JP3248683B2 - Method and apparatus for separating and measuring liquid density and viscosity - Google Patents

Method and apparatus for separating and measuring liquid density and viscosity

Info

Publication number
JP3248683B2
JP3248683B2 JP02159298A JP2159298A JP3248683B2 JP 3248683 B2 JP3248683 B2 JP 3248683B2 JP 02159298 A JP02159298 A JP 02159298A JP 2159298 A JP2159298 A JP 2159298A JP 3248683 B2 JP3248683 B2 JP 3248683B2
Authority
JP
Japan
Prior art keywords
liquid
viscosity
density
sensor
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02159298A
Other languages
Japanese (ja)
Other versions
JPH11211705A (en
Inventor
祥子 塩川
淳 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Industrial Co Ltd
Original Assignee
Fuji Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Industrial Co Ltd filed Critical Fuji Industrial Co Ltd
Priority to JP02159298A priority Critical patent/JP3248683B2/en
Publication of JPH11211705A publication Critical patent/JPH11211705A/en
Application granted granted Critical
Publication of JP3248683B2 publication Critical patent/JP3248683B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体の密度と粘度
の分離測定方法及び装置に関する。
The present invention relates to a method and an apparatus for separating and measuring the density and viscosity of a liquid.

【0002】[0002]

【従来の技術】従来、密度及び粘度(粘性率)の測定法
には、それぞれ比重式、重量式及び落球式、回転円板式
などの静的な方法と、弾性振動を用いた動的な方法があ
る。
2. Description of the Related Art Conventionally, methods for measuring density and viscosity (viscosity) include a static method such as a specific gravity method, a weight method, a falling ball method, a rotating disk method, and a dynamic method using elastic vibration. There is.

【0003】このうち前者の静的な方法は自動測定が困
難で、測定に長時間を必要とし、瞬時自動計測には不適
である。
The former static method is difficult to perform automatic measurement, requires a long time for measurement, and is not suitable for instantaneous automatic measurement.

【0004】このため、即応性が求められる計測には後
者の動的な方法が用いられ、これには質量負荷に起因す
る速度変化から密度を求める密度センサや、ずり波の機
械インピーダンスに起因する音速(減衰)変化から密度
と粘度の積を求める粘度センサが上げられる。
[0004] For this reason, the latter dynamic method is used for measurement that requires responsiveness, such as a density sensor that obtains a density from a speed change caused by a mass load, or a mechanical impedance of a shear wave. There is a viscosity sensor that obtains the product of density and viscosity from a change in sound speed (attenuation).

【0005】[0005]

【発明が解決しようとする課題】従来の技術で粘度を迅
速・正確に測定しようとすると、密度センサと粘度セン
サを温度・圧力等の同一測定条件下で測定する必要があ
るため、測定装置が複雑・高価になる欠点があった。粘
度はこうして得られた粘度センサの出力(密度×粘度)
を密度センサの出力で除して得られるため、一意的に求
めることは不可能で、データ処理も複雑となった。
In order to measure the viscosity quickly and accurately by the conventional technique, it is necessary to measure the density sensor and the viscosity sensor under the same measuring conditions such as temperature and pressure. There was a disadvantage that it became complicated and expensive. The viscosity is the output of the viscosity sensor thus obtained (density x viscosity)
Is divided by the output of the density sensor, so that it is impossible to obtain it uniquely, and the data processing becomes complicated.

【0006】本発明の課題は、液体の密度と粘度を簡易
な構成により、迅速且つ正確に測定することにある。
An object of the present invention is to measure the density and viscosity of a liquid quickly and accurately with a simple configuration.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の本発明
は、すべり弾性表面波の伝播面上のずり変位の垂直方向
に凹凸のあるすべり弾性表面波センサと、凹凸のない平
坦なすべり弾性表面波センサを、同一の弾性表面波圧電
素子に設置し、両センサのそれぞれに標準液体と被測定
液体を負荷したときの、それら両センサの音速変化に基
づいて被測定液体の密度と粘度を分離測定するようにし
たものである。
According to the first aspect of the present invention, there is provided a surface acoustic wave sensor having unevenness in the vertical direction of the shear displacement on the surface of propagation of the surface acoustic wave, and a flat slip having no unevenness. When the surface acoustic wave sensor is installed on the same surface acoustic wave piezoelectric element, and the standard liquid and the liquid to be measured are loaded on each of the two sensors, the density and viscosity of the liquid to be measured are determined based on the sound speed changes of both sensors. Are measured separately.

【0008】請求項2に記載の本発明は、請求項1に記
載の液体の密度と粘度の分離測定方法の実施に用いる液
体の密度と粘度の分離測定装置であって、すべり弾性表
面波の伝播面上のずり変位の垂直方向に凹凸のあるすべ
り弾性表面波センサと、凹凸のない平坦なすべり弾性表
面波センサを、同一の弾性表面波圧電素子に設置してな
るようにしたものである。
According to a second aspect of the present invention, there is provided an apparatus for separating and measuring the density and viscosity of a liquid used for performing the method for separating and measuring the density and viscosity of a liquid according to the first aspect. A surface acoustic wave sensor with unevenness in the vertical direction of the shear displacement on the propagation surface and a flat surface acoustic wave sensor without unevenness are installed on the same surface acoustic wave piezoelectric element. .

【0009】以下、「すべり弾性表面波」を、「SH−
SAW」にて表わす。
Hereinafter, "slip surface acoustic wave" is referred to as "SH-
SAW ".

【0010】[0010]

【作用】本発明の方法及び装置によれば、標準液体を負
荷したときの各種条件下の両センサのそれぞれの音速
と、測定データからの換算式を予めコンピユータに入力
しておくことにより、被測定液体を負荷したときの両セ
ンサ出力から瞬時に同被測定液体の密度と粘度を求める
ことが可能である。
According to the method and apparatus of the present invention, the sound velocity of each sensor under various conditions when a standard liquid is loaded and the conversion formula from the measured data are input to the computer in advance, so that The density and viscosity of the liquid to be measured can be instantaneously obtained from the outputs of both sensors when the liquid to be measured is loaded.

【0011】以下に本発明の原理及び作用について図面
を参照しながら説明する。図1は、凹凸のあるSH−S
AWセンサの伝搬面上に液体を負荷したときの断面図で
ある。同図でX1 はSH−SAWの伝搬方向、X2 はS
H−SAWの変位方向を示す。図1から明らかに、振動
表面と液体との粘性結合により生じる液体のずり運動に
よる効果と、凹による液体のトラップによる効果の2つ
の効果が生じている。
The principle and operation of the present invention will be described below with reference to the drawings. FIG. 1 shows an uneven SH-S
FIG. 4 is a cross-sectional view when a liquid is loaded on the propagation surface of the AW sensor. In the figure, X 1 is the propagation direction of SH-SAW, and X 2 is S
3 shows a displacement direction of H-SAW. As is apparent from FIG. 1, two effects are produced: an effect by shearing motion of the liquid caused by viscous coupling between the vibrating surface and the liquid, and an effect by trapping the liquid by the recess.

【0012】前者の効果は、従来のSH−SAWセンサ
においても生じる。また、後者の効果は、凹の壁により
トラップされた液体が仮想的な膜として振る舞うために
発生する。この2つの効果より、SH−SAWセンサの
応答は伝搬面上に膜が定着されその上に液体が負荷した
ときの状態と同じであると考えることができる。
The former effect also occurs in a conventional SH-SAW sensor. In addition, the latter effect occurs because the liquid trapped by the concave wall behaves as a virtual film. From these two effects, it can be considered that the response of the SH-SAW sensor is the same as the state when the film is fixed on the propagation surface and the liquid is loaded thereon.

【0013】SH−SAWセンサの質量負荷(密度ρ、
ラーメ定数μ、膜厚h)による速度変化(ΔV/V)は
The mass load of the SH-SAW sensor (density ρ,
The speed change (ΔV / V) due to the Lame constant μ and the film thickness h) is

【数1】 で表現される。ここで、Vは伝搬速度、Pは単位幅当た
りのパワーフロー、v2はX2 方向の粒子速度である。
(Equation 1) Is represented by Here, V is the propagation velocity, P is the power flow per unit width, and v 2 is the particle velocity in the X 2 direction.

【0014】ここで凹にトラップされた液体を膜として
考える。そのときの速度変化は
Here, the liquid trapped concavely is considered as a film. The speed change at that time is

【数2】 で表わされる。ここで、hは実効的膜厚、Sl 、Sm
それぞれ凹の底面積、凸の底面積であり、Sはその2つ
の面積の和である。添え字のl、mは液体と金属を示
す。これより標準液体から被測定液体に替えたときに生
じる速度変化は、ρ>>μ/V2 のため
(Equation 2) Is represented by Here, h is the effective film thickness, S l and S m are the concave bottom area and the convex bottom area, respectively, and S is the sum of the two areas. The suffixes l and m indicate liquid and metal. From this, the speed change that occurs when the standard liquid is changed to the liquid to be measured is ρ >> μ / V 2 because

【数3】 となる。ここで、ρl'、ρl はそれぞれ被測定液体と標
準液体の密度を示す。
(Equation 3) Becomes Here, ρ l ′ and ρ l indicate the densities of the liquid to be measured and the standard liquid, respectively.

【0015】また、伝搬面に凹凸をもつSH−SAWセ
ンサ(以下、R−Sセンサと呼ぶ)の速度変化は平坦な
面をもつSH−SAWセンサ(以下、S−Sセンサと呼
ぶ)の速度変化に数3を加えたものとなる。R−Sセン
サの理論式は
The speed change of an SH-SAW sensor (hereinafter, referred to as an RS sensor) having an uneven surface is the speed of an SH-SAW sensor (hereinafter, referred to as an SS sensor) having a flat surface. The result is obtained by adding Equation 3 to the change. The theoretical formula of the RS sensor is

【数4】 となる。ここで、ρl'、ηl'はそれぞれ被測定液体の密
度と粘度、ρl 、ηl は標準液体の密度と粘度を示す。
(Equation 4) Becomes Here, ρ l ′ and η l ′ represent the density and viscosity of the liquid to be measured, respectively, and ρ l and η l represent the density and viscosity of the standard liquid.

【0016】今、R−S及びS−Sセンサによる被測定
液体と標準液体との音速変化をそれぞれ
Now, the sound speed changes between the liquid to be measured and the standard liquid by the RS and SS sensors, respectively, are shown.

【数5】 とおくと数4は(Equation 5) In other words, Equation 4 is

【数6】 となる。(Equation 6) Becomes

【0017】数6から被測定液体の密度ρl'はFrom Equation 6, the density ρ l ′ of the liquid to be measured is

【数7】 と求まる。(Equation 7) Is obtained.

【0018】同様に被測定液体の粘度ηl'はSimilarly, the viscosity η l ′ of the liquid to be measured is

【数8】 と求まる。(Equation 8) Is obtained.

【0019】数7及び数8に基づいて、予め必要データ
を設定したコンピユータに、R−S及びS−Sセンサに
よる音速データを入力することにより、被測定液体の密
度と粘度を分離して算出する方法が可能である。
The density and viscosity of the liquid to be measured are separately calculated by inputting sound velocity data from the RS and SS sensors to a computer in which necessary data is set in advance based on Equations 7 and 8. A way is possible.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図2は、本発明に係る溶液センサの
一実施形態を示す平面図である。同図で1及び4はSH
−SAWの送(受)信子、2及び5は受(送)信子、3
及び6はSH−SAWの伝搬面、7はSH−SAWのず
り変位の垂直方向に設置された凹凸面を表わす。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a plan view showing one embodiment of the solution sensor according to the present invention. In the figure, 1 and 4 are SH
-SAW transmitter (receiver), 2 and 5 are receiver (transmitter), 3
Numeral 6 denotes an SH-SAW propagation surface, and numeral 7 denotes an uneven surface provided in the SH-SAW shear displacement vertical direction.

【0021】1、2、3でS−Sセンサを形成し、送信
子1から送信されたSH−SAWは伝搬面3を伝搬して
受信子2に受信される。同様に4、5、6でR−Sセン
サを形成し、送信子4から送信されたSH−SAWは伝
搬面6、凹凸面7を伝搬して受信子5に受信される。
An SS sensor is formed by 1, 2, and 3, and the SH-SAW transmitted from the transmitter 1 propagates through the propagation surface 3 and is received by the receiver 2. Similarly, an RS sensor is formed by 4, 5, and 6, and the SH-SAW transmitted from the transmitter 4 propagates through the propagation surface 6 and the uneven surface 7 and is received by the receiver 5.

【0022】S−S及びR−S両センサは共通の同一S
H−SAW圧電素子8上に設置されている(図3)。
Both the SS and RS sensors have a common S
It is installed on the H-SAW piezoelectric element 8 (FIG. 3).

【0023】凹凸面はメッキやレジストで実現でき凸部
のhは波長に依存する。
The uneven surface can be realized by plating or resist, and the h of the convex portion depends on the wavelength.

【0024】図3に伝搬面に液体を負荷した測定状態を
示す。同図で9及び10は凹凸面7で構成されたR−S
センサに滴下した液体の断面図、11及び12は平坦面
3で構成されたS−Sセンサに滴下した液体の断面図で
ある。
FIG. 3 shows a measurement state in which a liquid is loaded on the propagation surface. In the figure, reference numerals 9 and 10 denote R-S composed of the uneven surface 7.
Sectional views of the liquid dropped on the sensor, and 11 and 12 are sectional views of the liquid dropped on the SS sensor constituted by the flat surface 3.

【0025】9及び11は標準液体を示し、この状態で
音速測定(コンピユータ入力)後、同液を除去して被測
定液体10及び12を滴下して再び音速測定(コンピュ
ータ入力)する。
Reference numerals 9 and 11 denote standard liquids. In this state, after measuring the sound velocity (input to a computer), the liquid is removed, the liquids 10 and 12 to be measured are dropped, and the sound velocity is measured again (input to a computer).

【0026】9、10及び11、12の測定からそれぞ
From the measurements of 9, 10 and 11, 12 respectively

【数9】 が求まる。(Equation 9) Is found.

【0027】図4に本発明に基づいた測定例を示す。同
図は標準液体として蒸留水、被測定液体としてグリセリ
ン水溶液とぶどう糖水溶液を用いた場合の測定例で、1
3及び15はグリセリン水溶液及びぶどう糖水溶液のR
−Sセンサでの測定値、14及び16はグリセリン水溶
液及びぶどう糖水溶液のS−Sセンサでの測定値であ
る。
FIG. 4 shows a measurement example based on the present invention. The figure shows a measurement example using distilled water as the standard liquid and aqueous glycerin and glucose aqueous solutions as the liquid to be measured.
3 and 15 are R of aqueous glycerin solution and aqueous glucose solution.
The values measured by the -S sensor, 14 and 16 are the values measured by the SS sensor of the aqueous glycerin solution and the aqueous glucose solution.

【0028】鎖線17は数6右辺の第一項目を示すS−
Sセンサの理論値より求めた直線で、S−Sセンサの実
測値14及び16とよく一致している。
The chain line 17 indicates the first item on the right side of the equation (6).
This is a straight line obtained from the theoretical value of the S sensor, and is in good agreement with the measured values 14 and 16 of the SS sensor.

【0029】図5に本方法により求めた実測値を文献値
と対比して示す。同図で18は、図4のR−Sセンサ及
びS−Sセンサによる音速変化の差
FIG. 5 shows measured values obtained by this method in comparison with literature values. In the figure, reference numeral 18 denotes a difference in sound speed change between the RS sensor and the SS sensor in FIG.

【数10】 から求めた数7による密度の実測値と文献値の相関であ
る。
(Equation 10) 7 is a correlation between the measured density value according to Equation 7 and the literature value.

【0030】図5より、実測値と文献値はよく一致して
いて、本発明による密度測定が可能のことを示してい
る。
From FIG. 5, the measured values and the literature values are in good agreement, indicating that the density measurement according to the present invention is possible.

【0031】図4のS−Sセンサによる音速変化Change in sound speed due to SS sensor in FIG.

【数11】 と上述の密度測定値ρl'から、数8により粘度ηl'が求
まる。
[Equation 11] And the above-mentioned density measurement value ρ l ′, the viscosity η l ′ is obtained from Expression 8.

【0032】以上、本発明の実施の形態を図面により詳
述したが、本発明の具体的な構成はこの実施の形態に限
られるものではなく、本発明の要旨を逸脱しない範囲の
設計の変更等があっても本発明に含まれる。
The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific structure of the present invention is not limited to this embodiment, and the design can be changed without departing from the scope of the present invention. The present invention is also included in the present invention.

【0033】[0033]

【発明の効果】以上のように、本発明に係る液体の密度
と粘度の分離測定方法及び装置によれば、一対のSH−
SAWセンサに被測定液体を滴下するだけで、直ちに従
来不可能だった溶液の密度と粘度の分離測定が可能とな
る。
As described above, according to the method and apparatus for separating and measuring the density and viscosity of a liquid according to the present invention, a pair of SH-
By simply dropping the liquid to be measured on the SAW sensor, it becomes possible to immediately separate and measure the density and viscosity of the solution, which were not possible in the past.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を示す説明図で凹凸のあるSH−
SAW伝搬面上に液体を負荷したときの断面図である。
FIG. 1 is an explanatory view showing the principle of the present invention, and shows an uneven SH-
FIG. 4 is a cross-sectional view when a liquid is loaded on the SAW propagation surface.

【図2】本発明に係る溶液センサの一実施例を示す平面
図である。
FIG. 2 is a plan view showing one embodiment of a solution sensor according to the present invention.

【図3】伝搬面に液体を負荷した測定状態を示す断面図
である。
FIG. 3 is a cross-sectional view illustrating a measurement state in which a liquid is loaded on a propagation surface.

【図4】本発明による測定例でR−Sセンサ、S−Sセ
ンサを用いたグリセリン水溶液、ぶどう糖水溶液の密度
粘度積の平方根に対するSH−SAWの伝搬速度変化を
示すグラフである。
FIG. 4 is a graph showing changes in the propagation velocity of SH-SAW with respect to the square root of the density-viscosity product of an aqueous glycerin solution and an aqueous glucose solution using an RS sensor and an SS sensor in a measurement example according to the present invention.

【図5】図4の被測定液体に関し、2つのセンサの伝搬
速度の差から求めた密度の実測値と文献値との相関を示
すグラフである。
5 is a graph showing a correlation between a measured value of density obtained from a difference between propagation speeds of two sensors and a document value with respect to the liquid to be measured of FIG.

【符号の説明】[Explanation of symbols]

1、4 送(受)信子 2、5 受(送)信子 3、6 短絡状態にある伝搬面 7 凹凸伝搬面 8 SH−SAW圧電素子 9、11 伝搬面に滴下された標準液体 10、12 伝搬面に滴下された被測定液体 13、15 R−Sセンサで測定したグリセリン水溶液
及びぶどう糖水溶液の音速変化値 14、16 S−Sセンサで測定したグリセリン水溶液
及びぶどう糖水溶液の音速変化値 17 S−Sセンサの理論音速変化値 18 密度の測定値と文献値の相関グラフ
1, 4 Transmitting / receiving element 2, 5 Receiving / transmitting element 3, 6 Propagation surface in a short-circuit state 7 Irregularity propagation surface 8 SH-SAW piezoelectric element 9, 11 Standard liquid dropped on propagation surface 10, 12 Propagation Liquid to be measured dropped on the surface 13, 15 Change in sound speed of glycerin aqueous solution and glucose aqueous solution measured by RS sensor 14, 16 Change in sound speed of glycerin aqueous solution and glucose aqueous solution measured by SS sensor 17 SS Theoretical sound velocity change value of sensor 18 Correlation graph of measured value of density and literature value

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−29916(JP,A) 特開 平5−45338(JP,A) 特開 平2−238357(JP,A) 特開 平3−82952(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 29/00 - 29/28 G01N 9/00 G01N 11/00 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-29916 (JP, A) JP-A-5-45338 (JP, A) JP-A-2-238357 (JP, A) JP-A-3-29 82952 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 29/00-29/28 G01N 9/00 G01N 11/00 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 すべり弾性表面波の伝播面上のずり変位
の垂直方向に凹凸のあるすべり弾性表面波センサと、凹
凸のない平坦なすべり弾性表面波センサを、同一の弾性
表面波圧電素子に設置し、 両センサのそれぞれに標準液体と被測定液体を負荷した
ときの、それら両センサの音速変化に基づいて被測定液
体の密度と粘度を分離測定する液体の密度と粘度の分離
測定方法。
1. A flat surface acoustic wave sensor having unevenness in the vertical direction of a shear displacement on a propagation surface of a surface acoustic wave and a flat surface acoustic wave sensor having no unevenness in the same surface acoustic wave piezoelectric element. A method for separating and measuring the density and viscosity of a liquid, wherein the standard liquid and the liquid to be measured are installed on each of the sensors, and the density and viscosity of the liquid to be measured are separately measured based on changes in the speed of sound of the two sensors.
【請求項2】 請求項1に記載の液体の密度と粘度の分
離測定方法の実施に用いる液体の密度と粘度の分離測定
装置であって、 すべり弾性表面波の伝播面上のずり変位の垂直方向に凹
凸のあるすべり弾性表面波センサと、凹凸のない平坦な
すべり弾性表面波センサを、同一の弾性表面波圧電素子
に設置してなる液体の密度と粘度の分離測定装置。
2. A liquid density and viscosity separation / measuring apparatus used for performing the liquid density / viscosity separation / measuring method according to claim 1, wherein the vertical displacement of the shear displacement on the surface where the surface acoustic wave propagates. An apparatus for separating and measuring the density and viscosity of a liquid, in which a surface acoustic wave sensor with unevenness in the direction and a flat surface acoustic wave sensor without unevenness are installed on the same surface acoustic wave piezoelectric element.
JP02159298A 1998-01-20 1998-01-20 Method and apparatus for separating and measuring liquid density and viscosity Expired - Lifetime JP3248683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02159298A JP3248683B2 (en) 1998-01-20 1998-01-20 Method and apparatus for separating and measuring liquid density and viscosity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02159298A JP3248683B2 (en) 1998-01-20 1998-01-20 Method and apparatus for separating and measuring liquid density and viscosity

Publications (2)

Publication Number Publication Date
JPH11211705A JPH11211705A (en) 1999-08-06
JP3248683B2 true JP3248683B2 (en) 2002-01-21

Family

ID=12059320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02159298A Expired - Lifetime JP3248683B2 (en) 1998-01-20 1998-01-20 Method and apparatus for separating and measuring liquid density and viscosity

Country Status (1)

Country Link
JP (1) JP3248683B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281801A (en) * 2008-05-21 2009-12-03 Japan Radio Co Ltd Characteristics measuring instrument for measuring target article
JP2010029123A (en) * 2008-07-30 2010-02-12 Japan Radio Co Ltd Device for measuring characteristic of cell
KR101103626B1 (en) 2009-10-08 2012-01-09 광주과학기술원 Device for measuring fluid viscosity
KR101103635B1 (en) 2009-10-07 2012-01-11 광주과학기술원 Device for measuring fluid viscosity
KR101123960B1 (en) * 2009-10-07 2012-03-23 광주과학기술원 Fluid viscometer
WO2013094531A1 (en) 2011-12-22 2013-06-27 日本無線株式会社 Device for measuring characteristic of measurement object

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19850803A1 (en) * 1998-11-04 2000-05-11 Bosch Gmbh Robert Sensor arrangement and a method for determining the density and viscosity of a liquid
JP2003185537A (en) * 2001-12-20 2003-07-03 Fujitsu Ltd Measuring apparatus for chemical liquid, chemical liquid- supplying method, and measuring method for concentration of chemical liquid
JP4504106B2 (en) * 2004-06-11 2010-07-14 株式会社アルバック Measuring method using surface acoustic wave device
JP4826194B2 (en) * 2005-03-04 2011-11-30 凸版印刷株式会社 Surface acoustic wave device and method of using the same
JP2008267968A (en) * 2007-04-19 2008-11-06 Japan Radio Co Ltd Measurement target characteristic measuring apparatus
JP4950752B2 (en) * 2007-05-01 2012-06-13 日本無線株式会社 Density measuring device
JP5363991B2 (en) 2007-11-20 2013-12-11 日本無線株式会社 Surface acoustic wave device and liquid property measuring apparatus
JP5140724B2 (en) * 2008-05-14 2013-02-13 株式会社アルバック Quartz crystal resonator and measurement method using the same
JP2010107485A (en) * 2008-10-31 2010-05-13 Japan Radio Co Ltd Relative permittivity-conductivity measuring device
KR101123959B1 (en) 2010-02-23 2012-03-23 광주과학기술원 Device for measuring fluid viscosity

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281801A (en) * 2008-05-21 2009-12-03 Japan Radio Co Ltd Characteristics measuring instrument for measuring target article
JP2010029123A (en) * 2008-07-30 2010-02-12 Japan Radio Co Ltd Device for measuring characteristic of cell
KR101103635B1 (en) 2009-10-07 2012-01-11 광주과학기술원 Device for measuring fluid viscosity
KR101123960B1 (en) * 2009-10-07 2012-03-23 광주과학기술원 Fluid viscometer
KR101103626B1 (en) 2009-10-08 2012-01-09 광주과학기술원 Device for measuring fluid viscosity
WO2013094531A1 (en) 2011-12-22 2013-06-27 日本無線株式会社 Device for measuring characteristic of measurement object
US9645116B2 (en) 2011-12-22 2017-05-09 Japan Radio Co., Ltd. Object characteristics measurement apparatus

Also Published As

Publication number Publication date
JPH11211705A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
JP3248683B2 (en) Method and apparatus for separating and measuring liquid density and viscosity
Martin et al. Viscosity and density sensing with ultrasonic plate waves
CA1146256A (en) On line ultra-sonic velocity gauge
US7430924B2 (en) Flow measurement apparatus having strain-based sensors and ultrasonic sensors
US7181955B2 (en) Apparatus and method for measuring multi-Phase flows in pulp and paper industry applications
Voulgaris et al. Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements
Farmer et al. A free-flooding acoustical resonator for measurement of bubble size distributions
KR970075858A (en) Method and Apparatus for Determining Earthquake Damage Risk of Structures
EP0120040A1 (en) Ultrasonic measurement.
Figueroa et al. An ultrasonic ranging system for structural vibration measurements
US20010006318A1 (en) Method for exciting lamb waves in a plate, in particular a container wall, and an apparatus for carrying out the method and for receiving the excited lamb waves
JPS6156450B2 (en)
US6439034B1 (en) Acoustic viscometer and method of determining kinematic viscosity and intrinsic viscosity by propagation of shear waves
JPS582620B2 (en) Bubble detection method and device
JP4403280B2 (en) Method for measuring physical properties of soft thin film and apparatus therefor
JP2007309850A5 (en)
JPS60257333A (en) Stress measuring method
Karczub et al. Correlations between dynamic stress and velocity in randomly excited beams
JPH01182727A (en) Measurement of force using ultrasonic wave
JP3512512B2 (en) Ultrasonic flow velocity measuring device
KR100482226B1 (en) Method and apparatus for measuring the amount of flowing in gas pipe using sonic waves
JP3079912B2 (en) Metal material inspection equipment
JP3250070B2 (en) Ultrasonic anemometer
JPH0610255Y2 (en) Ultrasonic transceiver
JPS594270Y2 (en) Vibrating density meter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011016

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term