JP2005351799A - Surface elastic wave element, biosensor device, and measuring method by surface elastic wave element - Google Patents

Surface elastic wave element, biosensor device, and measuring method by surface elastic wave element Download PDF

Info

Publication number
JP2005351799A
JP2005351799A JP2004173926A JP2004173926A JP2005351799A JP 2005351799 A JP2005351799 A JP 2005351799A JP 2004173926 A JP2004173926 A JP 2004173926A JP 2004173926 A JP2004173926 A JP 2004173926A JP 2005351799 A JP2005351799 A JP 2005351799A
Authority
JP
Japan
Prior art keywords
wave
surface acoustic
acoustic wave
substrate
transverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004173926A
Other languages
Japanese (ja)
Inventor
Atsushi Ito
敦 伊藤
Motoko Ichihashi
素子 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2004173926A priority Critical patent/JP2005351799A/en
Priority to AT05012537T priority patent/ATE439583T1/en
Priority to EP05012537A priority patent/EP1605257B1/en
Priority to US11/149,530 priority patent/US7398685B2/en
Priority to DE602005015913T priority patent/DE602005015913D1/en
Publication of JP2005351799A publication Critical patent/JP2005351799A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0422Shear waves, transverse waves, horizontally polarised waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface elastic wave element, a biosensor device, and a measuring method using the surface elastic wave element capable of accurate measurement by stirring sufficiently a mixture of solution such as buffer liquid and a detection object, or a liquid detection object even in the case of a micro-amount below several tens of μl, without applying vibration from the outside of the surface elastic wave element. <P>SOLUTION: This surface elastic wave element for exciting a surface elastic wave of a transversal wave on a substrate and measuring a physical property of the detection object placed on a detection part by a characteristic change of the transversal wave is characterized by being provided with an excitation part for a longitudinal wave on the substrate in order to excite a surface elastic wave of the longitudinal wave on the detection part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、表面弾性波素子により液体中に含まれる微量物質を測定する表面弾性波素子、バイオセンサー装置及び表面弾性波素子による測定方法に関する。   The present invention relates to a surface acoustic wave element, a biosensor device, and a measurement method using a surface acoustic wave element that measure a trace amount of substance contained in a liquid using the surface acoustic wave element.

DNA・タンパク質など生体物質の相互作用の測定や抗原抗体反応を応用した測定に表面弾性波素子が使用されている。
前記表面弾性波素子による測定は、検出部にバッファー液(生化学用緩衝液であり、主な含有物はNaClやKCl等である)を滴下しておき、そこに、測定対象となる試料を添加し、この試料溶液に対して櫛形電極により構成された励振部(IDT)によりラブ波やSH波等の横波を励起し、この横波の周波数変化等を受信用IDTによって取得することにより行われる。
その際、例えば、試料がバッファー液の底に淀んだり、液面に浮き出したりして、当初滴下しておいたバッファー液の量と、添加された試料に含まれる測定対象物の終濃度が一定とならないと、正確な測定をすることができない。
これを解決するための1つの方法として、測定に際して、バッファー液が注入される容器内に攪拌棒を入れて、その中の溶液を機械的に上下方向に振動させたり、或いは、回転させたり等する方法がある(例えば、特許文献1)。
しかしながら、この方法により攪拌するためには、容器内の溶液の量が300μl程度は必要で、数十μl以下の微量の溶液では攪拌することは困難であり、微量の被検出物を正確に測定することはできなかった。
また、他の方法として、圧電素子やモータを使用して、表面弾性波素子全体を振動させて、バッファー液と試料とを攪拌する方法がある。
しかしながら、表面弾性波素子上の溶液だけではなく、素子全体を振動させるために効率的でなく、しかも、外部からの振動は、検出部と測定系とを接続する電気的な接点に劣化等の悪影響を与え、更に、電気的ノイズを生じさせるために正確な測定をすることが困難であった。
Surface acoustic wave devices are used for measurement of interaction between biological substances such as DNA and protein, and measurement using antigen-antibody reaction.
In the measurement using the surface acoustic wave element, a buffer solution (a biochemical buffer solution, mainly containing NaCl, KCl, or the like) is dropped on the detection unit, and a sample to be measured is placed there. This is performed by exciting a transverse wave such as a Love wave or an SH wave to the sample solution by an excitation unit (IDT) constituted by a comb-shaped electrode, and acquiring a frequency change of the transverse wave by the receiving IDT. .
At that time, for example, the sample may sink into the bottom of the buffer solution or be raised to the liquid surface, so that the amount of the buffer solution initially dropped and the final concentration of the measurement target contained in the added sample are constant. Otherwise, accurate measurements cannot be made.
One method for solving this is to place a stir bar in a container into which a buffer solution is injected during measurement and mechanically vibrate or rotate the solution in the container. There is a method (for example, Patent Document 1).
However, in order to stir by this method, the amount of the solution in the container needs to be about 300 μl, and it is difficult to stir with a very small amount of solution of several tens of μl or less, and a minute amount of the object to be detected is accurately measured. I couldn't.
As another method, there is a method in which the entire surface acoustic wave element is vibrated by using a piezoelectric element or a motor to stir the buffer solution and the sample.
However, it is not efficient to vibrate not only the solution on the surface acoustic wave element, but also the entire element, and vibration from the outside may cause deterioration in the electrical contact connecting the detection unit and the measurement system. It was difficult to make an accurate measurement because it adversely affected and also caused electrical noise.

特開2002−310872号公報JP 2002-310872 A

そこで、本発明は、上記問題を解決するために、表面弾性波素子の外部から振動を加えることなく、バッファー液等の溶液と被検出物との混合物、或いは、液状の被検出物が数十μl以下という微少量であっても十分に攪拌することができ、正確な測定を可能な表面弾性波素子、バイオセンサー装置及び表面弾性波素子を用いた測定方法を提供する。   Therefore, in order to solve the above problems, the present invention provides a mixture of a solution such as a buffer solution and an object to be detected or several tens of objects to be detected without applying vibration from the outside of the surface acoustic wave element. Provided are a surface acoustic wave device, a biosensor device, and a measurement method using the surface acoustic wave device, which can be sufficiently stirred even in a minute amount of μl or less and can be accurately measured.

上記課題を解決するために、本発明者等は鋭意検討の結果、下記の通り解決手段を見出した。
即ち、本発明の表面弾性波素子は、請求項1に記載の通り、横波の表面弾性波を基板上に励起して、検出部に載置された被検出物の物性を前記横波の特性の変化により測定するための表面弾性波素子であって、前記検出部に縦波の表面弾性波を励起するために、前記基板上に縦波用励振部を設けたことを特徴とする。
また、請求項2に記載の本発明は、請求項1に記載の表面弾性波素子において、前記検出部において、前記縦波用励振部と、前記横波を励起するための横波用励振部とは同一であることを特徴とする。
また、請求項3に記載の本発明は、請求項1に記載の表面弾性波素子において、前記横波の方向に対して直交する方向に、前記縦波用励振部を配置したことを特徴とする。
また、請求項4に記載の本発明は、請求項1乃至3のいずれかに記載の表面弾性波素子において、前記横波は、ラブ波又はSH波であることを特徴とする。
また、請求項5に記載の本発明は、請求項1乃至3のいずれかに記載の表面弾性波素子において、前記縦波は、レイリー波又は変形レイリー波であることを特徴とする。
また、請求項6に記載の本発明は、請求項1乃至3のいずれかに記載の表面弾性波素子において、前記基板をSTカット水晶、LiTaO3、LiNbO3、Li247、La3Ga5SiO14又はKNbO3で構成したことを特徴とする。
また、請求項7に記載の本発明は、請求項6に記載の表面弾性波素子において、前記基板上に、前記検出部として、前記基板表面よりも遅い表面弾性波を生じさせる固体膜層を形成し、更に、その上に、固定化用金属膜を積層したことを特徴とする。
本発明のバイオセンサー装置は、請求項8に記載の通り、請求項1乃至7のいずれかに記載の表面弾性波素子を備えることを特徴とする。
また、本発明の測定方法は、請求項9に記載の通り、表面弾性波素子の基板上に、横波の表面弾性波を励起し、前記基板上の検出部に載置された溶液に対して、被検出物を添加して、前記被検出物の物性を前記横波の特性の変化により測定するための測定方法であって、前記検出部に縦波に表面弾性波を励起することにより前記溶液と被検出物とを攪拌しながら、前記横波の特性の変化に基づいて前記被検出物の特性を測定することを特徴とする。
In order to solve the above-mentioned problems, the present inventors have found a solution as follows as a result of intensive studies.
That is, the surface acoustic wave device according to the present invention, as described in claim 1, excites the surface acoustic wave of the transverse wave on the substrate, and changes the physical property of the object to be detected placed on the detection unit to the characteristic of the transverse wave. A surface acoustic wave element for measuring by change, wherein a longitudinal wave excitation unit is provided on the substrate to excite a longitudinal surface acoustic wave in the detection unit.
According to a second aspect of the present invention, there is provided the surface acoustic wave device according to the first aspect, wherein the detection unit includes the longitudinal wave excitation unit and the transverse wave excitation unit for exciting the transverse wave. It is characterized by being identical.
According to a third aspect of the present invention, in the surface acoustic wave device according to the first aspect, the longitudinal wave excitation section is arranged in a direction orthogonal to the direction of the transverse wave. .
According to a fourth aspect of the present invention, in the surface acoustic wave device according to any one of the first to third aspects, the transverse wave is a Love wave or an SH wave.
According to a fifth aspect of the present invention, in the surface acoustic wave device according to any one of the first to third aspects, the longitudinal wave is a Rayleigh wave or a modified Rayleigh wave.
According to a sixth aspect of the present invention, in the surface acoustic wave device according to any one of the first to third aspects, the substrate is made of ST-cut quartz, LiTaO 3 , LiNbO 3 , Li 2 B 4 O 7 , La 3 Ga 5 that is constituted by SiO 14 or KNbO 3, characterized in.
According to a seventh aspect of the present invention, in the surface acoustic wave device according to the sixth aspect, a solid film layer that generates a surface acoustic wave slower than the substrate surface is formed on the substrate as the detection unit. It is formed, and further, a metal film for immobilization is laminated thereon.
A biosensor device according to the present invention includes the surface acoustic wave device according to any one of claims 1 to 7 as described in claim 8.
Further, according to the measurement method of the present invention, the surface acoustic wave of the transverse wave is excited on the substrate of the surface acoustic wave device and the solution placed on the detection unit on the substrate is applied to the substrate of the surface acoustic wave device. A measurement method for measuring a physical property of the detection object by changing a characteristic of the transverse wave by adding a detection object, wherein the solution is obtained by exciting a surface acoustic wave to a longitudinal wave in the detection unit. The characteristic of the detected object is measured based on the change in the characteristic of the transverse wave while stirring the detected object and the detected object.

本発明によれば、測定用の横波に加えて、更に、攪拌用の縦波を表面弾性波素子に励起させることにより、検出部に載置されたバッファー液等の溶液と被検出物との混合物、或いは、液状の被検出物を攪拌できるので、微少量の被検出物の測定を正確に行うことができる。   According to the present invention, in addition to the transverse wave for measurement, the surface acoustic wave element is further excited with the longitudinal wave for stirring, so that the solution such as the buffer solution placed on the detection unit and the object to be detected Since the mixture or the liquid object to be detected can be stirred, a minute amount of the object to be detected can be accurately measured.

本発明に使用される表面弾性波素子は、基板上に横波の表面弾性波を励起して、基板上の検出部に載置された被検出物により変化した周波数等に基づいて、前記被検出物の質量負荷や粘性負荷等の物性を検知することができる構造のものであればよい。このため、表面弾性波素子を構成する基板についても、圧電基板、或いは、絶縁基板に圧電薄膜を設けたもの等特に制限するものではない。   The surface acoustic wave element used in the present invention excites a surface acoustic wave of a transverse wave on a substrate, and the detected object is based on a frequency or the like changed by an object to be detected placed on a detection unit on the substrate. Any structure that can detect physical properties such as mass load and viscous load of the material may be used. For this reason, the substrate constituting the surface acoustic wave element is not particularly limited, such as a piezoelectric substrate or an insulating substrate provided with a piezoelectric thin film.

本発明では、上記説明した表面弾性波素子の基板上に、縦波用励振部を設けることにより、検出部に載置された被検出物とバッファー液等の溶液や液状の被検出物を縦波により攪拌させることができるものである。
この縦波用励振部は、横波の伝播方向と交差するように配置してもよいし、横波を励起する横波用励振部と共用するようにしてもよい。交差して配置する場合には、縦波により攪拌をしながら、横波によって測定することができるので、短い測定時間で正確な測定が可能となる。また、横波用励振部と共用する場合には、表面弾性波素子上の励振部の構成が簡素化される。尚、この場合には、縦波と横波とを時分割的に交互に発生させる必要がある。
前記縦波用励振部を設ける位置は、基板上であれば特に制限されるものではないが、検出部において前記した横波の方向に対して直交する方向に前記縦波用励振部を配置することが好ましい。基板上に複数の検出部を配置した場合に、隣接する検出部に対して1つの縦波用励振部により縦波を伝播することができるからである。また、圧電基板として、ST−カットの水晶を使用した場合には、Y軸方向に横波用励振部を配置すると、X軸方向に縦波用励振部が位置することになり、縦波の振幅が最大とものとなるので、縦波による攪拌効果を最大に得ることができるからである。
In the present invention, a longitudinal wave excitation unit is provided on the substrate of the surface acoustic wave device described above, whereby a detection object placed on the detection unit and a solution such as a buffer solution or a liquid detection object are vertically aligned. It can be stirred by waves.
The longitudinal wave excitation unit may be arranged so as to intersect the propagation direction of the transverse wave, or may be shared with the transverse wave excitation unit that excites the transverse wave. In the case where they are arranged so as to cross each other, it is possible to measure with a transverse wave while stirring with a longitudinal wave, so that an accurate measurement is possible in a short measurement time. Further, in the case of sharing with the transverse wave excitation unit, the configuration of the excitation unit on the surface acoustic wave element is simplified. In this case, it is necessary to alternately generate a longitudinal wave and a transverse wave in a time division manner.
The position where the longitudinal wave excitation unit is provided is not particularly limited as long as it is on the substrate, but the longitudinal wave excitation unit is arranged in a direction perpendicular to the direction of the transverse wave in the detection unit. Is preferred. This is because when a plurality of detection units are arranged on the substrate, a longitudinal wave can be propagated to one adjacent detection unit by one longitudinal wave excitation unit. Further, when ST-cut quartz is used as the piezoelectric substrate, if the transverse wave excitation unit is arranged in the Y-axis direction, the longitudinal wave excitation unit is located in the X-axis direction, and the longitudinal wave amplitude. This is because the maximum stirring effect by longitudinal waves can be obtained.

尚、本発明において、横波の表面弾性波とは、波の伝播方向に垂直で基板表面に平行な横波成分の表面波をいい、例えば、ラブ波、SSBW、BGSW、STW、LSAW等が該当する。
また、縦波の表面弾性波とは、変位が進行方向と深さ方向成分をもつ波をいい、レイリー波、又は層構造での変形レイリー波等が該当する。
In the present invention, the surface acoustic wave of the transverse wave is a surface wave of a transverse wave component that is perpendicular to the wave propagation direction and parallel to the substrate surface, and includes, for example, a love wave, SSBW, BGSW, STW, LSAW, and the like. .
Further, the longitudinal surface acoustic wave refers to a wave whose displacement has a traveling direction component and a depth direction component, such as a Rayleigh wave or a modified Rayleigh wave in a layer structure.

上記説明した縦波用励振部は、既存の表面弾性波素子の構造を利用して製造することができ、既存の表面弾性波素子の一例として、ラブ波デバイス、SH−SAWデバイス、STWデバイス等が挙げられる。
前記ラブ波デバイスは、STカット水晶等からなる基板表面にIDTを設け、前記基板表面に前記基板の横波の伝播速度より遅い表面弾性波を生じさせる固体膜層(SiO2、或いは、PMMA、ポリミド、ポリ尿素等のポリマー)を層状に設け、波の伝播方向に垂直で、基板表面に平行な横波の成分の表面波(ラブ波)を励起することができるものをいう。
また、SH−SAWデバイスは、IDTをLiTaO3(36°回転Y板X伝播、Xカット150°伝播)等上に設け、波の伝播方向に垂直で、基板表面に平行な横波成分の表面波(圧電表面すべり波等)を励起することができるものをいう。
The longitudinal wave excitation unit described above can be manufactured using the structure of an existing surface acoustic wave element. As an example of an existing surface acoustic wave element, a Love wave device, an SH-SAW device, an STW device, or the like Is mentioned.
In the Love wave device, an IDT is provided on the surface of a substrate made of ST cut quartz or the like, and a solid film layer (SiO 2 , PMMA, polyimide, or the like) that generates a surface acoustic wave slower than the propagation velocity of the transverse wave of the substrate on the substrate surface , A polymer such as polyurea) is provided in a layer form, and can excite surface waves (Love waves) of transverse wave components that are perpendicular to the wave propagation direction and parallel to the substrate surface.
In addition, the SH-SAW device is provided with IDT on LiTaO 3 (36 ° rotation Y plate X propagation, X cut 150 ° propagation), etc., and is a surface wave of a transverse wave component that is perpendicular to the wave propagation direction and parallel to the substrate surface. A thing that can excite (piezoelectric surface slip wave, etc.).

また、本発明のバイオセンサー装置は、上記した表面弾性波素子を備えたものである。バイオセンサー装置を構成する装置としては、従来と同様に、表面弾性波素子に検出用の横波を励起することができる発振器と、励起された横波の周波数等を測定することができる分析装置と、縦波を励起することができる発振器とを少なくとも備えていればよい。尚、縦波用の発振器と横波用の発振器は、共用することも可能である。また、分析装置として、前記横波を励起するための発振器を一体としたネットワークアナライザやインピーダンスアナライザーを使用することもできる。   The biosensor device of the present invention includes the above-described surface acoustic wave element. As a conventional device constituting the biosensor device, an oscillator that can excite a transverse wave for detection on a surface acoustic wave element, an analyzer that can measure the frequency of the excited transverse wave, and the like, It is sufficient to include at least an oscillator that can excite longitudinal waves. The longitudinal wave oscillator and the transverse wave oscillator may be shared. In addition, a network analyzer or an impedance analyzer in which an oscillator for exciting the transverse wave is integrated can be used as the analyzer.

次に、本発明の一実施例について図面に基づいて説明する。
図1は、本発明のバイオセンサー装置の構成例である。
符号40で示される表面弾性波素子は、分析装置20に接続される。分析装置20は所望の交流信号を表面弾性波素子40に出力し、その周波数下での表面弾性波素子40の周波数やコンダクタンス等を測定できるように構成されている。制御装置30は、分析装置20の動作を制御し、分析装置20が表面弾性波素子40に出力する信号の周波数を変化させるとともに、分析装置20から送られる周波数と測定結果の周波数とを対応させ、演算結果とともに記憶するように構成されている。また、制御装置30は、図中4で示される発振器を介して後述する表面弾性波素子40の縦波用励振部10(図2)とも接続されており、この縦波用励振部10を制御するように構成されている。尚、分析装置20は、ネットワークアナライザやインピーダンスアナライザ等として市販されているものである。また、発振器4は、レイリー波を励起するための信号を発振するもので、80MHzの周波数で20dBmの信号を発振するものを本実施例では使用している。
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration example of the biosensor device of the present invention.
A surface acoustic wave element indicated by reference numeral 40 is connected to the analyzer 20. The analyzer 20 is configured to output a desired AC signal to the surface acoustic wave element 40 and measure the frequency, conductance, and the like of the surface acoustic wave element 40 under the frequency. The control device 30 controls the operation of the analysis device 20, changes the frequency of the signal output from the analysis device 20 to the surface acoustic wave element 40, and associates the frequency sent from the analysis device 20 with the frequency of the measurement result. , And is configured to store together with the calculation result. The control device 30 is also connected to a longitudinal wave excitation unit 10 (FIG. 2) of a surface acoustic wave element 40, which will be described later, via an oscillator indicated by 4 in the figure, and controls the longitudinal wave excitation unit 10. Is configured to do. The analyzer 20 is commercially available as a network analyzer, impedance analyzer, or the like. The oscillator 4 oscillates a signal for exciting a Rayleigh wave. In this embodiment, the oscillator 4 oscillates a signal of 20 dBm at a frequency of 80 MHz.

前記表面弾性波素子40は、図2に示すように、厚み0.5mm、33度30分回転水晶ST−カットウエーハ5を、図3に示すように板状に形成して圧電基板4とし、この上に、横波励起用の励振部6と、前記横波の変化を電気信号に変換するための受信部7と、前記励振部6と受信部7との間の弾性波伝播路の表面に形成された検出部8とを設けて構成される。   As shown in FIG. 2, the surface acoustic wave element 40 has a thickness of 0.5 mm, a rotating quartz ST-cut wafer 5 of 33 degrees and 30 minutes formed in a plate shape as shown in FIG. On top of this, it is formed on the surface of the excitation unit 6 for exciting the transverse wave, the receiving unit 7 for converting the change of the transverse wave into an electric signal, and the elastic wave propagation path between the exciting unit 6 and the receiving unit 7. The detection unit 8 is provided.

前記励振部6は、測定のための横波を励起するためのもので、ST−カットウエーハ5のY軸方向に形成される。この励振部6は、夫々75対の櫛形電極6a,6bから構成され、この櫛形電極6a,6bは、図3(b)に断面図を示すように、圧電基板4上に、厚み50nmのクロム膜と、厚み150nmのAu膜とを順にスパッタリング法により積層した後、フォトリソグラフィにより不要な金属膜部分をドライエッチングにより除去して形成される。櫛形電極6a,6bの幅w及び間隔sは、夫々10μmに形成されており、励振される表面弾性波の波長λ(λ=2(w+s))は40μmとなる。また、受信部7も、励振部6と同様にして形成される。   The excitation unit 6 is for exciting a transverse wave for measurement, and is formed in the Y-axis direction of the ST-cut wafer 5. The excitation unit 6 is composed of 75 pairs of comb electrodes 6a and 6b. The comb electrodes 6a and 6b are formed on a piezoelectric substrate 4 with 50 nm thick chromium as shown in a cross-sectional view in FIG. After a film and an Au film having a thickness of 150 nm are sequentially stacked by a sputtering method, unnecessary metal film portions are removed by dry etching by photolithography. The widths w and intervals s of the comb-shaped electrodes 6a and 6b are each 10 μm, and the wavelength λ (λ = 2 (w + s)) of the excited surface acoustic wave is 40 μm. The receiving unit 7 is also formed in the same manner as the excitation unit 6.

本実施例では、前記した横波を励起させるための励振部6以外に、検出部8の試料溶液を攪拌するための縦波励起用の励振部10,10が、ST−カットウエーハ5のX軸方向に、検出部8を挟むようにして設けられている。縦波励起用の励振部10は、励振部6及び受信部7と同材料の夫々50対の櫛形電極10a,10bから構成され、各電極10a,10bの幅w及び間隔sは夫々10μmに形成されており、励振される表面弾性波の波長λは40μmである。   In the present embodiment, in addition to the excitation unit 6 for exciting the transverse wave, the excitation units 10 and 10 for longitudinal wave excitation for stirring the sample solution of the detection unit 8 include the X axis of the ST-cut wafer 5. It is provided so as to sandwich the detection unit 8 in the direction. The excitation unit 10 for longitudinal wave excitation includes 50 pairs of comb-shaped electrodes 10a and 10b made of the same material as the excitation unit 6 and the reception unit 7, and the width w and the interval s of each electrode 10a and 10b are formed to be 10 μm. The wavelength λ of the surface acoustic wave to be excited is 40 μm.

前記横波用励振部6、受信部7及び縦波励起用の励振部10,10が形成された圧電基板4の全面に亘って、厚み3μm程度のSiO2膜からなるガイドレイヤー層12が形成されており、このガイドレイヤー層12上の励振部6と受信部7との間には、厚み20nmのクロム膜と、厚み100nmのAu膜とが順に積層され、受信部8を構成する固定化用膜9が形成される。尚、本実施例では、検出部8の周縁部、即ち、検出部8以外のガイドレイヤー層12上に、シリコーン系接着剤が硬化する際に発するシロキサンの蒸気によりシロキサンが付着されている。これにより、撥水効果が得られ、バッファー液や液状の被検出物等が検出部8以外に拡がることを防ぐことができるようにされている。 A guide layer 12 made of a SiO 2 film having a thickness of about 3 μm is formed over the entire surface of the piezoelectric substrate 4 on which the transverse wave excitation unit 6, the reception unit 7 and the longitudinal wave excitation units 10 and 10 are formed. In addition, a 20 nm-thick chromium film and a 100 nm-thick Au film are sequentially laminated between the excitation unit 6 and the receiving unit 7 on the guide layer layer 12 to form the receiving unit 8. A film 9 is formed. In this embodiment, siloxane is adhered to the peripheral portion of the detection unit 8, that is, the guide layer layer 12 other than the detection unit 8 by siloxane vapor generated when the silicone-based adhesive is cured. As a result, a water repellent effect is obtained, and it is possible to prevent the buffer liquid, the liquid detection object, and the like from spreading beyond the detection unit 8.

上記構成により、表面弾性波素子1は、圧電基板4のY軸方向に125MHzのラブ波を励起され、また、X軸方向に80MHzのレイリー波を励起されることになる。   With the above configuration, the surface acoustic wave element 1 is excited by a 125 MHz Love wave in the Y-axis direction of the piezoelectric substrate 4 and an 80 MHz Rayleigh wave in the X-axis direction.

次に、上記構成のバイオセンサー装置により測定する方法の一例を説明する。
まず、表面弾性波素子40の検出部8に150μlの純水を載置して、分析装置20の出力側から125MHzの交流信号を1MHzの範囲で発振して、横波用励振部6に入力し、圧電基板4の表面に横波を励起させる。
この状態で、前記検出部7に被検出物を添加すると、横波用励振部6で励振されたラブ波の速度が変動し、横波用受信部7で検波され電気信号に変換されて、分析装置20の入力側に入力され、1秒ごとに測定して周波数等の変化が分析装置20に記録される。
Next, an example of a method for measuring with the biosensor device having the above configuration will be described.
First, 150 μl of pure water is placed on the detection unit 8 of the surface acoustic wave element 40, and a 125 MHz AC signal is oscillated from the output side of the analyzer 20 in the range of 1 MHz and is input to the excitation unit 6 for transverse waves. A transverse wave is excited on the surface of the piezoelectric substrate 4.
In this state, when an object to be detected is added to the detection unit 7, the velocity of the Love wave excited by the transverse wave excitation unit 6 fluctuates, and is detected by the transverse wave reception unit 7 and converted into an electrical signal. 20 is input to the input side, and changes such as frequency are recorded in the analyzer 20 by measuring every second.

上記測定の際に、制御装置3からの指示で発振器4により縦波励振部10,10を励振させると、図4(a)に示すように、レイリー波により、純水と被検出物との混合液状物11内が攪拌されることになる。この時、ラブ波は、図4(b)に示すように被検出物の質量負荷や粘性負荷の影響を受けることになる。   In the above measurement, when the longitudinal wave excitation units 10 and 10 are excited by the oscillator 4 in accordance with an instruction from the control device 3, as shown in FIG. The inside of the mixed liquid material 11 is stirred. At this time, the Love wave is affected by the mass load and viscous load of the detected object as shown in FIG.

尚、上記実施例では、検出部8の両側に対向して縦波用励振部10,10を配置したが、検出部8のバッファー液や液状の被検出物を攪拌できるものであれば、その配置及び縦波用励振部10の数は限定されるものではない。従って、例えば、図5に示すように、検出部8の一方の側は励振部10を配置するようにしてもよい。   In the above-described embodiment, the longitudinal wave excitation units 10 and 10 are arranged opposite to both sides of the detection unit 8. However, if the buffer liquid or the liquid detection object of the detection unit 8 can be stirred, The number of the arrangement and the longitudinal wave excitation units 10 is not limited. Therefore, for example, as shown in FIG. 5, the excitation unit 10 may be arranged on one side of the detection unit 8.

また、上記実施例では、表面弾性波素子40上に検出部8を1つ設けた例を説明したが、図6に示すように検出部8を複数設けるようにしてもよい。この場合、励振部10は、図6(a)に示すように隣接する検出部8,8間に1つだけ設けるようにしてもよいし、図6(b)に示すように、各検出部8の両側に設けるようにしてもよい。   Moreover, although the example which provided the one detection part 8 on the surface acoustic wave element 40 was demonstrated in the said Example, you may make it provide multiple detection parts 8 as shown in FIG. In this case, only one excitation unit 10 may be provided between adjacent detection units 8 and 8 as shown in FIG. 6A, or each detection unit 10 may be provided as shown in FIG. 6B. 8 may be provided on both sides.

本発明のバイオセンサー装置の構成例の説明図Explanatory drawing of the structural example of the biosensor apparatus of this invention 本発明の表面弾性波素子のST−カット水晶の説明図Explanatory drawing of ST-cut crystal of surface acoustic wave device of the present invention 本発明の表面弾性波素子の説明図Explanatory drawing of the surface acoustic wave device of the present invention 本発明の表面弾性波素子による測定の際の縦波と横波の説明図Explanatory drawing of longitudinal wave and transverse wave in measurement by surface acoustic wave device 本発明の表面弾性波素子の変形例の説明図Explanatory drawing of the modification of the surface acoustic wave element of this invention 本発明の表面弾性波素子の変形例の説明図Explanatory drawing of the modification of the surface acoustic wave element of this invention

符号の説明Explanation of symbols

4 発振器
5 ST−カットウエーハ
6 励振部
7 受信部
8 検出部
9 固定化用膜
10 縦波用励振部
11 混合液状物
12 ガイドレイヤー層
20 分析装置
30 制御装置
40 表面弾性波素子
DESCRIPTION OF SYMBOLS 4 Oscillator 5 ST-cut wafer 6 Excitation part 7 Receiving part 8 Detection part 9 Immobilization film | membrane 10 Longitudinal wave excitation part 11 Mixed liquid substance 12 Guide layer layer 20 Analyzer 30 Controller 40 Surface acoustic wave element

Claims (9)

横波の表面弾性波を基板上に励起して、前記基板上の検出部に載置された被検出物の物性を前記横波の特性の変化により測定するための表面弾性波素子であって、前記検出部に縦波の表面弾性波を励起するために、前記基板上に縦波用励振部を設けたことを特徴とする表面弾性波素子。   A surface acoustic wave device for exciting a surface acoustic wave of a transverse wave on a substrate and measuring a physical property of a detection object placed on a detection unit on the substrate by a change in the characteristic of the transverse wave, A surface acoustic wave device, wherein a longitudinal wave excitation unit is provided on the substrate in order to excite a longitudinal surface acoustic wave in the detection unit. 前記縦波用励振部と、前記横波を励起するための横波用励振部とは同一であることを特徴とする請求項1に記載の表面弾性波素子。   2. The surface acoustic wave device according to claim 1, wherein the longitudinal wave excitation unit and the transverse wave excitation unit for exciting the transverse wave are the same. 前記横波の方向に対して直交する方向に、前記縦波用励振部を配置したことを特徴とする請求項1に記載の表面弾性波素子。   The surface acoustic wave device according to claim 1, wherein the longitudinal wave excitation unit is arranged in a direction orthogonal to the direction of the transverse wave. 前記表面弾性波素子の横波は、ラブ波又はSH波であることを特徴とする請求項1乃至3のいずれかに記載の表面弾性波素子。   4. The surface acoustic wave device according to claim 1, wherein the transverse wave of the surface acoustic wave device is a Love wave or an SH wave. 前記縦波は、レイリー波又は変形レイリー波であることを特徴とする請求項1乃至3のいずれかに記載の表面弾性波素子。   4. The surface acoustic wave device according to claim 1, wherein the longitudinal wave is a Rayleigh wave or a modified Rayleigh wave. 前記基板をST−カット水晶、LiTaO3、LiNbO3、Li247、La3Ga5SiO14又はKNbO3で構成したことを特徴とする請求項1乃至3のいずれかに記載の表面弾性波素子。 It said substrate ST- cut quartz, LiTaO 3, LiNbO 3, Li 2 B 4 O 7, La 3 Ga 5 surface according to any one of claims 1 to 3, characterized in that is constituted by SiO 14 or KNbO 3 Elastic wave element. 前記基板上に、前記検出部として、前記基板表面よりも遅い表面弾性波を生じさせる固体膜層を形成し、更に、その上に、固定化用金属膜を積層したことを特徴とする請求項6に記載の表面弾性波素子。   The solid film layer that generates a surface acoustic wave slower than the substrate surface is formed as the detection unit on the substrate, and a metal film for immobilization is further stacked thereon. 6. The surface acoustic wave device according to 6. 請求項1乃至7のいずれかに記載の表面弾性波素子を備えることを特徴とするバイオセンサー装置。   A biosensor device comprising the surface acoustic wave device according to claim 1. 表面弾性波素子の基板上に、横波の表面弾性波を励起し、前記基板上の検出部に載置された溶液に対して、被検出物を添加して、前記被検出物の物性を前記横波の特性の変化により測定するための測定方法であって、前記検出部に縦波の表面弾性波を励起することにより前記溶液と被検出物とを攪拌しながら、前記横波の特性の変化に基づいて前記被検出物の特性を測定することを特徴とする測定方法。
A surface acoustic wave of a transverse wave is excited on the substrate of the surface acoustic wave device, and a detected object is added to the solution placed on the detection unit on the substrate, thereby changing the physical properties of the detected object. A measurement method for measuring by a change in characteristics of a transverse wave, wherein the solution and an object to be detected are agitated by exciting a surface acoustic wave of a longitudinal wave in the detection unit to change the characteristic of the transverse wave. And measuring a characteristic of the object to be detected.
JP2004173926A 2004-06-11 2004-06-11 Surface elastic wave element, biosensor device, and measuring method by surface elastic wave element Pending JP2005351799A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004173926A JP2005351799A (en) 2004-06-11 2004-06-11 Surface elastic wave element, biosensor device, and measuring method by surface elastic wave element
AT05012537T ATE439583T1 (en) 2004-06-11 2005-06-10 DUAL-FREQUENCY MEASURING METHOD FOR A SURFACE WAVE SENSOR, AS WELL AS SURFACE WAVE SENSOR AND BIOSENSOR WITH MEANS FOR MIXING THE ANALYSIS FLUID
EP05012537A EP1605257B1 (en) 2004-06-11 2005-06-10 Two-frequency measuring method using surface acoustic wave device, and surface acoustic wave device and biosensor device with analysis liquid agitating means
US11/149,530 US7398685B2 (en) 2004-06-11 2005-06-10 Measuring method using surface acoustic wave device, and surface acoustic wave device and biosensor device
DE602005015913T DE602005015913D1 (en) 2004-06-11 2005-06-10 Two-frequency measuring method for a surface wave sensor, as well as surface wave sensor and biosensor with means for mixing the analysis fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173926A JP2005351799A (en) 2004-06-11 2004-06-11 Surface elastic wave element, biosensor device, and measuring method by surface elastic wave element

Publications (1)

Publication Number Publication Date
JP2005351799A true JP2005351799A (en) 2005-12-22

Family

ID=35586404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173926A Pending JP2005351799A (en) 2004-06-11 2004-06-11 Surface elastic wave element, biosensor device, and measuring method by surface elastic wave element

Country Status (1)

Country Link
JP (1) JP2005351799A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178167A (en) * 2005-12-27 2007-07-12 Japan Radio Co Ltd Elastic wave sensor and its manufacturing method
WO2008059970A1 (en) * 2006-11-17 2008-05-22 Ulvac, Inc. Method for agitating liquid material by using crystal oscillator
JP2008128778A (en) * 2006-11-20 2008-06-05 Japan Radio Co Ltd Surface acoustic wave sensor
JP2009002677A (en) * 2007-06-19 2009-01-08 Hirosaki Univ Surface acoustic wave device biosensor
JP2011180036A (en) * 2010-03-02 2011-09-15 Japan Radio Co Ltd Surface acoustic wave sensor
WO2013108608A1 (en) * 2012-01-20 2013-07-25 パナソニック株式会社 Elastic wave sensor
JP2016161375A (en) * 2015-03-02 2016-09-05 日本無線株式会社 Elastic surface wave sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122242A (en) * 1988-09-29 1990-05-09 Hewlett Packard Co <Hp> Surface transverse wave apparatus and scientific measurement
JPH09512345A (en) * 1995-02-21 1997-12-09 トムソン−セーエスエフ Highly selective chemical sensor
JPH11153582A (en) * 1997-11-21 1999-06-08 Japan Science & Technology Corp Method for measuring physical properties of fluid and apparatus therefor
JP2002529702A (en) * 1998-11-04 2002-09-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for driving an acoustic microsensor device
WO2002095940A1 (en) * 2001-05-21 2002-11-28 Microtechnology Centre Management Limited Surface acoustic wave sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122242A (en) * 1988-09-29 1990-05-09 Hewlett Packard Co <Hp> Surface transverse wave apparatus and scientific measurement
JPH09512345A (en) * 1995-02-21 1997-12-09 トムソン−セーエスエフ Highly selective chemical sensor
JPH11153582A (en) * 1997-11-21 1999-06-08 Japan Science & Technology Corp Method for measuring physical properties of fluid and apparatus therefor
JP2002529702A (en) * 1998-11-04 2002-09-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for driving an acoustic microsensor device
WO2002095940A1 (en) * 2001-05-21 2002-11-28 Microtechnology Centre Management Limited Surface acoustic wave sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178167A (en) * 2005-12-27 2007-07-12 Japan Radio Co Ltd Elastic wave sensor and its manufacturing method
WO2008059970A1 (en) * 2006-11-17 2008-05-22 Ulvac, Inc. Method for agitating liquid material by using crystal oscillator
JP2008128743A (en) * 2006-11-17 2008-06-05 Ulvac Japan Ltd Stirring method of liquid material using quartz oscillator
US8413512B2 (en) 2006-11-17 2013-04-09 Ulvac, Inc. Method for agitating liquefied material using quartz crystal oscillator
JP2008128778A (en) * 2006-11-20 2008-06-05 Japan Radio Co Ltd Surface acoustic wave sensor
JP2009002677A (en) * 2007-06-19 2009-01-08 Hirosaki Univ Surface acoustic wave device biosensor
JP2011180036A (en) * 2010-03-02 2011-09-15 Japan Radio Co Ltd Surface acoustic wave sensor
WO2013108608A1 (en) * 2012-01-20 2013-07-25 パナソニック株式会社 Elastic wave sensor
US9322809B2 (en) 2012-01-20 2016-04-26 Panasonic Intellectual Property Management Co., Ltd. Elastic wave sensor
JP2016161375A (en) * 2015-03-02 2016-09-05 日本無線株式会社 Elastic surface wave sensor

Similar Documents

Publication Publication Date Title
EP1605257B1 (en) Two-frequency measuring method using surface acoustic wave device, and surface acoustic wave device and biosensor device with analysis liquid agitating means
Hu et al. A lateral field excited liquid acoustic wave sensor
US20180334697A1 (en) Method for isothermal dna detection using a modified crispr/cas system and the apparatus for detection by surface acoustic waves for gene editing
JPH05240762A (en) Surface transverse wave apparatus
KR100706561B1 (en) Method and device for operating a microacoustic sensor array
JP2008122105A (en) Elastic wave sensor and detection method
Mccann et al. A lateral-field-excited LiTaO 3 high-frequency bulk acoustic wave sensor
Mirea et al. Impact of FBAR design on its sensitivity as in-liquid gravimetric sensor
JP2003307481A (en) Multichannel biosensor
JP2005351799A (en) Surface elastic wave element, biosensor device, and measuring method by surface elastic wave element
JP2007225546A (en) Elastic surface wave sensor
JPWO2010150587A1 (en) Surface acoustic wave sensor
JP2006003267A (en) Elastic wave element and biosensor device equipped therewith
JP4733404B2 (en) Elastic wave sensor
US8018121B1 (en) Integrated thickness shear mode (TSM) sensor and surface acoustic wave (SAW) device for simultaneous sensing and removal of analytes
Zimmermann et al. Love-waves to improve chemical sensors sensitivity: theoretical and experimental comparison of acoustic modes
TWI825603B (en) Sensor system and method for estimating amounts of different molecules in biological liquid
JP2006038584A (en) Chemical sensor and measuring instrument
JP4870530B2 (en) Surface acoustic wave sensor
JP4755965B2 (en) Method of stirring liquid using quartz crystal
JP5195926B2 (en) Elastic wave sensor
JP4616124B2 (en) Microreactor, microreactor system, and analysis method using the microreactor system
Thomas Development of Simple and Portable Surface Acoustic Wave Biosensors for Applications in Biology and Medicine
JP4504106B2 (en) Measuring method using surface acoustic wave device
RU2649217C1 (en) Hybrid acoustic sensor of the electronic nose and electronic tongue system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Effective date: 20100107

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A131 Notification of reasons for refusal

Effective date: 20100413

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A02