JPH0544615B2 - - Google Patents

Info

Publication number
JPH0544615B2
JPH0544615B2 JP58193090A JP19309083A JPH0544615B2 JP H0544615 B2 JPH0544615 B2 JP H0544615B2 JP 58193090 A JP58193090 A JP 58193090A JP 19309083 A JP19309083 A JP 19309083A JP H0544615 B2 JPH0544615 B2 JP H0544615B2
Authority
JP
Japan
Prior art keywords
diaphragm
frequency
pressure
resonant frequency
ultrasonic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58193090A
Other languages
Japanese (ja)
Other versions
JPS6085344A (en
Inventor
Isao Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP19309083A priority Critical patent/JPS6085344A/en
Publication of JPS6085344A publication Critical patent/JPS6085344A/en
Publication of JPH0544615B2 publication Critical patent/JPH0544615B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/04Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/147Details about the mounting of the sensor to support or covering means

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は航空機のエアーデータコンピユータ
等の圧力測定に用いられる高精度の小型圧力測定
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a highly accurate compact pressure measurement device used for pressure measurement in aircraft air data computers and the like.

(ロ) 従来技術 従来の小型圧力測定装置は、ケミカルエツチン
グによつて形成されたシリコン基板の薄肉部(ダ
イヤフラム)に、拡散抵抗を形成し、ダイヤフラ
ムが圧力をうけて撓むことによる拡散抵抗値の変
化からダイヤフラムが受ける圧力を検出してい
る。
(b) Prior art In conventional small pressure measuring devices, a diffused resistance is formed in a thin part (diaphragm) of a silicon substrate formed by chemical etching, and the diffused resistance value is measured when the diaphragm bends under pressure. The pressure applied to the diaphragm is detected from the change in .

しかしながら、従来の装置は拡散抵抗の抵抗値
から圧力を検出する関係上、高精度の圧力測定が
困難であるという欠点がある。
However, since the conventional device detects pressure from the resistance value of the diffusion resistor, it has a drawback that it is difficult to measure pressure with high precision.

(ハ) 目的 この発明は、高精度の圧力測定ができる小型圧
力測定装置を提供することを目的としている。
(c) Purpose The purpose of the present invention is to provide a compact pressure measuring device that can measure pressure with high precision.

(ニ) 構成 本発明に係る小型圧力測定装置は、 弾性限度の高い基板の薄肉部に形成された歪検
知素子と、 その周波数が連続的に変化する信号である駆動
信号を送出する可変周波電源と、 この可変周波電源からの駆動信号が導かれ、こ
の駆動信号の周波数に従つた振動を薄肉部に与え
る超音波振動発生器と、 超音波振動発生器によつて振動させられる薄肉
部の振動のピークを歪検知素子の出力に基づいて
検出することにより、薄肉部の共振周波数を検出
する共振周波数検出部と、 この共振周波数検出部によつて検出された共振
周波数に基づいて圧力の演算を行う演算部とを備
えた構成とするものである。
(D) Configuration The compact pressure measuring device according to the present invention includes a strain sensing element formed in a thin part of a substrate with a high elastic limit, and a variable frequency power source that sends out a drive signal whose frequency is a signal whose frequency changes continuously. an ultrasonic vibration generator to which the drive signal from the variable frequency power source is guided and which applies vibrations to the thin wall part according to the frequency of the drive signal; and vibration of the thin wall part that is vibrated by the ultrasonic vibration generator. A resonant frequency detector detects the resonant frequency of the thin section by detecting the peak of the strain based on the output of the strain sensing element, and a pressure calculation is performed based on the resonant frequency detected by the resonant frequency detector. The configuration includes an arithmetic unit that performs the calculation.

(ホ) 実施例 第1図はこの発明に係る小型圧力測定装置の一
実施例に用いられる圧力検知部の構成を示す説明
図である。
(e) Embodiment FIG. 1 is an explanatory diagram showing the configuration of a pressure sensing section used in an embodiment of the small pressure measuring device according to the present invention.

同図aにおいて、1はシリコン基板である。こ
のシリコン基板1の中央部は、化学的に処理され
て凹状をなし、その底部には円形状の薄肉部(ダ
イヤフラム)2が形成される。
In the figure a, 1 is a silicon substrate. The central portion of this silicon substrate 1 is chemically treated to form a concave shape, and a circular thin portion (diaphragm) 2 is formed at the bottom thereof.

同図bは前記ダイヤフラム2の形態に示す。ダ
イヤフラム2は例えば、直径3〜5mm、厚さ50〜
100μmに形成される。ダイヤフラム2の中央部
には歪検知素子である略S字状の拡散抵抗21A
および21Bが直交するように配設される。22
は拡散抵抗21A,21Bに接続される電極であ
る。ダイヤフラム2がある方向に撓むと、ピエゾ
効果により一方の拡散抵抗の抵抗値は増加し、他
方は減少する。よつて、上述のように拡散抵抗を
配設することによつて、1個の拡散抵抗の場合に
比較して、2倍の抵抗値変化を得ることができ
る。
Figure b shows the form of the diaphragm 2. For example, the diaphragm 2 has a diameter of 3 to 5 mm and a thickness of 50 to 5 mm.
Formed to 100 μm. In the center of the diaphragm 2, there is a substantially S-shaped diffused resistor 21A which is a strain sensing element.
and 21B are arranged so as to be perpendicular to each other. 22
are electrodes connected to the diffused resistors 21A and 21B. When the diaphragm 2 is bent in a certain direction, the resistance value of one diffused resistor increases due to the piezo effect, and the resistance value of the other diffused resistor decreases. Therefore, by arranging the diffused resistors as described above, it is possible to obtain twice the change in resistance value compared to the case of one diffused resistor.

同図aに戻つて、シリコン基板1に超音波振動
を与えるために、その裏面側に超音波振動発生器
3が取りつけられる。超音波振動発生器3はシリ
コン基板1の裏面に当接するフエライトコア3
1、前記フエライトコア31に巻回される励振コ
イル32、フエライトコア31の基端部に取りつ
けられた永久磁石33よりなる。
Returning to FIG. 1A, an ultrasonic vibration generator 3 is attached to the back side of the silicon substrate 1 in order to apply ultrasonic vibrations to the silicon substrate 1. The ultrasonic vibration generator 3 has a ferrite core 3 that comes into contact with the back surface of the silicon substrate 1.
1. It consists of an excitation coil 32 wound around the ferrite core 31 and a permanent magnet 33 attached to the base end of the ferrite core 31.

シリコン基板1が取りつけられた超音波振動発
生器3は、緩衝材としてのシリコンゴムを介し
て、金属容器5内に載置される。そして、金属容
器5の開口部に、被測定気体を導入する管61お
よびこれに連通する孔62を備えた、セラミツク
製のベース6が取りつけられる。7はベース6と
シリコン基板1との間に介在するスペーサであ
る。
The ultrasonic vibration generator 3 to which the silicon substrate 1 is attached is placed in a metal container 5 via silicon rubber as a cushioning material. A ceramic base 6 is attached to the opening of the metal container 5, and includes a tube 61 for introducing the gas to be measured and a hole 62 communicating with the tube. 7 is a spacer interposed between the base 6 and the silicon substrate 1.

また、前記ベース6には、超音波振動発生器3
への電力供給端子8A、拡散抵抗21A,22B
の信号を取り出すための信号端子8Bが設けられ
る。
The base 6 also includes an ultrasonic vibration generator 3.
power supply terminal 8A, diffusion resistance 21A, 22B
A signal terminal 8B is provided for taking out the signal.

第2図はこの発明に係る小型圧力測定装置の信
号処理手段の構成を略示したブロツク図である。
FIG. 2 is a block diagram schematically showing the structure of the signal processing means of the compact pressure measuring device according to the present invention.

同図において、第1図と同一部分は同一符号で
示している。11は超音波振動発生器3に例え
ば、数10〜100KHzの電力を供給する可変周波電
源である。12は拡散抵抗21A,21Bの信号
を入力するピークずれ検出器である。このピーク
ずれ検出器12は、入力信号の振幅のピークずれ
を検出して、入力信号の振幅値が常に最大となる
ように前記可変周波電源11の数端数を制御す
る。13は可変周波電源11の周波数を検知する
周波数カウンタ、14は前記周波数カウンタ13
の出力を与えられ、これに後述する演算を施し
て、ダイヤフラム2に作用する圧力を算出する演
算器である。
In this figure, the same parts as in FIG. 1 are indicated by the same reference numerals. Reference numeral 11 denotes a variable frequency power source that supplies the ultrasonic vibration generator 3 with power of, for example, several tens to 100 KHz. Reference numeral 12 denotes a peak shift detector which inputs signals from the diffused resistors 21A and 21B. This peak deviation detector 12 detects the peak deviation of the amplitude of the input signal, and controls the fraction of the variable frequency power supply 11 so that the amplitude value of the input signal is always the maximum. 13 is a frequency counter that detects the frequency of the variable frequency power source 11; 14 is the frequency counter 13;
This is a computing unit that is given the output of , and calculates the pressure acting on the diaphragm 2 by performing arithmetic operations described below on this output.

なお上記構成において、特許請求の範囲第1項
に記載され、歪検知素子である拡散抵抗21A,
21Bの出力に基づいてダイヤフラム2の共振周
波数を検出する共振周波数検出部は、ピークずれ
検出器12と周波数カウンタ13とによる構成と
なつている。
Note that in the above configuration, the diffused resistor 21A, which is described in claim 1 and is a strain sensing element,
A resonant frequency detection section that detects the resonant frequency of the diaphragm 2 based on the output of the diaphragm 21B includes a peak shift detector 12 and a frequency counter 13.

次に、上述した構成を備えた実施例を動作につ
いて説明する。まず、この発明に係る小型圧力測
定装置の原理に関係する周辺固定円板の共振振動
について簡単に説明する。
Next, the operation of the embodiment having the above-described configuration will be described. First, the resonance vibration of the peripheral fixed disk related to the principle of the compact pressure measuring device according to the present invention will be briefly explained.

周辺固定円板に圧力が加わつて撓みを生じた場
合、その円板は前記撓み量に応じた固有の共振周
波数を有することが知られている(チモシエンコ
著『工業振動学』商工出版社P414)。
It is known that when pressure is applied to a peripheral fixed disk and it deflects, that disk has a unique resonance frequency that corresponds to the amount of deflection (Timosienko, "Industrial Vibrations", Shoko Publishing, p. 414). .

すなわち、共振周波数pと円板に圧力が加わつ
たときの撓みa1との間には次式の関係がある。
That is, the following relationship exists between the resonance frequency p and the deflection a1 when pressure is applied to the disk.

p=10.33/a2(gD/γh)1/2(1+1.464×a1 2/h21
/2
……(1) ここで、 a:円板の境界半径 γ:材料の密度 g:重力加速度 h:円板の厚さ D:Eh3/{12(1−ν2)} E:ヤング係数 ν:ポアソン比 である。
p=10.33/a 2 (gD/γh) 1/2 (1+1.464×a 1 2 /h 2 ) 1
/2
...(1) Here, a: Boundary radius of the disk γ: Density of the material g: Gravitational acceleration h: Thickness of the disk D: Eh 3 / {12 (1-ν 2 )} E: Young Coefficient ν: Poisson's ratio.

円板に加わる圧力Pが零のとき、撓みa1は零に
なる。このときの共振周波数をp1とすると、 p1=10.33/a2(gD/γh)1/2 ……(2) となる(p1は定数)。したがつて、(1)式はp=p1
(1+1.464×a1 2/h21/2となる。さらにダイヤフ
ラム2の撓みa1は圧力Pによつて次式 a1=f(p) と表されるから、(2)式は、 p=p1(1+1.464×f(P)/h21/2=u ……(3) となる。
When the pressure P applied to the disk is zero, the deflection a1 becomes zero. If the resonance frequency at this time is p 1 , then p 1 =10.33/a 2 (gD/γh) 1/2 (2) (p 1 is a constant). Therefore, equation (1) is p=p 1
(1+1.464×a 1 2 /h 2 ) 1/2 . Furthermore, since the deflection a 1 of the diaphragm 2 is expressed by the pressure P as the following equation a 1 = f(p), equation (2) is as follows: p=p 1 (1+1.464×f(P)/h 2 ) 1/2 = u ...(3).

このように共振周波数pは圧力Pの関数として
表されるから、圧力Pが作用する状態でダイヤフ
ラム2の共振周波数pを計測することにより、逆
に、圧力Pを求めることができる。
Since the resonance frequency p is thus expressed as a function of the pressure P, the pressure P can be determined conversely by measuring the resonance frequency p of the diaphragm 2 in a state where the pressure P is applied.

次に実際の動作を第1図および第2図に基づき
説明する。
Next, the actual operation will be explained based on FIGS. 1 and 2.

シリコン基板1のダイヤフラム2に圧力が作用
していないとき、ダイヤフラム2は超音波振動発
生器3から周波数p1なる超音波振動を与えられ、
共振している。
When no pressure is applied to the diaphragm 2 of the silicon substrate 1, the diaphragm 2 is given ultrasonic vibration with a frequency p1 from the ultrasonic vibration generator 3,
It resonates.

しかして、ベース6の管61から、シリコン基
板1とスペーサ7との形成された空間に被測定気
体が導入される結果、ダイヤフラム2が撓む。そ
の結果、ダイヤフラム2の共振周波数が変位する
から、ダイヤフラム2の振動幅が減少する。ダイ
ヤフラム2の振動幅の変化は拡散抵抗21A,2
1Bの信号振幅の変化となつて表れる。ピークず
れ検出器12は拡散抵抗に生ずる信号振幅のピー
クずれを検出する。そして、前記信号振幅が最大
となるように可変周波電源11の周波数を制御す
る。これにより可変周波電源11の周波数はダイ
ヤフラム2の共振周波数に維持される。
As a result of the gas to be measured being introduced from the tube 61 of the base 6 into the space formed between the silicon substrate 1 and the spacer 7, the diaphragm 2 is bent. As a result, the resonance frequency of the diaphragm 2 is shifted, so the vibration width of the diaphragm 2 is reduced. The change in the vibration width of the diaphragm 2 is caused by the diffusion resistance 21A, 2.
This appears as a change in the signal amplitude of 1B. The peak shift detector 12 detects the peak shift of the signal amplitude occurring in the diffused resistance. Then, the frequency of the variable frequency power supply 11 is controlled so that the signal amplitude is maximized. As a result, the frequency of the variable frequency power source 11 is maintained at the resonant frequency of the diaphragm 2.

周波数カウンタ13は可変周波電源11の周波
数、すなわち、前記ダイヤフラム2の共振周波数
pを計数し、これを演算器14に与える。演算器
14は前述した共振周波数pと圧力Pとの関係式
から、ダイヤフラム2に作用する圧力Pを算出す
る。
The frequency counter 13 counts the frequency of the variable frequency power supply 11, that is, the resonance frequency p of the diaphragm 2, and provides this to the arithmetic unit 14. The calculator 14 calculates the pressure P acting on the diaphragm 2 from the above-mentioned relational expression between the resonance frequency p and the pressure P.

第3図は信号処理手段の他の実施例の構成を略
示したブロツク図である。同図において、第2図
と同一部分は同一符号で示している。
FIG. 3 is a block diagram schematically showing the structure of another embodiment of the signal processing means. In this figure, the same parts as in FIG. 2 are indicated by the same reference numerals.

可変周波電源11′は所定範囲で周波数掃引さ
れる電力を超音波振動発生器3に与える。ダイヤ
フラム2は超音波振動が共振周波数に一致したと
き、大きく振動する。このとき、拡散抵抗21
A,21Bの信号の振幅はピークを示すから、こ
れをピーク検出器12′で検出する。しかして、
ラツチ回路15に周波数カウンタ13の出力をあ
たえ、前記ピーク検出時の周波数をラツチさせ
る。このラツチ回路の出力は該受圧下におけるダ
イヤフラム2の共振周波数Pを与えるから、これ
を演算器14に与えることにより、圧力が測定さ
れる。
The variable frequency power source 11' provides the ultrasonic vibration generator 3 with power whose frequency is swept within a predetermined range. The diaphragm 2 vibrates greatly when the ultrasonic vibration matches the resonant frequency. At this time, the diffused resistor 21
Since the amplitudes of the signals A and 21B show peaks, these are detected by the peak detector 12'. However,
The output of the frequency counter 13 is applied to a latch circuit 15 to latch the frequency at the time of peak detection. Since the output of this latch circuit provides the resonance frequency P of the diaphragm 2 under the pressure, the pressure is measured by applying this to the calculator 14.

なお上記構成において、特許請求の範囲第1項
に記載された共振周波数検出部は、ピーク検出器
12′、周波数カウンタ13、およびラツチ回路
15による構成となつている。
In the above configuration, the resonant frequency detection section described in claim 1 includes a peak detector 12', a frequency counter 13, and a latch circuit 15.

なお、上述の実施例において、ダイヤフラム2
の表面に拡散抵抗21A,21Bをそれぞれ直交
するように配設した。しかし、この発明はこれに
限られるものではなく、ダイヤフラム2に設けら
れる拡散抵抗の数や位置および相互の配線は適宜
に定められるものである。たとえば、ダイヤフラ
ム2に4個の散抵抗を形成して、これらをいわゆ
るブリツジ接続することによつてもダイヤフラム
2の共振周波数を検出することができる。
Note that in the above embodiment, the diaphragm 2
Diffused resistors 21A and 21B were disposed on the surface of the substrate so as to be perpendicular to each other. However, the present invention is not limited to this, and the number and position of the diffused resistors provided in the diaphragm 2, as well as mutual wiring, can be determined as appropriate. For example, the resonance frequency of the diaphragm 2 can also be detected by forming four scattered resistors on the diaphragm 2 and connecting them in a so-called bridge connection.

さらに、上述の実施例では、ダイヤフラム2を
均一の厚みをもつたものとして説明したが、この
発明はこれに限定されるものではない。測定条件
などによつて、ダイヤフラム2の厚みを不均一に
したものであつてもよい。この場合、ダイヤフラ
ムの共振周波数pと圧力Pとの関係式は、実験的
に定めうるものでもある。
Further, in the above-described embodiments, the diaphragm 2 is described as having a uniform thickness, but the present invention is not limited to this. The thickness of the diaphragm 2 may be made non-uniform depending on measurement conditions or the like. In this case, the relational expression between the resonance frequency p of the diaphragm and the pressure P can be determined experimentally.

また、ダイヤフラムの形状は上述したような円
形のみならず、角形であつてもよいことを勿論で
ある。
Moreover, the shape of the diaphragm is not limited to the circular shape as described above, but it goes without saying that it may be square.

一方、実施例において、ダイヤフラム2はシリ
コン基板でもつて形成されるとして説明したが、
これは溶融石英基板のような他の弾性限度の高い
材料よりなる基板であつてもよい。そして、この
場合、拡散抵抗の代わりに歪検知素子である歪ゲ
ージがエポキシ系接着材などでダイヤフラムの表
面に貼着される。
On the other hand, in the embodiment, the diaphragm 2 was described as being formed of a silicon substrate.
This may also be a substrate made of other high elastic limit materials, such as a fused silica substrate. In this case, instead of the diffused resistor, a strain gauge serving as a strain sensing element is attached to the surface of the diaphragm using an epoxy adhesive or the like.

また、周囲温度の変化に伴い、ダイヤフラムの
ヤング係数が若干変化するので、これに起因する
圧力の測定誤差が若干生じうる。そこで、ダイヤ
フラムの温度を検出して、前記ヤング係数の補正
を演算器等で行えば、測定精度をさらに向上する
ことができる。
Additionally, the Young's modulus of the diaphragm changes slightly as the ambient temperature changes, which may cause a slight error in pressure measurement. Therefore, by detecting the temperature of the diaphragm and correcting the Young's coefficient using a calculator or the like, measurement accuracy can be further improved.

(ヘ) 効果 この発明に係る小型圧力測定装置は、ダイヤフ
ラムに作用する圧力を、該受圧下におけるダイヤ
フラムの比較的高い共振周波数から求めるもので
あるから、前記圧力の測定を精度よく行うことが
できる。
(F) Effect The compact pressure measuring device according to the present invention can measure the pressure with high accuracy because the pressure acting on the diaphragm is determined from the relatively high resonance frequency of the diaphragm under the pressure. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る小型圧力測定装置の一
実施例に用いられる圧力検知部の構成を示す説明
図、第2図はこの発明に係る小型圧力測定装置の
信号処理手段の構成を略示したブロツク図、第3
図は信号処理手段の他の実施例の構成を略示した
ブロツク図である。 1……シリコン基板、2……ダイヤフラム、2
1A,21B……拡散抵抗、3……超音波振動発
生器、11……可変周波電源、12……ピークず
れ検出器、13……周波数カウンタ、14……演
算器。
FIG. 1 is an explanatory diagram showing the configuration of a pressure detection section used in an embodiment of the compact pressure measuring device according to the present invention, and FIG. 2 schematically shows the configuration of the signal processing means of the compact pressure measuring device according to the present invention. Block diagram, Part 3
The figure is a block diagram schematically showing the structure of another embodiment of the signal processing means. 1...Silicon substrate, 2...Diaphragm, 2
1A, 21B... Diffusion resistance, 3... Ultrasonic vibration generator, 11... Variable frequency power supply, 12... Peak shift detector, 13... Frequency counter, 14... Arithmetic unit.

Claims (1)

【特許請求の範囲】 1 弾性限度が高い基板の薄肉部に形成された歪
検知素子と、 その周波数が連続的に変化する信号である駆動
信号を送出する可変周波電源と、 この可変周波電源からの駆動信号が導かれ、こ
の駆動信号の周波数に従つた振動を前記薄肉部に
与える超音波振動発生器と、 この超音波振動発生器によつて振動させられる
前記薄肉部の振動のピークを前記歪検知素子の出
力に基づいて検出することにより、前記薄肉部の
共振周波数を検出する共振周波数検出部と、 この共振周波数検出部によつて検出された共振
周波数に基づいて圧力の演算を行う演算部とを備
えたことを特徴とする小型圧力測定装置。
[Claims] 1. A strain sensing element formed in a thin part of a substrate with a high elastic limit, a variable frequency power source that sends out a drive signal whose frequency continuously changes, and from this variable frequency power source an ultrasonic vibration generator to which a drive signal is guided and which applies vibrations to the thin part according to the frequency of the drive signal, and a vibration peak of the thin part vibrated by the ultrasonic vibration generator. a resonant frequency detection unit that detects a resonant frequency of the thin wall portion by detecting it based on the output of the strain sensing element; and a calculation unit that calculates pressure based on the resonant frequency detected by the resonant frequency detection unit. A compact pressure measuring device characterized by comprising:
JP19309083A 1983-10-15 1983-10-15 Small-size pressure measuring device Granted JPS6085344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19309083A JPS6085344A (en) 1983-10-15 1983-10-15 Small-size pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19309083A JPS6085344A (en) 1983-10-15 1983-10-15 Small-size pressure measuring device

Publications (2)

Publication Number Publication Date
JPS6085344A JPS6085344A (en) 1985-05-14
JPH0544615B2 true JPH0544615B2 (en) 1993-07-06

Family

ID=16302061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19309083A Granted JPS6085344A (en) 1983-10-15 1983-10-15 Small-size pressure measuring device

Country Status (1)

Country Link
JP (1) JPS6085344A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524215A (en) * 2010-03-30 2013-06-17 ローズマウント インコーポレイテッド Pressure sensor based on resonance frequency

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177030A (en) * 1987-01-19 1988-07-21 Nippon Denso Co Ltd Semiconductive pressure sensor
FR2700846A1 (en) * 1993-01-26 1994-07-29 Brugidou Vincent Device for measuring strains or deformations by ferromagnetic resonance and method for implementing the said device
JPH07167720A (en) * 1993-12-14 1995-07-04 Matsushita Electric Ind Co Ltd Pressure sensor
KR100763022B1 (en) * 2005-02-03 2007-10-02 주식회사 엠디티 No power/wireless sensor using magnetic disturbance detection by ultrasonic space vibration and system using the sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717830A (en) * 1980-05-22 1982-01-29 Siemens Ag Semiconductor pressure sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717830A (en) * 1980-05-22 1982-01-29 Siemens Ag Semiconductor pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524215A (en) * 2010-03-30 2013-06-17 ローズマウント インコーポレイテッド Pressure sensor based on resonance frequency

Also Published As

Publication number Publication date
JPS6085344A (en) 1985-05-14

Similar Documents

Publication Publication Date Title
US5129262A (en) Plate-mode ultrasonic sensor
US4644804A (en) Quartz resonating force and pressure transducer
EP0685704B1 (en) Vibrating gyroscope
JP4155960B2 (en) Fine mass measuring apparatus and method to which oscillation circuit is applied
US5946795A (en) Method of manufacturing a micromechanical oscillating mass balance
US7274002B2 (en) Heating element induction of time-varying thermal gradient in elongated beam to cause one or more elongated beam oscillations
US7424376B2 (en) Precise pressure measurement by vibrating an oval conduit along different cross-sectional axes
WO1994017363A1 (en) Angular velocity sensor
JP2011117944A (en) Acceleration sensor
JP4514639B2 (en) Cantilever type sensor
JPH0520693B2 (en)
US6532822B1 (en) Resonant torsion pendulum pressure sensor
US5656777A (en) Miniature box vibrating gyroscope
JPH0544615B2 (en)
JP2004093574A (en) Cantilever with force azimuth sensor for atomic force microscope
JPH05149773A (en) Using method of strain gage
JP3161057B2 (en) Vibrator of vibration type sensor
JP3603447B2 (en) Flow measurement device
JP2001108442A (en) Excitation method for vibration type angular velocity sensor, and vibration type angular velocity sensor
JP2002054959A (en) Differential pressure type flow rate meter
JPS6033057A (en) Acceleration sensor
JPH076904B2 (en) Vibration type viscometer
JPH02231543A (en) Method for measuring modulus of elasticity of ceramics
JPS6057231A (en) Gas pressure gauge
JPH01182727A (en) Measurement of force using ultrasonic wave