JPH01182727A - Measurement of force using ultrasonic wave - Google Patents

Measurement of force using ultrasonic wave

Info

Publication number
JPH01182727A
JPH01182727A JP470488A JP470488A JPH01182727A JP H01182727 A JPH01182727 A JP H01182727A JP 470488 A JP470488 A JP 470488A JP 470488 A JP470488 A JP 470488A JP H01182727 A JPH01182727 A JP H01182727A
Authority
JP
Japan
Prior art keywords
stress
force
medium
sing
transverse ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP470488A
Other languages
Japanese (ja)
Inventor
Toru Imamura
徹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP470488A priority Critical patent/JPH01182727A/en
Publication of JPH01182727A publication Critical patent/JPH01182727A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce errors based on temperature distribution and stress distribution, in a stress medium, by using transverse ultrasonic waves on two propagating paths having perpendicular vibrating directions so that propagating distances in the direction perpendicular to the direction of a stress load are equal. CONSTITUTION:Transverse ultrasonic wave vibrators 2 and 3, which are bonded to a stress medium 1, are vibrated in the mutually perpendicular directions, which are shown by vibrating directions 10 of the transverse ultrasonic wave vibrators. The transverse ultrasonic waves are propagated in the directions perpendicular to force F in the stress medium. The propagating speeds of the transverse ultrasonic waves, whose vibrating directions are mutually perpendicular in the stress medium, are measured with sing-around units 4 and 5 by a sing-around method. When the sing-around frequencies are counted by counters 6 and 7, the force, which is applied on the stress medium, can be simply computed by an operating device 8 based on a specified expression.

Description

【発明の詳細な説明】 本発明は、固体に加わる応力に応じて変化する超音波速
度を測定する方法を用いた超音波による力の測定方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of measuring force using ultrasonic waves, which uses a method of measuring ultrasonic velocity that changes depending on the stress applied to a solid.

従来、超音波による応力の測定方法(公開特許公報、昭
56−90228)が知られている。
Conventionally, a method of measuring stress using ultrasonic waves (Japanese Patent Application Publication No. 1983-90228) has been known.

本発明の超音波による力の測定方法は、応力負荷方向に
垂直な方向へ伝播する伝播距離が等しく互いに垂直な振
動方向をもつ二系統の伝播経路の横波超音波を利用して
いるが、従来の方法と比べて、一方はその振動方向が応
力負荷方向と一致し。
The ultrasonic force measurement method of the present invention uses transverse ultrasonic waves that propagate in a direction perpendicular to the stress loading direction and have two propagation paths with equal propagation distances and mutually perpendicular vibration directions. Compared with the method of 1, the vibration direction coincides with the stress loading direction.

他方はその振動方向が応力負荷方向と垂直な、二系統の
伝播経路の横波超音波が、互いに交叉することを特徴と
している。これにより、二系統の低応力分布に基づく測
定誤差が、従来の方法と比べて小さくなる。
The other type is characterized in that transverse ultrasonic waves in two propagation paths whose vibration directions are perpendicular to the stress loading direction intersect with each other. This reduces measurement errors based on the two systems of low stress distribution compared to conventional methods.

なお9本測定方法によりロードセルを構成すれば、従来
のひずみゲージ式、静電容量式、磁気ひずみ式、液圧・
気体圧式、ジャイロ式などとは異なった原理に基づくロ
ードセルを実現できることになる。
If the load cell is constructed using the 9 measurement method, it can be used with conventional strain gauge type, capacitance type, magnetostrictive type, hydraulic pressure type, etc.
This makes it possible to realize a load cell based on a principle different from that of a pneumatic type or a gyro type.

以下1図面を参照して本発明の超音波による力の測定方
法をさらに具体的に説明する。
The method for measuring force using ultrasonic waves according to the present invention will be explained in more detail below with reference to one drawing.

第1図は1本発明に基づいて力の測定を行う装置の概要
を示すもので、■は固体物質からなる応力媒体、2は上
記応力媒体に作用する力の方向に対して振動方向が垂直
な横波超音波振動子、3は上記力の方向に振動方向が一
致した横波超音波振動子、4.5は上記横波超音波振動
子2.3にそれぞれ接続したシングアラウンドユニット
、6゜7はシングアラウンド発振周波数を計数するカラ
本発明の方法においては、このような構成を有する測定
装置に基づき、第2図のように応力媒体lに接着した横
波超音波振動子2.3を横波超音波振動子の振動方向l
Oで示す互いに垂直な方向へ振動させ、応力媒体1で力
Fに垂直な方向へ横波超音波を伝播させて、その応力媒
体中における振動方向が互いに垂直な横波超音波の伝播
速度を。
Figure 1 shows an outline of a device for measuring force based on the present invention. 3 is a transverse wave ultrasonic transducer whose vibration direction coincides with the direction of the force, 4.5 is a sing-around unit connected to the transverse ultrasonic transducer 2.3, and 6°7 is a transverse wave ultrasonic transducer. In the method of the present invention for counting the sing-around oscillation frequency, based on a measuring device having such a configuration, a transverse ultrasonic transducer 2.3 bonded to a stress medium l is subjected to transverse ultrasonic waves as shown in FIG. Oscillator vibration direction l
Vibrate in mutually perpendicular directions indicated by O, and propagate transverse ultrasonic waves in the stress medium 1 in a direction perpendicular to the force F, and find the propagation speed of the transverse ultrasonic waves whose vibration directions are perpendicular to each other in the stress medium.

それぞれのシングアラウンドユニット4.5においてシ
ングアラウンド法により測定する。
Measurement is carried out by the sing-around method in each sing-around unit 4.5.

ここで、応力媒体1に力を加えない場合の横波超音波振
動子2.3におけるシングアラウンド周波数をそれぞれ
+  fl。 、f2゜、応力媒体1の中の互いに等し
い超音波伝播距離をd、応力媒体中における超音波速度
をVo 、装置による遅れ時間をそれぞれτ7.r2 
とすれば。
Here, the sing-around frequency in the transverse ultrasonic transducer 2.3 when no force is applied to the stress medium 1 is +fl, respectively. , f2°, the mutually equal ultrasonic propagation distance in the stress medium 1 is d, the ultrasonic velocity in the stress medium is Vo, and the delay time due to the device is τ7. r2
given that.

■ が成立する。■ holds true.

また、力を加えたときのシングアラウンド周波数をそれ
ぞれf、、  f、’、  超音波速度をそれぞれV、
、V2 とすれば。
Also, the sing-around frequency when applying force is f, f,', and the ultrasonic velocity is V, respectively.
, V2.

が成立する。holds true.

を得る。get.

一方、理論によれば、  (Vz   V+ ) / 
Vo は応力媒体に加わる応力に比例するので、上記a
及びb即ちflo 、 fxo 、 fl 、  fl
及びvO,di:基づいて相対音速差を測定することに
より、力Fによる応力媒体中の応力、従って、力Fの大
きさを求めることができる。ここで、第1図におけるカ
ウンター6.7でシングアラウンド周波数を計数すれば
、それに基づいて演算装置8により簡単に応力媒体に加
わる力を算出することができる。
On the other hand, according to the theory, (Vz V+ ) /
Since Vo is proportional to the stress applied to the stress medium, the above a
and b i.e. flo, fxo, fl, fl
By measuring the relative sound velocity difference based on: Here, if the sing-around frequency is counted by the counter 6.7 in FIG. 1, the force applied to the stress medium can be easily calculated by the arithmetic unit 8 based on the sing-around frequency.

しかも、この場合に、互いに交叉する二系統の伝播経路
の横波超音波の速度差に基づいて、応力媒体に加わって
いる力の大きさを求める方法を用いるため、応力媒体の
温度変化による測定精度の低下量を少なくすることがで
きる。
Moreover, in this case, a method is used to determine the magnitude of the force applied to the stress medium based on the speed difference of the transverse ultrasonic waves of the two systems of propagation paths that intersect with each other, so the measurement accuracy depends on temperature changes in the stress medium. The amount of decrease can be reduced.

上述した超音波による力の測定方法は、均一な以上に詳
述したように1本発明の超音波による力の測定方法は、
二系統の伝播経路の横波超音波の振動方向と伝播経路を
、応力負荷方向に対して。
The method for measuring force using ultrasonic waves described above is uniform.As detailed above, the method for measuring force using ultrasonic waves of the present invention is as follows:
The vibration direction and propagation path of transverse ultrasonic waves in the two propagation paths relative to the stress loading direction.

適切に選択することにより、応力媒体の空間的な利用効
率を高めており、又、温度補償もされる。
Proper selection increases the spatial utilization efficiency of the stress medium and also provides temperature compensation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置のブロック構成図
である。第2図は応力媒体と振動子の配置を示す斜視図
である。 1、   応力媒体 2、 3.  FIQ波超音波振動子 4.5.  シングアラウンドユニット6.7.  カ
ウンター 8、 演算装置 第1図 第2図
FIG. 1 is a block diagram of an apparatus for carrying out the method of the present invention. FIG. 2 is a perspective view showing the arrangement of the stress medium and the vibrator. 1. Stress medium 2. 3. FIQ wave ultrasonic transducer 4.5. Sing Around Unit 6.7. Counter 8, arithmetic unit Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1、応力媒体に圧縮又は引張り力を加え、加えた力の方
向に垂直な方向へ伝播し、一方はその振動方向が応力負
荷方向と一致し、他方はその振動方向が応力付加方向と
垂直な、応力媒体中の伝播距離が等しく互いに交叉する
二系統の伝播経路の横波超音波の速度差に基ずいて、応
力媒体に加わっている力の大きさを求める方法を用いた
超音波による力の測定方法
1. A compressive or tensile force is applied to a stress medium, and the vibration propagates in a direction perpendicular to the direction of the applied force, one in which the vibration direction coincides with the stress loading direction, and the other in which the vibration direction is perpendicular to the stress application direction. , a method of determining the magnitude of the force applied to the stress medium based on the speed difference of the transverse ultrasound waves of two propagation paths whose propagation distances in the stress medium are equal and intersect with each other. Measuring method
JP470488A 1988-01-14 1988-01-14 Measurement of force using ultrasonic wave Pending JPH01182727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP470488A JPH01182727A (en) 1988-01-14 1988-01-14 Measurement of force using ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP470488A JPH01182727A (en) 1988-01-14 1988-01-14 Measurement of force using ultrasonic wave

Publications (1)

Publication Number Publication Date
JPH01182727A true JPH01182727A (en) 1989-07-20

Family

ID=11591267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP470488A Pending JPH01182727A (en) 1988-01-14 1988-01-14 Measurement of force using ultrasonic wave

Country Status (1)

Country Link
JP (1) JPH01182727A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10223226B4 (en) * 2001-06-01 2007-09-27 Nissan Motor Co., Ltd., Yokohama Dual clutch transmission with transmission impact noise damping system and method for its control
WO2013038208A3 (en) * 2011-09-15 2013-05-10 Strainsonics Limited Analysis of load bearing members

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626255A (en) * 1979-08-10 1981-03-13 Agency Of Ind Science & Technol Stress measuring method by ultrasonic wave for substance in liquid
JPS5690228A (en) * 1979-12-25 1981-07-22 Agency Of Ind Science & Technol Stress measurement by ultrasonic wave

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626255A (en) * 1979-08-10 1981-03-13 Agency Of Ind Science & Technol Stress measuring method by ultrasonic wave for substance in liquid
JPS5690228A (en) * 1979-12-25 1981-07-22 Agency Of Ind Science & Technol Stress measurement by ultrasonic wave

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10223226B4 (en) * 2001-06-01 2007-09-27 Nissan Motor Co., Ltd., Yokohama Dual clutch transmission with transmission impact noise damping system and method for its control
DE10223226B8 (en) * 2001-06-01 2008-02-07 Nissan Motor Co., Ltd., Yokohama Dual clutch transmission with transmission impact noise damping system and method for its control
WO2013038208A3 (en) * 2011-09-15 2013-05-10 Strainsonics Limited Analysis of load bearing members

Similar Documents

Publication Publication Date Title
US7793555B2 (en) Apparatus and method for augmenting a coriolis meter
US7181955B2 (en) Apparatus and method for measuring multi-Phase flows in pulp and paper industry applications
US4080836A (en) Method of measuring stress in a material
US6971259B2 (en) Fluid density measurement in pipes using acoustic pressures
US20070125154A1 (en) Apparatus and method for compensating a coriolis meter
US6420816B2 (en) Method for exciting lamb waves in a plate, in particular a container wall, and an apparatus for carrying out the method and for receiving the excited lamb waves
JPH0525045B2 (en)
US4413517A (en) Apparatus and method for determining thickness
JP3248683B2 (en) Method and apparatus for separating and measuring liquid density and viscosity
JPS60117110A (en) Method and device for measuring flow rate of fluid
JPS6156450B2 (en)
JPS582620B2 (en) Bubble detection method and device
JPH01182727A (en) Measurement of force using ultrasonic wave
Si-Chaib et al. Applications of ultrasonic reflection mode conversion transducers in NDE
RU2426131C1 (en) Method and device to measure angular speed
Veidt et al. Flexural waves transmitted by rectangular piezoceramic transducers
JP3014204U (en) 2-wave ultrasonic sensor
Clark Jr Determination of stresses in slightly orthotropic plates using off-axis horizontally polarized ultrasonic shear waves
JPS60257333A (en) Stress measuring method
JPS594270Y2 (en) Vibrating density meter
Johnson et al. Transducer effects in acoustic scattering measurements
JPH0544615B2 (en)
JP4689903B2 (en) Ultrasonic flow velocity measurement method
JPH05164631A (en) Method and apparatus for measuring stress
SU917007A1 (en) Force pickup