invention, and is a cross-sectional view of a SAW resonator. In FIG. 5, the SAW resonator 30 has a package body 32 made of ceramic or the like. The package body 32 is formed in a box shape having an open upper end, and the surface acoustic wave element piece 10 is fixed to the bottom surface of the package body 32 with an adhesive. The surface acoustic wave element piece 10 is provided with connection pads 34 electrically connected to the IDT 14 on both sides of the IDT 14. These connection pads 34 are connected to electrodes 38 provided on the package body 32 via bonding wires 36. In the SAW resonator 30, a lid body 40 made of ceramic, glass, metal, or the like is disposed on the upper end of the package body 32 that houses the surface acoustic wave element piece 10, and the package body 32 is hermetically sealed by a sealing material (not shown). Sealed.

実施の形態に係る弾性表面波素子片を模式的に示した平面図である。It is the top view which showed typically the surface acoustic wave element piece which concerns on embodiment. 図1のA−A線に沿った一部断面図である。FIG. 2 is a partial cross-sectional view taken along line AA in FIG. 1. 実施の形態に係る水晶板のカット角を説明する図である。It is a figure explaining the cut angle of the crystal plate which concerns on embodiment. 実施の形態に係る弾性表面波素子片の電極指の対数とスプリアス周波数の主共振周波数からの偏差量との関係を示す図である。It is a figure which shows the relationship between the logarithm of the electrode finger | toe of the surface acoustic wave element piece which concerns on embodiment, and the deviation amount from the main resonance frequency of a spurious frequency. 実施の形態に係る弾性表面波装置の一例を示す断面図である。It is sectional drawing which shows an example of the surface acoustic wave apparatus which concerns on embodiment. 弾性表面波素子片の周波数特性を示す図である。It is a figure which shows the frequency characteristic of a surface acoustic wave element piece.

符号の説明Explanation of symbols

10………弾性表面波素子片、12………水晶板、14………IDT、16………反射器、22a、22b………櫛型電極、26a、26b………電極指、30………弾性表面波装置(SAW共振子)。   DESCRIPTION OF SYMBOLS 10 ......... Surface acoustic wave element piece, 12 ...... Quartz plate, 14 ...... IDT, 16 ...... Reflector, 22a, 22b ...... Comb-shaped electrode, 26a, 26b ...... Electrode finger, 30 .... Surface acoustic wave device (SAW resonator).

Claims (2)

圧電基板の表面にすだれ状電極が設けてある弾性表面波素子片であって、
前記圧電基板は、オイラー角表示を(φ,θ,ψ)としたときに、カット角が(0°,θ,0°≦|ψ|≦90°)の水晶板からなり、
前記水晶板に生成された弾性表面波の波長をλ、前記すだれ状電極を構成している電極指の膜厚をHとした場合、
H/λ=0.09のとき、前記電極指の対数を140以下、
H/λ=0.10のとき、前記電極指の対数を130以下、
H/λ=0.11のとき、前記電極指の対数を80以下、
である、
ことを特徴とする弾性表面波素子片。
A surface acoustic wave element piece in which interdigital electrodes are provided on the surface of a piezoelectric substrate,
The piezoelectric substrate is made of a quartz plate having a cut angle of (0 °, θ, 0 ° ≦ | ψ | ≦ 90 °) when Euler angle display is (φ, θ, ψ),
When the wavelength of the surface acoustic wave generated on the quartz plate is λ, and the film thickness of the electrode fingers constituting the interdigital electrode is H,
When H / λ = 0.09, the number of pairs of electrode fingers is 140 or less,
When H / λ = 0.10, the number of pairs of electrode fingers is 130 or less,
When H / λ = 0.11, the number of pairs of electrode fingers is 80 or less,
Is,
A surface acoustic wave element having the above structure.
請求項1に記載の弾性表面波素子片を備えていることを特徴とする弾性表面波装置。   A surface acoustic wave device comprising the surface acoustic wave element according to claim 1.
JP2005110022A 2005-04-06 2005-04-06 Surface acoustic wave element chip and surface acoustic wave device Pending JP2006295311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005110022A JP2006295311A (en) 2005-04-06 2005-04-06 Surface acoustic wave element chip and surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110022A JP2006295311A (en) 2005-04-06 2005-04-06 Surface acoustic wave element chip and surface acoustic wave device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006267272A Division JP4645957B2 (en) 2006-09-29 2006-09-29 Surface acoustic wave element and surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2006295311A true JP2006295311A (en) 2006-10-26

Family

ID=37415432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110022A Pending JP2006295311A (en) 2005-04-06 2005-04-06 Surface acoustic wave element chip and surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2006295311A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8063534B2 (en) 2008-02-20 2011-11-22 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8305162B2 (en) 2009-02-27 2012-11-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8933612B2 (en) 2009-02-27 2015-01-13 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298290A (en) * 1998-02-16 1999-10-29 Murata Mfg Co Ltd Surface acoustic wave device
JP2003258601A (en) * 2001-12-28 2003-09-12 Seiko Epson Corp Surface acoustic wave apparatus and communication device using it
JP2006165746A (en) * 2004-12-03 2006-06-22 Epson Toyocom Corp Surface acoustic wave device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298290A (en) * 1998-02-16 1999-10-29 Murata Mfg Co Ltd Surface acoustic wave device
JP2003258601A (en) * 2001-12-28 2003-09-12 Seiko Epson Corp Surface acoustic wave apparatus and communication device using it
JP2006165746A (en) * 2004-12-03 2006-06-22 Epson Toyocom Corp Surface acoustic wave device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8084918B2 (en) 2008-02-20 2011-12-27 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8237326B2 (en) 2008-02-20 2012-08-07 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8063534B2 (en) 2008-02-20 2011-11-22 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8933612B2 (en) 2009-02-27 2015-01-13 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US8305162B2 (en) 2009-02-27 2012-11-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US9762207B2 (en) 2009-02-27 2017-09-12 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US8502625B2 (en) 2009-02-27 2013-08-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US8952596B2 (en) 2009-02-27 2015-02-10 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US9537464B2 (en) 2010-06-17 2017-01-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8791621B2 (en) 2010-12-03 2014-07-29 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP4645957B2 (en) Surface acoustic wave element and surface acoustic wave device
JP4148294B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP6856825B2 (en) Elastic wave device, demultiplexer and communication device
US8803625B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module unit
JP2006295311A (en) Surface acoustic wave element chip and surface acoustic wave device
JP5934464B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
JP4569447B2 (en) Surface acoustic wave element and surface acoustic wave device
US20080084134A1 (en) Surface acoustic wave device
JP2006203408A (en) Surface acoustic wave device
JP2007300287A (en) Surface acoustic wave element, surface acoustic wave device, and electronic apparatus
JP2012060422A (en) Surface acoustic wave device, electronic apparatus and sensor device
JP7278305B2 (en) Acoustic wave device, branching filter and communication device
JPWO2006137464A1 (en) Surface acoustic wave device, module, and oscillator
JPH09298446A (en) Surface acoustic wave device and its design method
JP2000188521A (en) Surface acoustic wave device and two port surface acoustic wave resonator
JP4582150B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
US8471434B2 (en) Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
JP2007019975A (en) Surface acoustic wave device, module apparatus, and oscillation circuit
JP2010103720A (en) Surface acoustic wave device
JP5158104B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP4356773B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP4148216B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2007325084A (en) Surface acoustic wave element piece and surface acoustic wave device
JP2007053670A (en) Elastic boundary wave element
JP7037439B2 (en) Elastic wave elements, demultiplexers and communication devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101112