JPH0337522A - Current meter - Google Patents
Current meterInfo
- Publication number
- JPH0337522A JPH0337522A JP17117589A JP17117589A JPH0337522A JP H0337522 A JPH0337522 A JP H0337522A JP 17117589 A JP17117589 A JP 17117589A JP 17117589 A JP17117589 A JP 17117589A JP H0337522 A JPH0337522 A JP H0337522A
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- bubbles
- pipe
- ultrasonic waves
- generated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims abstract description 48
- 238000005259 measurement Methods 0.000 claims description 15
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 abstract description 4
- 230000000644 propagated effect Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000010354 integration Effects 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は例えば管路内を流れる流体の流速を測定する
流速計、特に流体内に発生した超音波を検出することに
よって流速を測定するものに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a current meter that measures the flow rate of a fluid flowing in a pipe, for example, and particularly a current meter that measures the flow rate by detecting ultrasonic waves generated in the fluid. Regarding.
[従来の技術]
管路内液体の流速測定については、「流量計測ハンドブ
ック」 (昭和54年7月)日刊工業新聞社264頁「
その他の流量測定法」に開示されている。[Prior art] For measuring the flow rate of liquid in pipes, see "Flow Measurement Handbook" (July 1978), Nikkan Kogyo Shimbun, p. 264, "
Other Flow Measurement Methods”.
これによると、管路内を流れる液体は渦や乱れにより液
体に剪断作用が働き流体内に広い周波数帯域の超音波が
発生し、この超音波を管路の外周面に装着された検出器
を用いて検出すると、その信号から流速測定が行えるこ
とが記述されている。According to this, the liquid flowing inside the pipe has a shearing effect on the liquid due to vortices and turbulence, and ultrasonic waves with a wide frequency band are generated within the fluid, and these ultrasonic waves are transmitted to a detector attached to the outer circumferential surface of the pipe. It is described that when detected using this method, the flow velocity can be measured from the signal.
[発明が解決しようとする課題]
上記のような従来の流速計では、管路内液体の剪断作用
によって発生する超音波のレベルが相対的に低いので、
検出器による受信信号レベルが小さく十分な信号対雑音
比が得られない。また、これら信号に基づく流速測定は
管路内液体の流れの有無の識別には利用できるが、流速
計として所定の直線性、安定性及び再現性がないので、
流速測定には実際に利用できないという問題点があった
。[Problems to be Solved by the Invention] In the conventional flow meter as described above, the level of ultrasonic waves generated by the shearing action of the liquid in the pipe is relatively low.
The signal level received by the detector is low and a sufficient signal-to-noise ratio cannot be obtained. In addition, although flow rate measurements based on these signals can be used to identify the presence or absence of liquid flow in a pipe, they do not have the required linearity, stability, and reproducibility as a flow meter.
The problem was that it could not actually be used to measure flow velocity.
この発明は、かかる問題点を解決するためになされたも
のであり、流体内に気泡を混入させてその気泡のつぶれ
により発生する超音波を検出することにより、信号対雑
音比の大きな信号にて直線性、安定性及び再現性の優れ
た流速測定ができる流速計を得ることを目的とする。This invention was made to solve this problem, and by mixing air bubbles into a fluid and detecting the ultrasonic waves generated by the collapse of the air bubbles, a signal with a large signal-to-noise ratio is detected. The purpose of the present invention is to obtain a current meter capable of measuring flow velocity with excellent linearity, stability, and reproducibility.
[課題を解決するための手段]
この発明に係る流速計は、管路向流体へ給気して流体内
へ気泡を発生させる気泡発生器と、気泡が混入された流
体内に配設され、流体の流れに対して不連続面を有する
障害物と、障害物の下流側の外周面に装着され、主とし
て流体内気泡のつぶれにより発生された超音波に感応す
る超音波検出器と、超音波検出器からの受信信号の振幅
に応答した信号を出力する計測回路とを設けたものであ
る。[Means for Solving the Problems] A current meter according to the present invention includes a bubble generator that supplies air to a pipe-directed fluid to generate bubbles in the fluid, and a bubble generator that is disposed in the fluid in which the bubbles are mixed. an obstacle having a discontinuous surface with respect to the flow of the fluid; an ultrasonic detector attached to the outer peripheral surface of the downstream side of the obstacle and sensitive to ultrasound mainly generated by the collapse of bubbles in the fluid; A measurement circuit that outputs a signal responsive to the amplitude of the received signal from the device is provided.
[作 用]
この発明においては、気泡が混入された流体内へ障害物
を配設したので、多数の気泡が障害物と衝突してつぶれ
あるいは再結合することなどによって、流体内に高いレ
ベルの超音波が発生する。[Function] In this invention, since an obstacle is placed in the fluid mixed with air bubbles, a large number of air bubbles collide with the obstacle and collapse or recombine, resulting in a high level in the fluid. Ultrasonic waves are generated.
管路外周面に設けられた超音波検出器は流体内超音波レ
ベルに比例した電気信号を出力し、可聴帯域より高い周
波数帯域の信号の振幅により流体の流速測定が行われる
。The ultrasonic detector provided on the outer peripheral surface of the pipe outputs an electrical signal proportional to the ultrasonic level within the fluid, and the fluid flow velocity is measured based on the amplitude of the signal in a frequency band higher than the audible band.
流体内に人工的に気泡を混入し、且つ周囲環境による妨
害の影響を回避しているので、信号対雑音比の大きい受
信信号が得られ、直線性、安定性、再現性の優れた測定
ができ、測定精度が向上できる。Since air bubbles are artificially mixed into the fluid and interference from the surrounding environment is avoided, a received signal with a high signal-to-noise ratio can be obtained, allowing measurements with excellent linearity, stability, and reproducibility. measurement accuracy can be improved.
[実施例]
この発明の一実施例を添付図面を参照して詳細に説明す
る。[Embodiment] An embodiment of the present invention will be described in detail with reference to the accompanying drawings.
第1図はこの発明の一実施例に係る流量計の構成図であ
り、第2図は第1図のA−A断面図である。図において
、1は流体が流れる管路であり、2は気泡を発生させ流
体内へ気泡を混入させる気泡発生器である。3はニアコ
ンプレッサなどを用いて空気圧力を発生する圧力源、4
は空気圧力のレベルを調整する圧力調整弁、5は開閉弁
、6は管路1内壁面に設けられた泡出し器であり、これ
らは気泡発生器2を構成している。7は気泡発生器2の
下流側の流体内に設けられた障害物、8は障害物7を管
路1内所定位置へ配置させる保持棒、である。9は流体
内に発生した超音波を検出する超音波検出器であり、障
害物7より下流側の管路1の外周面に装着されている。FIG. 1 is a block diagram of a flowmeter according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA in FIG. In the figure, 1 is a conduit through which fluid flows, and 2 is a bubble generator that generates bubbles and mixes the bubbles into the fluid. 3 is a pressure source that generates air pressure using a near compressor, etc.; 4
5 is a pressure regulating valve that adjusts the level of air pressure, 5 is an on-off valve, and 6 is a bubble generator provided on the inner wall surface of the conduit 1, and these constitute the bubble generator 2. Reference numeral 7 indicates an obstacle provided in the fluid on the downstream side of the bubble generator 2, and reference numeral 8 indicates a holding rod for disposing the obstacle 7 at a predetermined position within the conduit 1. Reference numeral 9 denotes an ultrasonic detector that detects ultrasonic waves generated in the fluid, and is mounted on the outer circumferential surface of the conduit 1 on the downstream side of the obstacle 7.
12は超音波検出器9の検出信号に基づいて流速を測定
する計測回路である。13は増幅器、14は超音波検出
器9からの受信信号の周波数帯域を制限するフィルタ、
15は検波回路、1Gは積分回路、器7はサンプルホー
ルド回路、18は制御回路、19は指示器であり、これ
らは計測回路12を構成している。12 is a measurement circuit that measures the flow velocity based on the detection signal of the ultrasonic detector 9. 13 is an amplifier; 14 is a filter that limits the frequency band of the received signal from the ultrasonic detector 9;
15 is a detection circuit, 1G is an integration circuit, device 7 is a sample and hold circuit, 18 is a control circuit, and 19 is an indicator, which constitute the measurement circuit 12.
上記のように構成された流速計においては、矢示の方向
に流れる管1路1内流体には気泡発生器2出力が係合さ
れる。気泡発生器2は、ニアコンプレッサなどが用いら
れた圧力源3からの加圧された空気を、圧力調整弁4や
開閉弁5を経由して、管路1内壁面に設けられ、表面に
多数の貫通孔を有する泡出し器6へ供給し、発生した多
数の気泡を流体内へ混入する。In the current meter configured as described above, the output of the bubble generator 2 is engaged with the fluid in the pipe 1 1 that flows in the direction of the arrow. The bubble generator 2 is installed on the inner wall surface of the conduit 1 to supply pressurized air from a pressure source 3 using a near compressor or the like via a pressure regulating valve 4 and an on-off valve 5. The fluid is supplied to a bubbler 6 having a through hole, and a large number of generated bubbles are mixed into the fluid.
流体に混入された気泡は、管路1内のほぼ中央位置へ保
持棒8にて固定され、流れに対して不連続面を有する障
害物7に衝突して、主として気泡がつぶれる際に流体内
に広い周波数帯域の超音波が発生する。第3図はその障
害物7の例を示す外形図であり、(a)は円錐形、(b
)は円柱形の障害物の例をそれぞれ示している。The bubbles mixed in the fluid are fixed at a substantially central position in the pipe line 1 by a holding rod 8, and collide with an obstacle 7 having a discontinuous surface against the flow. Ultrasonic waves with a wide frequency band are generated. FIG. 3 is an external view showing an example of the obstacle 7, in which (a) is a conical shape, and (b) is a conical shape.
) show examples of cylindrical obstacles.
気泡が障害物7に衝突すると流体内の音源となり、この
結果発生した超音波のレベルは流体の流速に比例する。When the bubble hits the obstacle 7, it becomes a sound source within the fluid, and the level of the resulting ultrasound wave is proportional to the flow rate of the fluid.
流体内に発生した超音波が流体及び管路1を伝搬し、障
害物7が内設された管路1の下流側の外周面に装着され
た超音波検出器9により受波される。そして、超音波検
出器9からは超音波レベルに応じた電気信号が出力され
る。The ultrasonic waves generated in the fluid propagate through the fluid and the pipe line 1, and are received by the ultrasonic detector 9 mounted on the outer peripheral surface of the downstream side of the pipe line 1 in which the obstacle 7 is installed. Then, the ultrasonic detector 9 outputs an electrical signal according to the ultrasonic level.
この場合、超音波検出器9に例えば2個の圧電振動子を
重合させ、その相加出力を得るバイモルフ構造を用いる
と、広い周波数帯域に互り感度の高い検出が行える。更
に、管路1への超音波検出器9の取付面を平坦にし、且
つ音響遮断材などよりなる容器内に収納して、外部雑音
を抑制すれば、管路1内の低レベルの超音波が受信でき
る。In this case, if the ultrasonic detector 9 uses, for example, a bimorph structure in which two piezoelectric vibrators are superimposed and their additive output is obtained, highly sensitive detection can be performed in a wide frequency band. Furthermore, if the mounting surface of the ultrasonic detector 9 to the conduit 1 is flattened and the ultrasonic detector 9 is housed in a container made of acoustic insulation material to suppress external noise, low-level ultrasonic waves in the conduit 1 can be suppressed. can be received.
第4図は超音波検出器受信波形の一例を示したタイムチ
ャートであり、気泡のつぶれにより発生する超音波はパ
ルス状をなしており、流体内へ気泡を混入しない時とく
らべて気泡の量が増加するので、気泡のつぶれによる超
音波が加わるためそのレベルが高くなる。Figure 4 is a time chart showing an example of the waveform received by the ultrasonic detector. The ultrasonic waves generated by the collapse of bubbles are in the form of pulses, and the amount of bubbles is larger than when no bubbles are mixed into the fluid. increases, and the level increases as ultrasonic waves are added due to the collapse of the bubbles.
超音波検出器9の出力は計測回路12へ加えられて、周
波数帯域の広い受信信号は高利得の増幅器I3にて増幅
された後、フィルタ14により電気雑音や低周波振動な
ど可聴周波数帯域の妨害を避けた高い周波数帯域の受信
信号に制限される。例えば通過帯域が10〜50Hzの
帯域制限のフィルタ14を経て検波回路15へ加えられ
る。The output of the ultrasonic detector 9 is applied to the measurement circuit 12, and the received signal with a wide frequency band is amplified by a high gain amplifier I3, and then filtered by a filter 14 to eliminate interference in the audible frequency band such as electrical noise and low frequency vibrations. Received signals are limited to high frequency bands that avoid For example, the signal is applied to the detection circuit 15 through a band-limited filter 14 with a pass band of 10 to 50 Hz.
信号対雑音比の大きな受信信号は検波回路15にて受信
信号の包絡線検波が行われそのレベル情報を保持して、
積分回路16にて受信信号の直流信号への変換と同時に
その平均化が行われる。For the received signal with a large signal-to-noise ratio, the envelope detection of the received signal is performed in the detection circuit 15, and the level information is held.
The integration circuit 16 converts the received signal into a DC signal and simultaneously averages it.
積分回路16からの流体の平均流速に対応した直流信号
の測定に際しては、サンプルホールド回路17にてその
データ保持が行われ、平均流速が指示器19へ指示され
る。積分回路16の動作及びサンプルホールド回路17
におけるサンプリング動作は、制御回路18の基準パル
スにより行われる。When measuring the DC signal corresponding to the average flow velocity of the fluid from the integrating circuit 16, the data is held in the sample hold circuit 17, and the average flow velocity is indicated to the indicator 19. Operation of integration circuit 16 and sample hold circuit 17
The sampling operation in is performed by the reference pulse of the control circuit 18.
第5図は流速と測定出力との相関の一例を示す特性図で
あり、流体の流速と計測回路12の測定出力とは比例関
係をなし、十分な相関が得られている。流体内へ気泡を
混入し障害物7との衝突による十分なレベルの超音波が
発生するので、流速に対する受信信号の振幅は直線状に
変化する比例関係を有し、更に、安定性や再現性が向上
され十分な精度で流速測定ができる。FIG. 5 is a characteristic diagram showing an example of the correlation between the flow velocity and the measured output. The flow velocity of the fluid and the measured output of the measurement circuit 12 are in a proportional relationship, and a sufficient correlation is obtained. Since bubbles are mixed into the fluid and a sufficient level of ultrasonic waves are generated by collision with the obstacle 7, the amplitude of the received signal changes linearly with respect to the flow velocity, and furthermore, stability and reproducibility are improved. has been improved and flow velocity can be measured with sufficient accuracy.
上記のとおり、管路1内を流れる流体内の気泡のつぶれ
などが音源となり流体内に超音波が発生するが、これら
超音波のレベルは流体の流速に応じて変化し、流体内の
超音波は管路1外周面に装着された超音波検出器9を用
いて検出されるので、機器構成が簡易化されている。ま
た、超音波検出器9は管路1外周面に装着されるので保
守点検が容易に行え、流体的混入物の付着などがなく検
出感度劣化が回避され長期間安定した性能が得られる。As mentioned above, the collapse of air bubbles in the fluid flowing in the pipe 1 becomes a sound source and generates ultrasonic waves in the fluid, but the level of these ultrasound waves changes depending on the flow velocity of the fluid, and the ultrasonic waves in the fluid is detected using the ultrasonic detector 9 attached to the outer peripheral surface of the conduit 1, so the equipment configuration is simplified. Furthermore, since the ultrasonic detector 9 is attached to the outer circumferential surface of the conduit 1, maintenance and inspection can be easily performed, there is no adhesion of fluid contaminants, deterioration of detection sensitivity is avoided, and stable performance can be obtained over a long period of time.
[発明の効果]
この発明は以上説明したとおり、流体内に多量の気泡を
混入させ、更にその気泡を障害物に衝突させて流体内に
高いレベルの超音波を発生させ、その超音波のレベルを
測定することで流速を計測するようにしたので、受信信
号の信号対雑音比が改善され、計測における直線性、安
定性及び再現性が向上できる。また、超音波検出器から
の受信信号は、電気雑音や低周波振動などの可聴周波数
帯域の妨害から回避でき、高い周波数帯域にて安定した
計測が行える。[Effects of the Invention] As explained above, the present invention mixes a large amount of air bubbles into a fluid, causes the air bubbles to collide with an obstacle, generates high-level ultrasonic waves in the fluid, and increases the level of the ultrasonic waves. Since the flow velocity is measured by measuring the flow rate, the signal-to-noise ratio of the received signal is improved, and the linearity, stability, and reproducibility of the measurement can be improved. Furthermore, the received signal from the ultrasonic detector can be avoided from interference in the audible frequency band such as electrical noise and low-frequency vibrations, and stable measurements can be made in the high frequency band.
更に、管路内題音波を受波するのみであるため電気測定
系が簡易化でき、また、超音波検出器は流体的混入物の
付着による影響を受けないので、検出器感度の劣化がな
く長期間安定した性能が得られ、保守点検が容易に行え
るという効果がある。Furthermore, since it only receives the sound waves inside the pipe, the electrical measurement system can be simplified, and since the ultrasonic detector is not affected by the adhesion of fluid contaminants, it can be used for a long time without degrading the detector sensitivity. This has the advantage that stable performance can be obtained over a period of time, and maintenance and inspection can be easily performed.
第1図はこの発明の一実施例に係る流速計の構成図、第
2図は第1図のA−A断面図、第 3 図(a) (b
)は障害物の例を示す外形図、第4図は超音波検出器受
信波形の一例を示すタイムチャート、第5図は流速と測
定出力との相関の一例を示す特性図である。
図において、1は管路、2は気泡発生器、3は圧力源、
4は圧力調整弁、5は開閉弁、6は泡出し器、7は障害
物、8は保持棒、9は超音波検出器、12は計測回路、
13は増幅器、14はフィルタ、15は検波回路、1B
は積分回路、17はサンプルホールド回路、18は制御
回路、19は指示器である。
なお、図中同一符号は同一または相当部分を示す。Fig. 1 is a configuration diagram of a current meter according to an embodiment of the present invention, Fig. 2 is a sectional view taken along line A-A in Fig. 1, and Fig. 3 (a) (b).
) is an outline diagram showing an example of an obstacle, FIG. 4 is a time chart showing an example of a waveform received by an ultrasonic detector, and FIG. 5 is a characteristic diagram showing an example of the correlation between flow velocity and measurement output. In the figure, 1 is a pipe line, 2 is a bubble generator, 3 is a pressure source,
4 is a pressure regulating valve, 5 is an on-off valve, 6 is a bubbler, 7 is an obstacle, 8 is a holding rod, 9 is an ultrasonic detector, 12 is a measurement circuit,
13 is an amplifier, 14 is a filter, 15 is a detection circuit, 1B
1 is an integrating circuit, 17 is a sample and hold circuit, 18 is a control circuit, and 19 is an indicator. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
る気泡発生器と、 気泡が混入された流体内に配設され、流体の流れに対し
て不連続面を有する障害物と、 前記障害物の下流側の管路外周面に装着され、主として
流体内気泡のつぶれにより発生する超音波に感応する超
音波検出器と、 前記超音波検出器からの受信信号の振幅に応答した信号
を出力する計測回路と を有することを特徴とする流速計。[Claims] A bubble generator that supplies air to a fluid flowing in a pipe to generate bubbles in the fluid; an ultrasonic detector mounted on the outer peripheral surface of the pipe on the downstream side of the obstacle and sensitive to ultrasonic waves mainly generated by the collapse of bubbles in the fluid; and a received signal from the ultrasonic detector. A current meter characterized in that it has a measurement circuit that outputs a signal responsive to the amplitude of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17117589A JP2632040B2 (en) | 1989-07-04 | 1989-07-04 | Current meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17117589A JP2632040B2 (en) | 1989-07-04 | 1989-07-04 | Current meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0337522A true JPH0337522A (en) | 1991-02-18 |
JP2632040B2 JP2632040B2 (en) | 1997-07-16 |
Family
ID=15918392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17117589A Expired - Lifetime JP2632040B2 (en) | 1989-07-04 | 1989-07-04 | Current meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2632040B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008203207A (en) * | 2007-02-22 | 2008-09-04 | Ricoh Elemex Corp | Liquid detector |
JP2008203205A (en) * | 2007-02-22 | 2008-09-04 | Ricoh Elemex Corp | Liquid detector |
JP2008203208A (en) * | 2007-02-22 | 2008-09-04 | Ricoh Elemex Corp | Container with liquid detecting function |
JP2008203206A (en) * | 2007-02-22 | 2008-09-04 | Ricoh Elemex Corp | Liquid detector |
-
1989
- 1989-07-04 JP JP17117589A patent/JP2632040B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008203207A (en) * | 2007-02-22 | 2008-09-04 | Ricoh Elemex Corp | Liquid detector |
JP2008203205A (en) * | 2007-02-22 | 2008-09-04 | Ricoh Elemex Corp | Liquid detector |
JP2008203208A (en) * | 2007-02-22 | 2008-09-04 | Ricoh Elemex Corp | Container with liquid detecting function |
JP2008203206A (en) * | 2007-02-22 | 2008-09-04 | Ricoh Elemex Corp | Liquid detector |
Also Published As
Publication number | Publication date |
---|---|
JP2632040B2 (en) | 1997-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3680375A (en) | Sonic velocity sensing | |
US6202494B1 (en) | Process and apparatus for measuring density and mass flow | |
JP4800543B2 (en) | Method and apparatus for simultaneously measuring the flow rate and concentration of a multiphase liquid / gas mixture | |
US5115672A (en) | System and method for valve monitoring using pipe-mounted ultrasonic transducers | |
JPH04218779A (en) | Method and apparatus for monitoring flow speed of fluid | |
US20170356882A1 (en) | Device and method for bubble size classification in liquids | |
JP2014500515A (en) | Apparatus and method for measuring the flow rate of a fluid or fluid component in a pipeline | |
US3409897A (en) | Recorder for detecting and locating leaks in pipelines by ultrasonic vibration | |
CN101793908A (en) | Ultrasonic flue gas flow rate meter | |
US9127975B2 (en) | Apparatus and methods for water waste management in water distribution systems | |
US4397191A (en) | Liquid velocity measurement system | |
US4058004A (en) | Apparatus for measuring erosion produced by cavitation | |
EP0044596A1 (en) | Method and apparatus for determining the mass concentration of particles in a gaseous medium | |
JPH0337522A (en) | Current meter | |
JPS582620B2 (en) | Bubble detection method and device | |
JP2632041B2 (en) | Current meter | |
JP3406511B2 (en) | Abnormal location detector | |
GB2155635A (en) | Monitoring fluid flow | |
ATE135825T1 (en) | DEVICE FOR MEASURING SMALL FLOWS OF LIQUID AND PARTICLES | |
JPH02112757A (en) | Instrument for measuring concentration of particulate matter in piping | |
RU2091716C1 (en) | Vortex flow meter | |
SU1196751A1 (en) | Method of measuring occluded gas in liquid | |
SU1437772A1 (en) | Method and apparatus for determining concentration of free gas in gas-liquid medium | |
JP3425667B2 (en) | Flow velocity measuring device | |
JPS61100616A (en) | Apparatus for measuring flow amount |