JPS582620B2 - Bubble detection method and device - Google Patents
Bubble detection method and deviceInfo
- Publication number
- JPS582620B2 JPS582620B2 JP51058574A JP5857476A JPS582620B2 JP S582620 B2 JPS582620 B2 JP S582620B2 JP 51058574 A JP51058574 A JP 51058574A JP 5857476 A JP5857476 A JP 5857476A JP S582620 B2 JPS582620 B2 JP S582620B2
- Authority
- JP
- Japan
- Prior art keywords
- receiving
- transmitting
- bubbles
- ultrasonic
- bubble detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/032—Analysing fluids by measuring attenuation of acoustic waves
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measuring Volume Flow (AREA)
Description
【発明の詳細な説明】
本発明は液体中の泡を検出する方法及び装置に関するも
ので、更に詳細には導管中を流れる液体中に含まれる泡
を検出する方法及び装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for detecting bubbles in a liquid, and more particularly to a method and apparatus for detecting bubbles contained in a liquid flowing in a conduit.
一般に各種工業において、液体中に含まれる泡が製品に
悪影響を及ぼすため、これを検知して除去すべきとされ
ることは極めて多い。In general, in various industries, bubbles contained in liquids have an adverse effect on products, so it is extremely common to detect and remove them.
たとえば、写真工業においては、写真感光材料用塗布液
に泡が存在すると、塗布、乾燥後の塗膜に泡に対応した
小さな穴が形成され、写真感光材料きしての商品価値を
失なわしめる結果を招いてしまう。For example, in the photographic industry, if bubbles are present in a coating solution for photographic light-sensitive materials, small holes corresponding to the bubbles will be formed in the coating after coating and drying, causing the photographic material to lose its commercial value. It will lead to consequences.
従って塗布液中に存在する泡はどんな微細な泡であって
も、またその数がいかに少なくとも、塗布に先立ってこ
れを検知し、取除くことが要請される。Therefore, it is necessary to detect and remove the bubbles present in the coating solution prior to coating, no matter how minute or how many there may be.
従来、このような液体中の泡を検知する方法としては特
公昭33−6903号公報、特開昭48−76591号
公報等に開示された方法が知られていた。Conventionally, methods disclosed in Japanese Patent Publication No. 33-6903, Japanese Patent Application Laid-Open No. 48-76591, and the like have been known as methods for detecting such bubbles in liquid.
この方法はキャビテーションにより生じた泡を含んだ液
体の流れる導管の壁部の相対する位置に、一対の超音波
振動子を取付け、一方の振動子より超音波を発振して液
体中を通過させ、これを他方の振動子で受信し、受信し
たときの超音波エネルギーの減衰量の変化から、液体中
の泡を検出せんとするものである。In this method, a pair of ultrasonic transducers are installed at opposing positions on the wall of a conduit through which liquid containing bubbles generated by cavitation flows, and ultrasonic waves are emitted from one of the transducers and passed through the liquid. This is received by the other transducer, and bubbles in the liquid are detected from the change in the amount of attenuation of the ultrasonic energy upon reception.
しかしながら、この方法においては、導管及び振動子に
外部から機械的振動が加えられた場合、被測定液体をポ
ンプ送液する際に流圧変動が生ずる場合、或いは電源電
圧に変動が生ずる場合等に受信出力に変動が生じ、これ
がノイズとなって泡による出力変動と同時に検出される
ため、両者の区別が困離となり、泡検出の精度が低下ず
るさいう問題があった。However, in this method, if mechanical vibrations are applied to the conduit and vibrator from the outside, if fluid pressure fluctuations occur when pumping the liquid to be measured, or if fluctuations occur in the power supply voltage, etc. Fluctuations occur in the received output, which becomes noise and is detected at the same time as the output fluctuations due to bubbles, making it difficult to distinguish between the two, resulting in a problem in which the accuracy of bubble detection decreases and is slow.
本発明はかような従来の泡検出方法の欠点を除去し、微
細な気泡でも精度良く検出しうる超音波泡検出方法及び
装置を提供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide an ultrasonic bubble detection method and apparatus that can eliminate the drawbacks of the conventional bubble detection methods and detect even minute bubbles with high accuracy.
本発明のかかる目的は、導管の両側に送、受信軸を平行
にした少なくとも2灯の超音波発信振動子及び受信振動
子を設けることによって達成される。This object of the present invention is achieved by providing at least two ultrasonic transmitting and receiving transducers with parallel transmitting and receiving axes on both sides of the conduit.
以下、本発明の実施態様を添付図面に基いて詳細に説明
する。Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
第1図は本発明の一実施態様を示す超音波泡検出装置の
プロツクダイアグラムである。FIG. 1 is a block diagram of an ultrasonic bubble detection device showing one embodiment of the present invention.
ここに1は超音波発信器、2a,2bは送信用振動子、
3a,3bは受信用振動子である。Here, 1 is an ultrasonic transmitter, 2a and 2b are transmitting transducers,
3a and 3b are receiving transducers.
送信用振動子2a,2b及び受信用振動子3a,3bは
それぞれ等距離だけ離され、また送信用振動子2aと受
信用振動子3a及び送信用振動子2bと受信用振動子3
bとはそれぞれ相対して送受信軸が平行となるように導
管4の外壁に設けてある。The transmitting transducers 2a, 2b and the receiving transducers 3a, 3b are spaced apart by the same distance, and the transmitting transducer 2a and the receiving transducer 3a, and the transmitting transducer 2b and the receiving transducer 3
b are respectively provided on the outer wall of the conduit 4 so that the transmitting and receiving axes are parallel to each other.
導管4の上記振動子2a,2b,3a,3bを取付けて
ある部分は超音波の伝達効率を向上させるため、第2図
の導管横断面図に示す如く、平らに削り込まれ、振動子
2a,2b,3a,3bがグリース5を介して導管4に
ぴったりと密着するようになっている。In order to improve the transmission efficiency of ultrasonic waves, the portion of the conduit 4 where the transducers 2a, 2b, 3a, and 3b are attached is cut flat, as shown in the cross-sectional view of the conduit in FIG. , 2b, 3a, 3b are tightly fitted to the conduit 4 via the grease 5.
更に、超音波が導管4の外壁の周辺を伝わって受信され
、被測定液体中を伝わって受信される超音波エネルギー
の比率が低下するのを防止するため、この削り込んだ部
分には溝6が設けられている。Furthermore, in order to prevent a decrease in the ratio of ultrasonic energy transmitted around the outer wall of the conduit 4 and received while transmitted through the liquid to be measured, grooves 6 are formed in this cut-out portion. is provided.
また7a,7bは高周波増幅器、交流・直流変換器及び
微分又はバイアス回路を含む増幅器より成る増幅器、8
a,8bは矩形パルス変換回路を含む信号整形器、9a
bは比較器、10は記録計その他の表示装置である。Further, 7a and 7b are amplifiers including a high frequency amplifier, an AC/DC converter, and a differential or bias circuit;
a, 8b are signal shapers including a rectangular pulse conversion circuit; 9a;
b is a comparator, and 10 is a recorder or other display device.
本実施態様において、超音波発振器1から発信された超
音波出力は送信振動子2a,2bを励起して導管4内の
液体中に一定量の超音波エネルギーを放出し、超音波の
音場を形成する。In this embodiment, the ultrasonic output emitted from the ultrasonic oscillator 1 excites the transmitting transducers 2a and 2b to emit a certain amount of ultrasonic energy into the liquid in the conduit 4, thereby creating an ultrasonic sound field. Form.
用いる超音波出力の周波数は対象とする泡に対し、超音
波エネルギーの減衰係数が最大となるように選ばれる。The frequency of the ultrasonic output to be used is selected so that the attenuation coefficient of ultrasonic energy is maximized for the bubble of interest.
ここに、液体中に泡が存在しないときは、発信振動子2
a,2bから受信振動子3a,3bに伝達されるエネル
ギーは常に一定であるため、受信振動子3a,3bには
つねに一定の電圧が誘起されることとなる。Here, when there are no bubbles in the liquid, the transmitting vibrator 2
Since the energy transmitted from a, 2b to the receiving oscillators 3a, 3b is always constant, a constant voltage is always induced in the receiving oscillators 3a, 3b.
これに対して液体中に泡が1個でも存在するときは発信
振動子2a,2bより放出される超音波エネルギーは泡
によって散乱、吸収を受けるため、受信されるエネルギ
ーもその分だけ減衰し、出力電圧に変動を生じる。On the other hand, when there is even one bubble in the liquid, the ultrasonic energy emitted from the transmitting transducers 2a and 2b is scattered and absorbed by the bubbles, so the received energy is also attenuated by that amount. This causes fluctuations in the output voltage.
かくして液体中の泡が検出されるのであるが、機械振動
、圧力変動、電圧変動などによるノイズが送信中に発生
する場合にも、発信振動子2a+2bから受信振動子3
a,3bに伝達されるエネルギーは、機械振動による振
動子と管壁との瞬間的密着不良、流圧変動による伝達効
率の変動、電源電圧変動等により影響され、上記泡の場
合と同様に出力変動を生じる。In this way, bubbles in the liquid can be detected, but even when noise due to mechanical vibration, pressure fluctuation, voltage fluctuation, etc. occurs during transmission, the signal from the transmitting transducer 2a+2b to the receiving transducer 3 is detected.
The energy transmitted to a and 3b is affected by instantaneous poor adhesion between the vibrator and the tube wall due to mechanical vibration, fluctuations in transmission efficiency due to fluid pressure fluctuations, fluctuations in power supply voltage, etc., and the output is affected in the same way as in the case of foam. cause fluctuations.
しかしながら、泡の存在により生ずる超音波エネルギー
の伝達効率および出力電圧の変動による信号は受信振動
子3a,3bとで時間差をもって受信されるが、一方、
機械振動、圧力変動、電圧変動等によるノイズの場合に
は、受信振動子3aと3bとで時間遅れはなく、殆ど同
時に受信されるから、本実施態様によれば、両者を明瞭
に区別することが可能となる。However, signals due to variations in ultrasonic energy transmission efficiency and output voltage caused by the presence of bubbles are received by the receiving transducers 3a and 3b with a time difference;
In the case of noise due to mechanical vibrations, pressure fluctuations, voltage fluctuations, etc., the receiving transducers 3a and 3b receive the noise almost simultaneously without any time delay, so according to this embodiment, it is possible to clearly distinguish between the two. becomes possible.
すなわち、泡が液体中に存在した場合に生ずる受信振動
子3a,3bの受信の時間遅れ量は、第1図において液
体を下方から上方に向けて流す場合には、液体の流速と
泡の浮上速度に反比例し、受信振動子3a,3b間の距
離に比例する。In other words, the amount of time delay in reception by the receiving transducers 3a and 3b that occurs when bubbles exist in the liquid is determined by the flow velocity of the liquid and the floating of the bubbles when the liquid flows from the bottom to the top in FIG. It is inversely proportional to the speed and proportional to the distance between the receiving transducers 3a and 3b.
したがって受信振動子3a,3b間の距離を適当に選択
してやれば、泡検出信号とノイズとを識別することが出
来る。Therefore, by appropriately selecting the distance between the receiving transducers 3a and 3b, it is possible to distinguish between the bubble detection signal and noise.
ところで、両振動子間距離をあまりに犬とするさ、第一
の振動子で検出された泡が第二の振動子に達するまでに
トラツプされたり、或いは他の泡と区別し難くなる可能
性があるため、あまり離して振動子を設けることは適当
でない。By the way, if the distance between the two oscillators is too narrow, there is a possibility that bubbles detected by the first oscillator will be trapped by the time they reach the second oscillator, or it will be difficult to distinguish them from other bubbles. Therefore, it is not appropriate to provide the vibrators too far apart.
受信振動子3a,3bで受信された信号は増幅器7a,
7bで高周波増幅されたのち、信号整形器8a,8bで
矩形波に変換され、比較器9abに入る。The signals received by the receiving transducers 3a and 3b are sent to amplifiers 7a and 3b.
After being high-frequency amplified at 7b, it is converted into a rectangular wave by signal shapers 8a and 8b, and then enters a comparator 9ab.
比較器9abでは、信号整形器8a+8bから入った両
信号を比較し、両信号が同時に入った場合は出力を出さ
ず、時間遅れがある場合には出力を出すという操作がお
こなわれ、ノイズは出力として取り出されず、泡検出信
号のみが出力として取出される。The comparator 9ab compares both signals input from the signal shapers 8a+8b, and if both signals are input at the same time, it does not output an output, and if there is a time delay, it outputs an output.Noise is output. The bubble detection signal is not taken out as an output, but only the bubble detection signal is taken out as an output.
このようにノイズ信号は比較器9abにより完全に消去
され、泡検出信号のみが比較器9abの出力として記録
計10に表示される。In this way, the noise signal is completely eliminated by the comparator 9ab, and only the bubble detection signal is displayed on the recorder 10 as the output of the comparator 9ab.
信号変換の方法につき、更に詳細に説明する。The signal conversion method will be explained in more detail.
第3図は信号整形器8a,8bにより矩形パルスに変換
された後の泡及びノイズによる減衰信号の変化の例を示
したものである。FIG. 3 shows an example of changes in the attenuated signal due to bubbles and noise after being converted into rectangular pulses by the signal shapers 8a and 8b.
第3図において、Sは泡による矩形パルス、Nはノイズ
による矩形パルスである。In FIG. 3, S is a rectangular pulse due to bubbles, and N is a rectangular pulse due to noise.
第3図aは信号整形器8aにより、第3図bは信号整形
器8bによりそれぞれ矩形パルスに変換された泡及びノ
イズ信号のパターンの一例である。FIG. 3a shows an example of the bubble and noise signal patterns converted into rectangular pulses by the signal shaper 8a and FIG. 3b by the signal shaper 8b, respectively.
ここにX軸は時間を、Y軸は記録計の電圧目盛をそれぞ
れ示す。Here, the X axis represents time, and the Y axis represents the voltage scale of the recorder.
同一時間における第3図a及びbのグラフを比較すると
、泡検出信号を示すパルスSは第3図a,bにおいて若
干の時間ズレがあるのに対し、ノイズ信号を示すパルス
Nは両図でX軸に関し全く同じ位置にあることがわかる
。Comparing the graphs in Figures 3a and b at the same time, the pulse S indicating the bubble detection signal has a slight time lag in Figures 3a and b, while the pulse N indicating the noise signal has a slight time lag in both figures. It can be seen that they are at exactly the same position with respect to the X-axis.
第3図a,bにおける上記ノイズ信号を示すパルスは比
較器9abで消去され、第3図Cに示す如き泡検出信号
を示すパルスのみが記録計により表示される。The pulses representing the noise signal in FIGS. 3a and 3b are eliminated by the comparator 9ab, and only the pulses representing the bubble detection signal as shown in FIG. 3C are displayed by the recorder.
したがって、パルスの数が泡の数に対応するから、導管
4内を通過した泡の数は、たきえば計数器を用いること
により容易に知ることが可能となる。Therefore, since the number of pulses corresponds to the number of bubbles, the number of bubbles that have passed through the conduit 4 can be easily determined by using a counter.
第4図は本発明の他の実施態様を示すものである。FIG. 4 shows another embodiment of the invention.
前記実施態様においては、送、受信軸が互いに平行な超
音波振動子を2吋設けているが、第4図に示すように前
記2対の振動子と送、受信軸が直角方向にある新たな2
対の発信振動子2c,2d及び受信振動子3c,3dを
導管壁に設けても良い。In the embodiment described above, two pairs of ultrasonic transducers are provided whose transmitting and receiving axes are parallel to each other, but as shown in FIG. Na2
A pair of transmitting transducers 2c, 2d and receiving transducers 3c, 3d may be provided on the conduit wall.
前記実施態様の如く2対の発、受信振動子の場合には、
第2図において斜線で示されるが如き相対する振動子片
を結ぶ領域内を通過する泡は正確に検出しうるが、この
領域外を通過する泡は超音波の指向性の関係で検出精度
が劣ってしまう。In the case of two pairs of transmitting and receiving transducers as in the embodiment described above,
Bubbles passing within the area connecting opposing transducer pieces, as shown by diagonal lines in Figure 2, can be detected accurately, but bubbles passing outside this area have poor detection accuracy due to the directivity of the ultrasonic waves. It will be inferior.
しかるにこのように新たに2対の振動子を設けることに
より、正確に泡検出をなしうる領域が増大し、精度が向
上するという効果が生まれる。However, by providing two new pairs of vibrators in this way, the area in which bubbles can be detected accurately increases, resulting in the effect of improving accuracy.
このように4肘の振動子を設ける場合には、受信振動子
3a,3b及び3c,3dで受信された出力電圧を前記
実施態様と同様にそれぞれ増幅器7a+zb,7c+7
ds信号整形器8a+8b+gc,8ds比較器9ab
,9cdを介して、新たに設けたOR回路11に入れ信
号選択をしたのち、記録計10に表示される。When four-elbow transducers are provided in this manner, the output voltages received by the receiving transducers 3a, 3b, 3c, and 3d are applied to amplifiers 7a+zb and 7c+7, respectively, as in the previous embodiment.
ds signal shaper 8a+8b+gc, 8ds comparator 9ab
, 9cd to the newly provided OR circuit 11 for signal selection, and then displayed on the recorder 10.
本発明は以上の実施態様に限定されるこさなく種々の変
形が可能である。The present invention is not limited to the embodiments described above, but can be modified in various ways.
たとえば、前記実施態様においては、矩形パルスに変換
された信号を比較器を用いて処理し、ノイズによる信号
を消去しているが、第3図a,bより明らかな如く、比
較器により信号処理をしなくとも少なくとも2対の発信
、受信振動子を設けることにより、泡検出信号とノイズ
信号とを区別することは可能であり、比較器、計数器等
は必ずしも必要ではない。For example, in the embodiment described above, the signal converted into a rectangular pulse is processed using a comparator to eliminate the signal due to noise. By providing at least two pairs of transmitting and receiving transducers, it is possible to distinguish between a bubble detection signal and a noise signal, and comparators, counters, etc. are not necessarily required.
本発明において用いられる導管の材質としては、ステン
レス等の金属、プラスチックス等が利用可能であるが、
超音波エネルギーが導管壁を経て受信側へまわり込み、
検出精度が低下するのを防ぐためには、プラスチックス
がより好ましい。As the material of the conduit used in the present invention, metals such as stainless steel, plastics, etc. can be used.
Ultrasonic energy passes through the conduit wall and wraps around to the receiving side.
Plastic is more preferable in order to prevent detection accuracy from deteriorating.
プラスチックスとしては、硬質ポリ塩化ビニル、アクリ
ル樹脂、テトラフルオルエチレン、デルリン(米国E.
I.du Pont社商品名、ポリアセタール樹脂)等
が利用可能であるが、とくに硬さ、加工性の面よりテト
ラフルオルエチレン、デルリンがすぐれている。Plastics include hard polyvinyl chloride, acrylic resin, tetrafluoroethylene, Delrin (US E.
I. Du Pont (trade name, polyacetal resin), etc. can be used, but tetrafluoroethylene and Delrin are particularly superior in terms of hardness and workability.
また導管の径はとくに限定されないが、振動子に比し小
さすぎると導管壁を経て受信側に達する超音波エネルギ
ー量が犬となりS/N比が低下するおそれがある。Further, although the diameter of the conduit is not particularly limited, if it is too small compared to the vibrator, the amount of ultrasonic energy reaching the receiving side through the conduit wall becomes excessive, which may reduce the S/N ratio.
また本発明において用いられる送信電圧は、太きすぎる
と超音波エネルギーが犬となるため、振動子の取付け肥
にゆるみが生じやすいし、また一方小さすぎると、受信
電圧が小となり信号処理機器の安定性が悪くなるので、
適切な値を選択しなければならない。Furthermore, if the transmitting voltage used in the present invention is too large, the ultrasonic energy will be too high, and the mounting screw of the transducer will likely come loose.On the other hand, if the transmitting voltage is too small, the receiving voltage will be small and the signal processing equipment Stability deteriorates, so
Appropriate values must be selected.
通常は0.5〜5V.好ましくは1〜3V,更に好まし
くは2v前後が適当であろう。Usually 0.5-5V. Preferably 1 to 3V, more preferably around 2V would be appropriate.
また本発明において用いられる超音波の周波数は検出す
べき泡の大きさにより適当な値を異にし、泡が犬なる程
小さい周波数が適当であるため、一概に適当な値を決定
し得ないが、径が30〜200μの泡に対しては30〜
150 KHz,好ましくは50〜100KHzの周波
数が適当である。In addition, the frequency of the ultrasonic waves used in the present invention varies depending on the size of the bubbles to be detected, and a frequency that is as small as the size of the bubbles is suitable, so it is not possible to determine an appropriate value in general. , 30~ for bubbles with a diameter of 30~200μ
A frequency of 150 KHz, preferably 50-100 KHz is suitable.
また本発明において2以上の発信振動子或いは受信振動
子間の距離は流量と要求される精度により適当な値を異
にし、一概にどの程度が適当かを述べることは出来ない
。Furthermore, in the present invention, the appropriate distance between two or more transmitting transducers or receiving transducers varies depending on the flow rate and required accuracy, and it is not possible to say in general what the appropriate distance is.
すなわち、一般に振動子間距離が小である程、精度は高
くなるが、流量が犬の場合には逆に距離が小さすぎると
精度が低下してしまう。That is, in general, the smaller the distance between the transducers, the higher the accuracy, but when the flow rate is a dog, on the other hand, if the distance is too small, the accuracy decreases.
通常は流量が1〜5/分程度の場合には4〜60Cm、
好ましくは5 〜15cm、更に好ましくは5〜15C
mが適当であろう。Normally, when the flow rate is about 1 to 5/min, 4 to 60 Cm,
Preferably 5-15cm, more preferably 5-15C
m would be appropriate.
本発明に依れば、機械振動、流圧振動、電圧振動等のノ
イズを完全に取り除き、精度良く液体中の泡を検出する
ことが可能となる。According to the present invention, it is possible to completely eliminate noise such as mechanical vibration, fluid pressure vibration, voltage vibration, etc., and to detect bubbles in liquid with high accuracy.
第1図は本発明の一実施態様を示す泡検出装置のブ泊ツ
クダイアグラムである。
第2図は超音波泡検出部の一例を示す横断面図である。
第3図は信号処理の一例を示すグラフである。
第4図は本発明の他の実施態様を示す泡検出装置のプロ
ツクダイアグラムである。
1・・・・・・超音波発信器、2a,2b,2c,2d
・・・・・・発信振動子、3a,3b,3c,3d・・
・・・・受信振動子、4・・・・・・導管、7a,7b
,7c,7d・・・・・・増幅器、8a,8b,8c,
8d・・・・・・信号整形器、9ab,9cd・・・・
・・比較器、10・・・・・・記録計、11・・・・・
・OR回路。FIG. 1 is a block diagram of a bubble detection device showing one embodiment of the present invention. FIG. 2 is a cross-sectional view showing an example of an ultrasonic bubble detection section. FIG. 3 is a graph showing an example of signal processing. FIG. 4 is a block diagram of a bubble detection device showing another embodiment of the present invention. 1... Ultrasonic transmitter, 2a, 2b, 2c, 2d
...... Transmission vibrator, 3a, 3b, 3c, 3d...
...Receiving transducer, 4... Conduit, 7a, 7b
, 7c, 7d...Amplifier, 8a, 8b, 8c,
8d...Signal shaper, 9ab, 9cd...
... Comparator, 10 ... Recorder, 11 ...
・OR circuit.
Claims (1)
方の側でこれを受信し、更に受信信号を増幅、整形する
ことにより液体中の泡を検出する方法において、送、受
信軸を平行にした少なくとも2対の超音波発信振動子及
び受信振動子を設けたことを特徴とする泡検出方法。 2 液体を流す導管の両側に超音波発信振動子と受信振
動子とを設け、受信信号を増幅する増幅器、整形する信
号整形器を備えた超音波泡検出装置において、前記導管
の両側の近接した位置に送、受信軸を平行にした少なく
とも2対の超音波発信振動子及び受信振動子を設けたこ
とを特徴とする泡検出装置。[Claims] 1. A method for detecting bubbles in a liquid by transmitting ultrasonic waves from one side of a conduit through which liquid flows, receiving the ultrasonic waves at the other side, and further amplifying and shaping the received signal. A bubble detection method characterized in that at least two pairs of an ultrasonic transmitting transducer and a receiving transducer are provided, the transmitting and receiving axes of which are parallel to each other. 2. In an ultrasonic bubble detection device equipped with an ultrasonic transmitting transducer and a receiving transducer on both sides of a conduit through which liquid flows, an amplifier for amplifying the received signal, and a signal shaper for shaping the received signal, 1. A bubble detection device comprising at least two pairs of ultrasonic transmitting and receiving transducers whose transmitting and receiving axes are parallel to each other.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51058574A JPS582620B2 (en) | 1976-05-21 | 1976-05-21 | Bubble detection method and device |
GB2078177A GB1578660A (en) | 1976-05-21 | 1977-05-17 | Method and apparatus for ultrasonic bubble detection in flowing liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51058574A JPS582620B2 (en) | 1976-05-21 | 1976-05-21 | Bubble detection method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS52142585A JPS52142585A (en) | 1977-11-28 |
JPS582620B2 true JPS582620B2 (en) | 1983-01-18 |
Family
ID=13088203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51058574A Expired JPS582620B2 (en) | 1976-05-21 | 1976-05-21 | Bubble detection method and device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS582620B2 (en) |
GB (1) | GB1578660A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6250617A (en) * | 1985-08-30 | 1987-03-05 | Tokyo Keiki Co Ltd | Automatic steering apparatus for marine vessel |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56118635A (en) * | 1980-02-25 | 1981-09-17 | Nippon Steel Corp | Method and apparatus for detecting inclusion of gas in running water passage |
JPS6019960U (en) * | 1983-07-19 | 1985-02-12 | 海上電機株式会社 | Structure of transmitter/receiver transducer attachment part in ultrasonic bubble detector |
JPS60141551U (en) * | 1984-02-29 | 1985-09-19 | 株式会社カイジョー | Ultrasonic bubble detection device |
GB2177510A (en) * | 1985-07-01 | 1987-01-21 | Partridge Wilson And Company L | Detecting the presence or absence of a liquid |
JPH0342555U (en) * | 1989-09-01 | 1991-04-22 | ||
US5043706A (en) * | 1990-10-19 | 1991-08-27 | Eastman Kodak Company | System and method for detecting bubbles in a flowing fluid |
US5394732A (en) * | 1993-09-10 | 1995-03-07 | Cobe Laboratories, Inc. | Method and apparatus for ultrasonic detection of air bubbles |
US7328624B2 (en) | 2002-01-23 | 2008-02-12 | Cidra Corporation | Probe for measuring parameters of a flowing fluid and/or multiphase mixture |
US7426852B1 (en) * | 2004-04-26 | 2008-09-23 | Expro Meters, Inc. | Submersible meter for measuring a parameter of gas hold-up of a fluid |
EP2813845B1 (en) * | 2013-06-11 | 2018-07-11 | Sonotec Ultraschallsensorik Halle GmbH | Gas Bubble Sensing Device With Two Ultrasonic Emitters Connected To One Ultrasonic Signal Generator |
CN114137250B (en) | 2021-12-02 | 2022-10-11 | 浙江大学 | System and method for measuring speed and deformation amount of viscous fluid bubbles in rising process |
-
1976
- 1976-05-21 JP JP51058574A patent/JPS582620B2/en not_active Expired
-
1977
- 1977-05-17 GB GB2078177A patent/GB1578660A/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6250617A (en) * | 1985-08-30 | 1987-03-05 | Tokyo Keiki Co Ltd | Automatic steering apparatus for marine vessel |
Also Published As
Publication number | Publication date |
---|---|
GB1578660A (en) | 1980-11-05 |
JPS52142585A (en) | 1977-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6202494B1 (en) | Process and apparatus for measuring density and mass flow | |
JP4800543B2 (en) | Method and apparatus for simultaneously measuring the flow rate and concentration of a multiphase liquid / gas mixture | |
US7069793B2 (en) | Ultrasonic flow meter and ultrasonic sensor | |
JPS582620B2 (en) | Bubble detection method and device | |
JP2005188974A (en) | Ultrasonic flowmeter | |
JP3045677B2 (en) | Ultrasonic flow meter | |
US5458004A (en) | Volume flow meter | |
JPH04218779A (en) | Method and apparatus for monitoring flow speed of fluid | |
JP2005524063A (en) | Ultrasonic Doppler effect velocity measurement method | |
US4397191A (en) | Liquid velocity measurement system | |
WO2005083371A1 (en) | Doppler type ultrasonic flowmeter | |
JP2006078362A (en) | Coaxial-type doppler ultrasonic current meter | |
US5442592A (en) | Ultrasonic distance meter | |
US3314289A (en) | Swirl flow meter transducer system | |
JP2017187310A (en) | Ultrasonic flowmeter | |
Muhamad et al. | Identification of water/solid flow regime using ultrasonic tomography | |
JP5345006B2 (en) | Ultrasonic flow meter | |
JP2632041B2 (en) | Current meter | |
JPS6313487Y2 (en) | ||
RU2052770C1 (en) | Ultrasonic touchless method for detecting thickness of articles | |
JP4561071B2 (en) | Flow measuring device | |
RU1140571C (en) | Method of measuring power of low-frequency hydroacoustic irradiator with internal air cavity | |
SU1002966A1 (en) | Device for measuring liquid and gaseous media flow speed and consumption rate | |
JPH0337522A (en) | Current meter | |
JPH0324607B2 (en) |