JPS60257333A - Stress measuring method - Google Patents

Stress measuring method

Info

Publication number
JPS60257333A
JPS60257333A JP59113061A JP11306184A JPS60257333A JP S60257333 A JPS60257333 A JP S60257333A JP 59113061 A JP59113061 A JP 59113061A JP 11306184 A JP11306184 A JP 11306184A JP S60257333 A JPS60257333 A JP S60257333A
Authority
JP
Japan
Prior art keywords
ultrasonic wave
transmitter
measuring
receiver
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59113061A
Other languages
Japanese (ja)
Inventor
Kuniaki Kitamura
北村 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59113061A priority Critical patent/JPS60257333A/en
Publication of JPS60257333A publication Critical patent/JPS60257333A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/25Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
    • G01L1/255Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons using acoustic waves, or acoustic emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure a stress state in an object nondestructively and also in a short time by projecting an ultrasonic wave into the object, and measuring an acoustic velocity of an ultrasonic wave which has transmitted through its object or an ultrasonic wave which has been reflected and returned from the transmission surface side. CONSTITUTION:A transmitting direction of an ultrasonic wave is determined by installing a transmitter 1 of the ultrasonic wave to a measuring part of an object to be measured 10. On the surface which the ultrasonic wave reaches after transmission, a receiver 2 is installed to match the transmitting direction of the ultrasonic wave. A piezoelectric material is embedded as a diaphragm 3 into the transmitter 1 and the receiver 2, and it is installed by applying a contact medium such as glycerine, etc. in order to improve its acoustic contact. The transmitter 1 is connected to a high frequency transmitter 4 for supplying an electric pulse. Also, the receiver 2 amplifies a received signal, and it is connected to a measuring device 5 for measuring a transmission time, etc. by comparing it with the electric pulse of the time of transmission. Information obtained in this device is sent to an operating and display device 6, and by data of a size of the object inputted in advance, the acoustic velocity of the ultrasonic wave of the time of no-load, etc., and an operational expression, the magnitude of each main stress is calculated and outputted.

Description

【発明の詳細な説明】 [発明の綽術分野] 本発明は、超音波が物体中を透過する際、その物体の持
つ応力状態に応じてその特性を変化させる性質を利用し
た応力測定方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a stress measurement method that utilizes the property that when an ultrasonic wave passes through an object, its characteristics change depending on the stress state of the object. It is something.

[発明の技術的背景とその問題点] 従来、物体中の内部応力を測定する際には、ストレンゲ
ージを用いた切出し法が多く用いられている。これでは
物体を小片に切断しなければならないので、実製品には
応用することができない欠点がある、さらに、ストレン
ゲージの貼り付9プに熟練を要し、又小片に切断するの
に多大な時間と労力を必要としていた。また、非破壊的
に測定する方法としてX線回折法等も利用されているが
、原理的に極く表面層の部分にしか適用できない等の制
限がある。
[Technical background of the invention and its problems] Conventionally, when measuring internal stress in an object, a cutting method using a strain gauge is often used. This method has the disadvantage that it cannot be applied to actual products because the object must be cut into small pieces.Furthermore, it requires skill to attach the strain gauge, and it takes a lot of effort to cut the object into small pieces. It required time and effort. In addition, X-ray diffraction methods are also used as non-destructive measurement methods, but there are limitations such as the fact that they can be applied only to the very surface layer in principle.

[発明の目的] 本発明の目的は、超音波を利用して物体を破壊せずに物
体中の応力状態を測定する応力測定方法を提供するにあ
る。
[Object of the Invention] An object of the present invention is to provide a stress measurement method that uses ultrasonic waves to measure the stress state in an object without destroying the object.

1・発明の概要] 本発明による応力測定方法は、物体中を透過しやづく、
又、透過しつつある物体の応力に対づ゛る依存性の強い
超音波を利用しようとするものである。即ち、縦波の伝
搬速度V(及び横波の伝搬速度Vn及びV丁2は、それ
ぞれ主応力S+−Sz及びSJの関数として布教される
ので、超音波が物質中を透過するのに必要な時間と、そ
の時の透過部分の長さを計測すれば、所定の換算式から
主応力の大ぎさをめることができる。
1. Summary of the invention] The stress measuring method according to the present invention can easily penetrate through an object.
It also attempts to utilize ultrasonic waves that are highly dependent on the stress of the object through which they are transmitted. That is, since the propagation velocity V of longitudinal waves (and the propagation velocities Vn and Vd2 of transverse waves are propagated as functions of the principal stresses S+-Sz and SJ, respectively, the time required for the ultrasonic wave to pass through the material By measuring the length of the transparent portion at that time, the magnitude of the principal stress can be estimated from a predetermined conversion formula.

[発明の実施例] 次に本発明を図面に示す実施例について説明する。図面
は厚肉の物体10に対する応力測定装置の一実施例を示
づ。測定の対象物10の測定部分に超音波の送信器1を
設置して超音波の透過方向を決める。超音波が透過後に
到達する表面には、受信機2を超音波の透過方向に合わ
せて設置する。送信機1及び受信機2を設置する面には
、音響的接触を良くするためにグリセリン等の接触媒質
を塗布する必要がある。送信機1及び受信機2には、電
気パルスを機械振動に変換するための圧電材料が振動板
3として埋め込まれている。
[Embodiments of the Invention] Next, embodiments of the present invention shown in the drawings will be described. The drawing shows an embodiment of a stress measuring device for a thick-walled object 10. An ultrasonic transmitter 1 is installed at a measurement portion of an object 10 to be measured, and the transmission direction of the ultrasonic waves is determined. A receiver 2 is installed on the surface where the ultrasonic waves reach after being transmitted, in alignment with the direction of ultrasonic wave transmission. The surface on which the transmitter 1 and receiver 2 are installed needs to be coated with a couplant such as glycerin to improve acoustic contact. A piezoelectric material is embedded in the transmitter 1 and receiver 2 as a diaphragm 3 for converting electric pulses into mechanical vibrations.

送信機1は電気パルスを供給するための高周波発信機4
に接続される。又、受信機2は受信した信号を増幅し、
発信時の電気パルスとの比較で透過時間等をh1測する
ための計測装置5に接続される。ここで得られた情報は
、演算及び表示装@6に送られ、予め入力されている物
体の大きさ、無負荷時の超音波の音速等のデータ及び演
算式によって各主応力の大きさが計算されて出力される
The transmitter 1 is a high frequency transmitter 4 for supplying electric pulses.
connected to. Moreover, the receiver 2 amplifies the received signal,
It is connected to a measuring device 5 for measuring the transmission time h1 by comparison with the electric pulse at the time of transmission. The information obtained here is sent to the calculation and display device@6, and the magnitude of each principal stress is calculated using data such as the size of the object and the speed of sound of the ultrasonic wave under no load, etc., and calculation formulas that have been input in advance. Calculated and output.

物体中に投射した超音波を検知するには、物体の厚さに
応じて透過面側に検知専用の受信機を設置する場合と、
反射体を介して投射面側に戻ってきた超音波を受信する
送信器と兼用の受信機を置く場合とがある。物体が薄肉
の場合又は円筒状で透過してくる面に受信機2を設置す
ることが困難な場合は、超音波の反射を利用して送信位
置に戻ってきた超音波を送信11を利用して受信するこ
とが可能である。又、これ以降の機器の構成例は図面の
場合と同様である。
To detect ultrasonic waves projected into an object, depending on the thickness of the object, a dedicated detection receiver may be installed on the transparent side, or
In some cases, a receiver is installed which also functions as a transmitter to receive the ultrasonic waves that have returned to the projection surface via a reflector. If the object is thin or cylindrical and it is difficult to install the receiver 2 on the surface through which it is transmitted, the transmitter 11 can be used to transmit the ultrasonic waves that have returned to the transmitting position by utilizing the reflection of the ultrasonic waves. It is possible to receive it by Furthermore, the configuration examples of the equipment from this point on are the same as those in the drawings.

次に超音波を利用して物体中の応力状態を測定できる原
理について説明する。無応力状態の時は、物体を透過す
る超音波の縦波及び横波は、物体に固有な一定の速度V
Lo及びVyoで伝搬する。この物体に応力が付加され
ている場合には、その主応力をSl、$2、S3とすれ
ば、縦波の音波VLは、V、=(A+B ・ (S++
82) + C−S、) ’ろ−(1) と表わすことができる。ここで、A、B、Cは物体に固
有の定数である。
Next, we will explain the principle by which the stress state in an object can be measured using ultrasonic waves. In a stress-free state, the longitudinal and transverse waves of ultrasonic waves that pass through an object have a constant velocity V that is unique to the object.
It propagates in Lo and Vyo. If stress is applied to this object, and if the principal stress is Sl, $2, S3, then the longitudinal sound wave VL is V, = (A+B ・ (S++
82) + C-S, ) 'ro-(1). Here, A, B, and C are constants specific to the object.

一方、横波は主応力S1の方向に偏向して伝搬するVT
Iと、主応力S2の方向に偏向して伝搬するV72とに
分かれ、それぞれ VTI = (D+E j S++ F−32+G−3
J)−”−(2) VT2−(D + F−3J+ E−82+ G−8j
)−”−(3) と表わすことができる。ここで、D、E、F、Gはそれ
ぞれ物体に固有の定数である。
On the other hand, the transverse wave is deflected in the direction of the principal stress S1 and propagates at VT
I and V72, which is deflected and propagated in the direction of the principal stress S2, and each VTI = (D+E j S++ F-32+G-3
J)-”-(2) VT2-(D + F-3J+ E-82+ G-8j
)-”-(3) Here, D, E, F, and G are constants specific to each object.

式(1)、(2)、(3)から明らかなように、音速V
L% VTI 、V丁λをめることより、主応力S7、
Sl、S3の大きさを算出することができる。したがっ
て、図面における演算および表示装置6には、これらの
演算式、物体の大きさ、無負荷時の超音波の音速などの
各種データが入力されているため、計測装置5で得られ
た情報の入力によって各主応力の大きさが計算されて出
力される。がくして本発明の測定方法によれば、従来の
方法のように物体の大きさに拘わらず、また物体を破壊
せずに短時間で物体中の残留応力および使用中に物体に
作用する応力変動などを測定することができる。
As is clear from equations (1), (2), and (3), the sound velocity V
By subtracting L% VTI and Vd λ, the principal stress S7,
The sizes of Sl and S3 can be calculated. Therefore, since various data such as these calculation formulas, the size of the object, and the sound speed of ultrasonic waves under no load are input to the calculation and display device 6 in the drawing, the information obtained by the measurement device 5 The magnitude of each principal stress is calculated and output based on the input. Therefore, according to the measurement method of the present invention, residual stress in an object and stress fluctuations acting on the object during use can be measured in a short time, regardless of the size of the object and without destroying the object, unlike conventional methods. etc. can be measured.

[発明の効果] 以上のように本発明によれば、物体を非破壊的に短時間
で物体中の応力状態を測定することができる。
[Effects of the Invention] As described above, according to the present invention, the stress state in an object can be measured non-destructively in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による応力測定方法に適用する測定装置の
一実施例を示す構成図である。 1・・・送信機、 2・・・受信機
The drawing is a configuration diagram showing one embodiment of a measuring device applied to the stress measuring method according to the present invention. 1...Transmitter, 2...Receiver

Claims (1)

【特許請求の範囲】[Claims] (1)物体中に超音波を投射し、その物体中を透過して
きた超音波又は透過面側から反射して戻ってきた超音波
の音速を計測し、この計測値と所定の換算式とから物体
中の超音波の透過部分の応力状態を計測することを特徴
とづる応力測定方法。
(1) Project an ultrasonic wave into an object, measure the sound speed of the ultrasonic wave that has passed through the object, or the ultrasonic wave that has reflected back from the transmission surface side, and use this measured value and a predetermined conversion formula. A stress measurement method characterized by measuring the stress state of the part of an object through which ultrasonic waves are transmitted.
JP59113061A 1984-06-04 1984-06-04 Stress measuring method Pending JPS60257333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59113061A JPS60257333A (en) 1984-06-04 1984-06-04 Stress measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59113061A JPS60257333A (en) 1984-06-04 1984-06-04 Stress measuring method

Publications (1)

Publication Number Publication Date
JPS60257333A true JPS60257333A (en) 1985-12-19

Family

ID=14602506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59113061A Pending JPS60257333A (en) 1984-06-04 1984-06-04 Stress measuring method

Country Status (1)

Country Link
JP (1) JPS60257333A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218338A (en) * 1988-02-26 1989-08-31 Hitachi Ltd Inspecting device for core tightness and method thereof
JPH0792038A (en) * 1993-09-28 1995-04-07 Hitachi Ltd Method and device for evaluating stress
JP2008286622A (en) * 2007-05-17 2008-11-27 Ihi Aerospace Co Ltd Ultrasonic measuring device and ultrasonic measuring method
JP2012141230A (en) * 2011-01-04 2012-07-26 Hitachi Ltd Nondestructive testing system
JP2015071198A (en) * 2013-10-02 2015-04-16 株式会社ディスコ Grinding method of plate-like object
CN114441075A (en) * 2021-12-31 2022-05-06 国网河北省电力有限公司电力科学研究院 Ultrasonic assessment method and system for mechanical stress of power distribution cable connector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218338A (en) * 1988-02-26 1989-08-31 Hitachi Ltd Inspecting device for core tightness and method thereof
JPH0792038A (en) * 1993-09-28 1995-04-07 Hitachi Ltd Method and device for evaluating stress
JP2008286622A (en) * 2007-05-17 2008-11-27 Ihi Aerospace Co Ltd Ultrasonic measuring device and ultrasonic measuring method
JP2012141230A (en) * 2011-01-04 2012-07-26 Hitachi Ltd Nondestructive testing system
JP2015071198A (en) * 2013-10-02 2015-04-16 株式会社ディスコ Grinding method of plate-like object
CN114441075A (en) * 2021-12-31 2022-05-06 国网河北省电力有限公司电力科学研究院 Ultrasonic assessment method and system for mechanical stress of power distribution cable connector

Similar Documents

Publication Publication Date Title
US5777230A (en) Delay line for an ultrasonic probe and method of using same
US4363242A (en) Pulsed phase locked loop strain monitor
EP0341969A3 (en) Ultrasonic densitometer device and method
US4413517A (en) Apparatus and method for determining thickness
US2525861A (en) Delay system for supersonic inspection
JPS6156450B2 (en)
US4462256A (en) Lightweight, broadband Rayleigh wave transducer
JPS60257333A (en) Stress measuring method
JP3047588B2 (en) Ultrasonic transducer for liquid concentration meter
JPS61254849A (en) Stress measuring method
JPH04166732A (en) Ultrasonic-wave axial-tension measuring apparatus
JP3099485B2 (en) Ultrasonic transducer for stress measurement device
US3540279A (en) Acoustic sensing system
JPH05172793A (en) Sound characteristic value measuring device
JPH0271146A (en) Accurate measuring method of reciprocating time of ultrasonic wave utilizing pulse reflection method
JPH05164631A (en) Method and apparatus for measuring stress
JP3417932B2 (en) Ultrasonic thickness gauge
ES336518A1 (en) Improvements in or relating to Apparatuses for Digital Measurement of Distances by Means of Ultrasonic Pulses
JP2001299708A (en) Ultrasonic vibration deviation sensor
JPS6212457B2 (en)
SU998860A1 (en) Shell thickness acousting checking method
JP2001164568A (en) Stress diagnostic method and stress diagnostic device for ground anchor
SU1029007A1 (en) Ultrasonic referenceless thickness gauge
SU1460621A1 (en) Ultrasound velocity meter
SU887926A1 (en) Ultrasonic method of measuring layer thickness