JP2005534187A - プラズマドーピング装置内のプラズマパラメータをモニターするための方法及び装置 - Google Patents

プラズマドーピング装置内のプラズマパラメータをモニターするための方法及び装置 Download PDF

Info

Publication number
JP2005534187A
JP2005534187A JP2004524733A JP2004524733A JP2005534187A JP 2005534187 A JP2005534187 A JP 2005534187A JP 2004524733 A JP2004524733 A JP 2004524733A JP 2004524733 A JP2004524733 A JP 2004524733A JP 2005534187 A JP2005534187 A JP 2005534187A
Authority
JP
Japan
Prior art keywords
plasma
plasma doping
sensing
sensors
platen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004524733A
Other languages
English (en)
Other versions
JP2005534187A5 (ja
Inventor
ワルター、スティーブン、アール
ファン、ツィウェイ
クー、ボンウーン
フェルチ、スーザン、ビー
Original Assignee
バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド filed Critical バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド
Publication of JP2005534187A publication Critical patent/JP2005534187A/ja
Publication of JP2005534187A5 publication Critical patent/JP2005534187A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32412Plasma immersion ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/544Controlling the film thickness or evaporation rate using measurement in the gas phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

【解決手段】プラズマドーピング装置内のプラズマパラメータをモニターするための方法及び装置が与えられる。プラズマドーピング装置は、プラズマドーピングチャンバ、被処理体を支持するためのプラズマドーピングチャンバ内に配置されたプラテン、プラズマドーピングチャンバ内でプラテンから離隔された陽極、プラズマドーピングチャンバに結合された処理ガスソース、プラテンと陽極との間にパルスを印加するためのパルスソース、及びプラズマモニターを含む。処理ガスのイオンを含むプラズマが陽極とプラテンとの間のプラズマ放電領域内で生成される。パルスはイオンをプラズマから被処理体へ加速する。プラズマモニターは、被処理体へ注入されるイオンのドーズ量分布を示すプラズマ密度のようなプラズマパラメータの空間分布を感知する感知デバイスを含む。

Description

本発明は被処理体のイオン注入に使用されるプラズマドーピング装置に関し、特に、プラズマドーピング装置内のプラズマパラメータをモニターするための方法及び装置に関する。
イオン注入は半導体ウエハ中に導電率を変更する不純物を導入するための標準的技術である。従来のビームラインイオン注入装置において、所望の不純物材料がイオンソース内でイオン化され、該イオンは所定のエネルギーのイオンビームを形成するべく加速され、該イオンビームはウエハの表面に向けられる。ビーム内の活性イオンは半導体材料のバルクに侵入し、所望の導電率領域を形成するべく半導体材料の結晶格子内に埋め込まれる。
半導体産業界の周知のトレンドは、より小型のより高速なデバイスに向かっている。特に、半導体デバイスの素子の横寸法及び深さの両方が減少している。特定の半導体デバイスは1000オングストローム以下の接合深さを要求し、ついには200オングストロームまたはそれ以下のオーダーの接合深さを要求する。ドーパント材料の注入深さは、少なくとも部分的には、半導体ウエハ中に注入されるイオンのエネルギーにより決定される。典型的に、ビームラインイオン注入装置は比較的高い注入エネルギーにおいて効率的に動作するように設計されており、浅い接合注入に必要な低エネルギーにおいて効率的に機能しない。
プラズマドーピング装置は半導体ウエハ中に浅い接合を形成するために研究されたものである。プラズマドーピング装置において、半導体ウエハは陰極として機能する導体プラテン上に載置され、プラズマドーピングチャンバ内に配置される。所望のドーパント材料を含むイオン性処理ガスがチャンバ内に導入され、プラテンと陽極またはチャンバ壁との間に電圧パルスが印加されると、ウエハ付近にプラズマシースを有するプラズマが形成される。印加されたパルスにより、プラズマ内のイオンはプラズマシースを横切ることができ、ウエハ中に注入される。注入の深さはウエハと陽極との間に印加された電圧に関係する。プラズマドーピング装置は、非常に低い注入エネルギーを達成することが可能である。プラズマドーピング装置の例としては、Shengによる1994年10月11日発行の米国特許第5,354,381号、Liebertらによる2000年2月1日発行の米国特許第6,020,592号、及びGoecknerらによる2001年2月6日発行の米国特許第6,182,604号に記載されたものがある。
米国特許第5,354,381号明細書 米国特許第6,020,592号明細書 米国特許第6,182,604号明細書
上記プラズマドーピング装置において、印加された電圧パルスはプラズマを生成し、プラズマからの正イオンをウエハ方向へ加速する。プラズマイマージョン装置として知られる他の種類のプラズマ装置において、プラズマドーピングチャンバの内部または外部に配置されたアンテナからの誘導結合RF電力により連続プラズマが生成される。該アンテナはRF電源に接続されている。間欠的に、電圧パルスがプラテンと陽極との間に印加され、プラズマ中の正イオンがウエハ方向へ加速される。
ウエハに注入される累積イオンドーズ量及びウエハ表面にわたるドーズ量の空間均一性に関して、イオン注入を含む半導体製造処理には厳しい要求が課されている。注入されたドーズ量は注入された領域の電気的活性を決定し、一方ドーズ量均一性は半導体ウエハ上のすべてのデバイスが特定限度の動作特性を有することを保証するために要求される。
プラズマドーピング装置において、イオンを生成するプラズマはウエハの表面に配置される。ドーズ量空間均一性は、プラズマの均一性及びウエハ付近の電場に依存する。しかし、プラズマは空間非均一性を有し、時間とともに変化する。そのようなプラズマの非均一性は処理中のウエハ内にドーズ量の非均一性を生成しやすい。ドーズ量の均一性を改良するためにプラテンを包囲する別々にバイアスされた同心構造を使用するプラズマドーピング装置が、Chapekらによる1998年1月27日発行の米国特許第5,711,812号に開示されている。このアプローチによる改良にも拘わらず、ドーズ量均一性の問題はプラズマドーピング装置にはまだ残されている。
したがって、プラズマドーピング装置のパフォーマンスをモニターするための方法及び装置が必要である。
本発明の第1の態様に従い、プラズマドーピング装置が与えられる。該プラズマドーピング装置は、プラズマドーピングチャンバ、被処理体を支持するためのプラズマドーピングチャンバ内に配置されたプラテンと、プラズマドーピングチャンバ内でプラテンから離隔された陽極と、プラズマドーピングチャンバへ結合された処理ガスソースと、プラテンと陽極との間にパルスを印加するためのパルスソースと、プラズマモニターと、から成る。処理ガスのイオンを含むプラズマが陽極とプラテンとの間のプラズマ放電領域内に生成される。プラテンと陽極との間に印加されたパルスはプラズマからのイオンを被処理体へ加速する。プラズマモニターはプラズマパラメータの空間分布を感知する感知デバイスから成る。感知されたプラズマパラメータの空間分布は被処理体内へ注入されるイオンのドーズ量分布を示す。
ある実施例において、感知デバイスは被処理体から離隔されてプラズマドーピングチャンバ内に配置されたセンサーのアレイから成る。センサーは陽極内部またはその付近に設置される。センサーは光学センサーまたは電気センサーから成る。センサーアレイは直線アレイまたは2次元アレイから成る。円筒形状を有するプラズマドーピングチャンバ内で、センサーの円形アレイまたは放射状アレイが利用されてもよい。
ある実施例において、感知デバイスはプラズマ放電領域内でプラズマのイメージを捕捉するためのひとつまたはそれ以上のイメージセンサーから成る。
ある実施例において、感知デバイスは被処理体から離隔されてプラズマドーピングチャンバ内に配置された可動センサーと、プラズマに関してセンサーを移動させるためのアクチュエータと、から成る。
さらにプラズマモニターは、センサーに接続された処理回路を含む。センサーにより得られた測定結果は処理回路に与えられ、該処理回路は被処理体中へ注入されたイオンのドーズ量分布の推定値を計算する。
本発明の他の態様に従い、プラズマドーピング方法が与えられる。方法は、プラズマドーピングチャンバ内のプラテン上で被処理体を支持する工程と、プラズマドーピングチャンバ内でプラズマを生成し、プラズマのイオンを被処理体へ加速する工程と、プラズマパラメータの空間分布を感知する工程と、から成る。プラズマパラメータの空間分布は被処理体内へ注入されたイオンのドーズ量分布を示す。
本発明の他の態様に従い、プラズマドーピング装置が与えられる。プラズマドーピング装置は、プラズマドーピングチャンバと、被処理体を支持するためにプラズマドーピングチャンバ内に配置されたプラテンと、プラズマドーピングチャンバ内でプラテンから離隔された陽極と、プラズマドーピングチャンバに結合された処理ガスソースと、プラテンと陽極との間にパルスを印加するためのパルスソースと、プラズマモニターと、から成る。処理ガスイオンを含むプラズマが陽極とプラテンとの間のプラズマ反応領域内に生成される。プラテンと陽極との間に印加されたパルスはプラズマのイオンを被処理体へ加速する。プラズマモニターは選択された波長範囲にわたってプラズマからの放射光を感知するための光学センサーと、選択された波長範囲にわたって感知された放射光を処理するための光学センサーに接続された処理回路とから成る。
本発明の他の態様にしたがって、プラズマドーピング方法が与えられる。方法は、プラズマドーピングチャンバ内でプラテン上に被処理体を支持する工程と、プラズマを生成し、プラズマのイオンを被処理体へ加速する工程と、選択された波長範囲にわたってプラズマからの放射光を感知する工程と、プラズマの状態を表す測定値を与えるよう選択された波長範囲にわたって感知された放射光を処理する工程と、から成る。
本発明の実施に適したプラズマドーピング装置の例が図1に略示されている。プラズマドーピングチャンバ10は密閉空間12を画成する。チャンバ10内に配置されたプラテン14は半導体ウエハ20のような被処理体を保持するための表面を与える。ウエハ20は例えば、プラテン14の平坦面に対しその周縁がクランプされてもよい。ひとつの実施例において、プラテンはウエハ20を支持するための電気的に導体の表面を有する。他の実施例において、プラテンはウエハ20と接触するための導体ピン(図示せず)を含む。ウエハ20及びプラテン14はプラズマドーピング装置内で陰極として機能する。
陽極24はプラテン14から離隔されてチャンバ10内に配置される。陽極24はプラテン14に対して垂直の矢印26方向に移動可能である。典型的に、陽極はチャンバ10の電気的に導電性の壁に結合され、両者は接地される。他の構成において、プラテン14は接地されかつ陽極24にはパルス電圧が印加される。
陽極24が接地される構成において、ウエハ20はプラテン14を介して高電圧パルスソース30に接続されている。典型的にパルスソース30は、振幅が約100から5000ボルトの範囲で、間隔が約1から50ミリ秒で、パルス周期が100Hzから2kHzのパルスを与える。これらのパルスパラメータ値は例として与えられるものであり、発明の態様の範囲内で他の値が使用され得ることが理解されよう。
チャンバ10の密閉空間12は制御可能バルブ32を通じて真空ポンプ34に結合されている。処理ガスソース36は質量流量制御器38を介してチャンバ10と結合されている。チャンバ10内に配置された圧力センサー44はチャンバ圧力を示す信号を制御器46へ与える。制御器46は感知したチャンバ圧力を所望の圧力入力と比較し、制御信号をバルブ32へ与える。制御信号は、チャンバ圧力と所望の圧力との間の差を最小にするようにバルブ32を制御する。真空ポンプ34、バルブ32、圧力センサー44及び制御器46は閉ループ圧力制御システムを構成する。典型的に、圧力は約1ミリトルから約50ミリトルの範囲で制御されるが、この範囲に限定されない。ガスソース36は被処理体へ注入するための所望のドーパントを含むイオン性ガスを供給する。イオン性ガスの例として、BF3、N2、Ar、PH3、AsH3及びB2H6が含まれる。質量流量制御器38はチャンバ10へ供給されるガス流量を調節する。図1に示された構成は、一定のガス流量及び一定圧力の処理ガスの連続流を与える。圧力及びガス流量は反復可能な結果を与えるよう好適に調整される。
プラズマドーピング装置は、中空陰極パルスソース56に接続された中空陰極54を含んでも良い。ひとつの実施例において、中空カソード54は陽極24とプラテン14との間の空間を包囲する導体中空シリンダから成る。中空陰極は非常に低いイオンエネルギーが要求される応用において使用される。特に、中空カソードパルスソース56はチャンバ12内にプラズマを形成するのに十分なパルス電圧を与え、パルスソース30は所望の注入電圧を確立する。中空陰極の使用に関する詳細は、ここに参考文献として組み込む米国特許第6,182,604号に記載されている。
ウエハ20内に注入されイオンドーズ量を測定するために、ひとつまたはそれ以上のファラデーカップがプラテン14に隣接配置されている。図1の実施例において、ファラデーカップ50、52等はウエハ20の周囲に等間隔に配置されている。各ファラデーカップはプラズマ40に対向する入口60を有する導体エンクロージャから成る。各ファラデーカップは実際のウエハ20付近に配置され、プラズマ40からプラテン14方向へ加速された正イオンのサンプルを捕らえる。他の実施例において、環状のファラデーカップがウエハ20及びプラテン14の周りに配置される。
ファラデーカップはドーズプロセッサ70または他のドーズモニター回路に電気的に接続されている。入口60を通って各ファラデーカップに進入した正イオンは、ファラデーカップに接続された電気回路内にイオン電流を表す電流を生成する。ドーズプロセッサ70はイオンドーズ量を決定するべく該電流を処理する。
上記米国特許第5,711,812号に記載されるように、プラズマドーピング装置はプラテン14を包囲するガードリング66を含む。ガードリング66はウエハ20のエッジ付近の注入イオン分布の均一性を改善するようバイアスされてもよい。ファラデーカップ50、52はウエハ20及びプラテン14の周辺付近のガードリング66内に配置される。
動作中、ウエハ20はプラテン14上に配置されている。圧力制御装置、質量流量制御装置38及びガスソース36はチャンバ10内に所望の圧力及びガス流量を生成する。例として、チャンバ10には10ミリトルの圧力でBF3ガスが導入される。パルスソース30はウエハ20へ一連の高電圧パルスを印加し、それによりウエハ20と陽極24との間のプラズマ放電領域48にプラズマ40が形成される。周知技術として、プラズマ40はガスソース36からのイオン性ガスの正イオンを含む。プラズマ40はウエハ20の表面付近にプラズマシース42を有する。高電圧パルス中に陽極24とプラテン14との間に存在する電場は、プラズマシース42を横切ってプラズマ40からプラテン14方向へ正イオンを加速する。加速されたイオンは不純物材料の領域を形成するべくウエハ20内に注入される。パルス電圧はウエハ20内の所望の深さまで正イオンを注入するよう選択される。パルスの数及びパルス間隔はウエハ20内に所望のドーズ量の不純物材料を与えるよう選択される。パルス毎の電流は、パルス電圧、ガス圧力及びガス種、並びに電極の可変位置の関数である。例えば、陽極−陰極間隔は、異なる電圧ごとに調節されてもよい。
ウエハ20の表面にわたるイオンドーズ量均一性はプラズマ40の均一性及びウエハ20近傍の電場に依存する。しかし、プラズマ40は空間非均一性を有し、かつ時間とともに変化する。したがって、プラズマドーピング装置のパフォーマンスをモニターするための技術が必要である。
本発明の実施例が図2〜19を参照して説明される。図1から19の同一部材は同一符合で示される。図2から19に示された実施例は図1に示されるタイプのプラズマドーピング装置、上記または他のあらゆるプラズマドーピング装置で利用可能である。
本発明の態様に従い、プラズマドーピング装置は、ウエハまたは他の被処理体内に注入されたイオンのドーズ量分布をモニターするためのプラズマモニターを具備する。プラズマモニターは、プラズマパラメータの空間分布を感知するためのセンサーのアレイのような感知デバイス及びドーズ量均一性の指標を与えるセンサー信号を処理するための処理回路を含む。プラズマモニターは注入の間リアルタイムに使用され、診断ツールとして利用される。
プラズマドーピング装置の実施例の部分断面図が図2に示されている。プラズマドーピング装置は本発明の第1実施例に従うプラズマモニター90を含む。プラズマモニター90は、プラズマ40に関連するパラメータの空間分布を感知するための感知デバイス100及び、感知デバイス100の出力信号を処理するための、ドーズプロセッサ70に組み込まれた処理回路を含む。感知されたプラズマパラメータは被処理体内に注入されたイオンのドーズ量分布を示す。ある実施例において、感知デバイス100は陽極24とプラテン14との間のプラズマ放電領域内のプラズマ40のプラズマ密度の空間分布を感知する。
図2の実施例において、感知デバイス100は陽極24に離隔されて載置されたプラズマセンサー110のアレイを含む。プラズマセンサー110は例えば、光学センサーまたは電気センサーである。センサー110の各々はプラテン14の方向に向けられ、プラズマ40の領域を感知する。センサー110は真空フィードスルー112を通じてドーズプロセッサ70または他のドーズ制御器へ電気的に接続されている。図2の実施例において、センサー110は陽極24の半径方向に沿って離隔されている。感知デバイス100の他の実施例は図3から7に示され、以下に説明される。
センサー110が光学センサーである場合の実施例において、各光学センサー110はプラズマ40の領域からの放射光を観測する。捕捉された光学信号は局所的なプラズマ密度を示し、それは光学センサーによって観測される領域内のウエハ20へ分配されたドーズ量に関係する。センサー110のアレイはプラズマ強度の空間変化に関する情報を与え、それは注入ドーズ量をより均一にするための及び注入ドーズ量の反復性を改善するための診断ツールとして有用である。センサーのアレイは、半導体ウエハまたは他の被処理体のプラズマドーピング中のプラズマ強度の空間的変化をリアルタイムにモニターするためにも使用される。センサー110は好適にはウエハ20または他の被処理体に対して離れて配置され、プラズマ放電領域48内のプラズマからの放射光を測定するよう方向付けられる。注入の均一性を特徴づけるために使用されるドーズマップを作成するのに、センサー110のアレイによる複数回の観測が使用される。
上記したように、センサー110は光学センサーまたは電気センサーである。ある実施例において、各センサー110はフォトダイオードまたは陽極24に載置された他の光センサーである。他の実施例において、各センサー110は、陽極24に載置されたレンズのような光学プローブ、遠隔配置された光センサー及び感知された放射光を遠隔配置された光センサーへ運ぶための光ファイバーを含む。レンズは感知された放射光を光ファイバーの端部に集束する。光センサーはプラズマドーピングチャンバの外部に配置される。さらに他の実施例において、CCDイメージセンサーのようなイメージ感知デバイスが使用されてもよい。感知デバイス100がプラズマパラメータの空間分布を感知する場合、センサーの数及びセンサーの構成は所望の空間解像度に依存する。異なるセンサーアレイが以下に説明されるように使用されてもよい。イメージセンサーの場合、ひとつまたはそれ以上のセンサーがプラズマをモニターするのに使用される。ある実施例において、光学センサーが可視及び赤外線付近スペクトルの選択された波長範囲の放射光をモニターする。感知された放射光は選択された波長範囲にわたって平均化されるか積分される。他の実施例において、光学センサーはプラズマドーピングチャンバ内のガス分子からのある放射光のような狭帯域の放射光をモニターする。
他の実施例において、センサー110は、各センサー付近のプラズマ領域内の荷電粒子(典型的に、電子)を感知する電気センサーであってもよい。電気センサーは陽極24から電気的に分離された導体エレメントである。
本発明に従う感知デバイスの第2から第6実施例が図3から図7にそれぞれ示されている。図3から図7は感知デバイスの構成を示す陽極24の底面図である。図3から図7の実施例において、プラズマドーピングチャンバは円筒形を有し、陽極は円形である。しかし、本発明は任意の形状を有するチャンバ内のプラズマパラメータの空間分布をモニターするために使用可能である。
感知デバイスは陽極24にまたはその付近に設置されたひとつまたはそれ以上のセンサーを含む。例えば、センサーは、プラズマ40を観測するのに適した位置で陽極24の上面あるいは陽極24の下面に配置され、陽極24のひとつまたはそれ以上の開口を通じてプラズマ40をモニターする。感知デバイスは単一のセンサー、イメージセンサー、センサーの固定アレイ、あるいはひとつまたはそれ以上の可動センサーを使用することができる。
図3を参照して、センサー132の直線アレイ130が示されている。センサー132は陽極24の直径に沿って離隔されている。
図4を参照して、センサー142の2次元アレイ140が示されている。図4の実施例において、センサー142は行及び列が等間隔の2次元グリッド上に配置されている。2次元アレイ140は少なくともウエハ20の領域のプラズマ40をモニターするのに十分な面積をカバーする。
図5を参照して、センサー152の2次元アレイ150が示されている。図5の実施例において、2次元アレイ150は所望のモニター解像度を与えるべく陽極24の直径に沿ってかつ等方位角に並べられたセンサー152の2つまたはそれ以上の直線アレイを含む。
図6を参照して、センサー162の2次元アレイ160が示されている。2次元アレイ160は、陽極24と同心円である円形アレイを有するセンサー162のひとつまたはそれ以上の円形アレイを含む。
センサーの数、センサー間隔及びセンサーのアレイ構成は、センサー特性及び所望のモニター解像度に依存する。アレイのセンサー間隔は均等でも異なってもよい。一般に、センサーの空間配置は任意である。センサー170は光学センサーまたは電気センサーである。
固定センサーアレイ以外の可動センサーを使用した構成が図7に示されている。図7の実施例において、センサー170は陽極24のスロット172内に配置されている。センサー170は駆動シャフト174により駆動モーターのようなアクチュエータ176へ結合されている。アクチュエータ176は矢印178で示される方向でスロット172に沿ってセンサー170を移動させる。センサー170は、移動範囲に沿って連続的にまたは断続的にプラズマ40をモニターする。一般に、ひとつまたはそれ以上の可動アクチュエータが使用される。センサー170は光学センサーまたは電気センサーである。可動センサーにより、センサーアレイ内の個々のセンサー間でキャリブレーションを行う必要がなくなる。
上記したように、感知デバイスはCCDイメージセンサーのようなひとつまたはそれ以上のイメージセンサーを含むこともできる。イメージセンサーの数及び位置はイメージセンサーの観測フィールド及び所望のモニター有効範囲に依存する。例えば、数個の離隔されたイメージセンサーがプラズマをモニターするのに使用される。
センサーの出力は、ファラデーカップ50及び52の出力とともにドーズプロセッサ70へ供給される。プラズマセンサーの出力はプラズマ密度のようなプラズマパラメータに関する空間情報を与える。プラズマパラメータは好適にはウエハ20に注入されるイオンドーズ量に関連する。したがって、プラズマ空間情報はウエハ20内に注入されたイオンのドーズ量分布を示す。ファラデーカップ50及び52はウエハ20内に注入されたイオンドーズ量に関する情報を与える。これらの観測から、ドーズプロセッサ70はウエハに注入されたドーズ量及びドーズ量均一性を決定する。
本発明に従うプラズマモニターの第7実施例が図8から図12を参照して説明される。図8に示されるように、プラズマドーピング装置は図1と逆さまの構造を有し、プラズマ40の上にプラテン40及びウエハ20が配置され、プラズマ40の下に陽極24が配置されている。
プラズマ40に関連するパラメータの空間分布をモニターするための電気センサー210が陽極24に設置されている。図8から12の実施例は図10に示されるような49個の電気センサーのアレイを使用する。しかし、異なる数のセンサー210が本発明の態様内で使用され得る。センサー210に接続された導線212はプラズマドーピングチャンバ10の外部に配置された処理回路220までフィードスルー214を通じて伸長する。導線212は少なくともプラズマドーピングチャンバ10内で耐プラズマ絶縁性を有しなければならない。ある実施例において、導線212は50Ωの抵抗により終端された同軸ケーブルから成る。
図9を参照して、各電気センサー210はT形の断面を有する導体エレメントから成る。各電気センサー210は陽極24のリセス224内に設置されかつ絶縁スリーブ226により陽極24から電気的に絶縁されている。電気的センサー210と陽極24との間のギャップ230はプラズマ40に対する外乱を制限するために典型的に約0.1ミリメートルのオーダーで比較的小さい。電気的センサー210及び陽極24は典型的に接地であるほぼ同一のポテンシャルで動作するため、それらの間でアーキングは生じない。荷電粒子の感知中に電気センサー210上に誘導される電圧はミリボルトまたはそれ以下のオーダーである。陽極24は、下面でのプラズマ感知を防止しかつ導線212に対して保護を与えるべくプラズマ40と反対側の下面全体に電気的絶縁性カバー232を具備する。図9に示されるように、導線212はカバー232内で電気センサー210の下面に接続される。
処理回路220の例が図11に示されている。増幅されたセンサー信号を与えるべく、導線212は電気センサー210から各増幅器240へ接続される。増幅されたセンサー信号は、増幅されたセンサー信号をデジタル値に変換するアナログ-デジタル変換器242へ送られる。増幅されたセンサー信号はパルス化されたプラズマドーピング装置の動作中のサンプル信号に応答して同時にサンプリングされる。アナログ-デジタル変換器242は複数チャネル変換器または複数の個別変換器を含む。アナログ-デジタル変換器242の出力は、データバッファ244を通じてデジタル値の処理及び格納用のPCのようなコンピュータ250へ与えられる。複数の電気センサー210がプラズマドーピングチャンバ10内のプラズマ40の空間分布のマップを与える。
センサー信号のサンプリングが図12に示されている。センサー信号260は処理回路220内のひとつの増幅器240の出力を表す。パルスソース30がプラズマ開始時刻t1においてトリガーされ、プラズマ40が形成されかつプラズマに応答してセンサーパルス262が生成される。アナログ-デジタル変換器242はサンプリング開始時刻t2からサンプリング終了時刻t3までセンサーパルス262をサンプリングするよう作用する。下記の通り、サンプリング開始時刻t2及びサンプリング終了時刻t3は、例えばモニター中のプラズマパラメータ及びセンサー特性に依存して変化し得る。サンプリングは、プラズマ40をリアルタイムにモニターするために、プラズマドーピング装置がパルスソース30によりトリガーされる毎に繰り返される。センサー信号の同時サンプリング中に捕捉された値の各セットは、プラズマドーピングチャンバ10内のプラズマ密度の空間分布のマップを表す。
さまざまな異なるサンプリングパラメータがモニター中のプラズマパラメータに依存して使用される。サンプリング時間は、増幅されたセンサー信号の振幅を測定するためにアナログ-デジタル変換器242がサンプル信号によりイネーブルとなる間の時間として定義される。図12を参照して、サンプリング時間はサンプリング開始時刻t2からサンプリング終了時刻t3までの時間間隔である。一般に、サンプリング時間は、パルスソース30によりプラテン14へ印加されるプラズマドーピングパルスの幅より短いか、あるいはプラズマドーピングパルスの幅より長い。ある場合、サンプリング時間はプラズマドーピングパルスの幅より非常に長い。図12に示されるように、センサー信号260はプラズマドーピングパルスと同じパルス幅及びデューティサイクルを有する。
サンプリング時間が長いと、測定は多くのセンサーパルス262をサンプリングし、サンプリング時間にわたる信号の平均である出力を与える。これは光学センサーの場合であり、その際センサー応答時間はプラズマドーピングパルス幅に比べて長い。しかし、電気センサーの場合、サンプリング時間は例えば1マイクロ秒以下で非常に短い。これにより、プラズマドーピングパルスに関して異なるステージでのプラズマパラメータの測定が可能となる。サンプリングは、プラズマが点火された時点であるプラズマドーピングパルスの開始時またはその付近、プラズマが安定状態に達した時点であるパルスの安定部分、またはプラズマドーピングパルスが終了した後の残光時間間隔に実行される。プラズマドーピングパルスの安定部分でのサンプリングは均一性の最適な測定をもたらすと考えられるが、開始時または残光時間間隔でのサンプリングは診断目的及びプラズマドーピングシステムの改良を助けるのに有用である満足な結果をもたらす。上記した同時サンプリングとは、すべてのセンサーのサンプリングが同時に開始しかつ同時に終了することを言う。しかし、図12を参照して、サンプリング開始時刻t2及びサンプリング終了時刻t3は、プラズマ開始時刻t1に関して任意の所望のタイミングを有し、サンプリング時間はひとつまたはそれ以上のプラズマドーピングパルスを含む。
電気センサー210のサンプリングは陽極24に設置された電気センサー210のすべてあるいは電気センサー210のサブセットの同時サンプリングに関連する。例えば、陽極24の直径に沿ったセンサー210がサンプリングされるか、または陽極24の円周付近のセンサー210がサンプリングされる。
プラズマモニターの第8実施例が図13を参照して説明される。図1との関連で上記したように、陽極24はウエハに向かってまたは離れる方向に移動可能である。図13の実施例において、陽極24は、プラズマドーピングチャンバ10内で陽極24を上下に移動させるアクチュエータ(図示せず)へ、フィードスルー272を通じるシャフト270により結合されている。図13の実施例において、電気センサー210へ接続された導線212はシャフト270及びフィードスルー272の中空部分を通過して外部に配置された処理回路へ接続される。この構成により導線212がプラズマ環境に曝されるのが防止される。
プラズマモニターの第9実施例が図14を参照して説明される。図14の実施例は光学センサーを使用する。各光学センサーは、プラズマ48からの放射光を感知するための、陽極24に設置された光学プローブ300、遠隔配置された光センサー302、及び感知された放射光を遠隔配置された光センサー302へ運ぶための光ファイバー304を含む。各光学プローブ300はレンズ支持エレメント312に設置されたレンズ310を含む。光センサー302の各々は感知された放射光に応答して電気信号を生成する。電気信号は処理回路へ与えられ、該処理回路は図11及び12に関して上記されたように構成されている。任意の数及び構成の光学センサーが使用され得る。
図14の実施例において、各光学プローブ300はウエハ20の表面の小さい面積320からの光を集束する。各光学プローブ300はプラズマ48の制限された感知領域からの放射光を感知する。制限された感知領域は例えば、円錐形、円錐台形、または円筒形である。ウエハ20の表面特性に依存して、光学プローブ300はウエハ表面により反射されたプラズマ48の放射光も感知する。
プラズマモニターの第10実施例が図15を参照して説明される。図15の実施例は図14と関連して上記したように光学センサーを使用する。図15の実施例において、光学プローブ300aはウエハ20の比較的大きい面積324からの光を集束する。この構成は、ウエハの異なる表面からの反射の平均をもたらす。図15の実施例内の第2光学センサー300bはプラズマ48内の領域328からの光を集束する。図15は図示の都合上、異なる領域からの光が別々の光学センサーにより集束されるように示されている。典型的なプラズマドーピング装置において、すべての光学センサーは同一または類似の集束特性を有する。しかし、所望により、同一のプラズマドーピング装置内で異なる光学センサーが異なる集束特性を有してもよい。
プラズマモニターの第11実施例が図16を参照して説明される。図16の実施例は図14との関係で上記されたような光学センサーを使用する。図16の実施例において、レンズ支持エレメント312はウエハ20の法線に関してある角度でレンズ310を保持するよう構成されている。この構成により、ウエハ20の表面からの反射による干渉を抑制することができる。
図14から16は、光学プローブ300がプラズマ48の所望の感知領域からの放射光を感知できるように構成されていることを原理的に示している。例えば、レンズ310の光学特性及び/または方向は所望の感知動作を達成するべく変更可能である。
図14に示されたものと同様な光学センサー配置によって観測が為された。プラズマはBF3パルス放電であった。石英集束レンズを有する4つの光学センサーが、陽極24の中心からR=0、3、6及び9センチメートルの半径位置に配置された。ウエハから陽極までの距離は約10cmであった。すべての光学センサーが、5ミリメートルの集束直径を有するシリコンウエハ表面の方向に直面していた。光学信号は直径600ミクロンの光ファイバーを使って4チャネルの光学真空フィードスルーを通じてスペクトロメータへ移送された。光学信号は350〜400ナノメートルの間の波長範囲にわたって積分された。
図17Aから図17Cは3つの異なる測定技術に関し、半径位置の関数として観測値を表したグラフである。各グラフは2つのプラズマ放電条件の下で為された観測をプロットしたものである。圧力は放電チャンバ内のBF3の圧力であり、電圧は中空陽極54に印加されたパルス電圧である。それぞれの場合、ウエハ20には約−200ボルトのパルスが印加された。
図17Aにおいて、光学センサーにより捕捉された相対光学信号が、15ミリトルのチャンバ圧力及び−2kVの中空陰極パルス電圧に対して(曲線400)、及び50ミリトルのチャンバ圧力及び−1.3kVの中空陰極パルス電圧に対して(曲線402)、半径位置の関数としてプロットされている。図17Bは図17Aに示されたのと同じ条件下で半径位置の関数としてサーマウエイブデータを示す。サーマウエイブはレーザーセンサーによりウエハダメージを測定するための周知技術である。図17Bにおいて、曲線410は15ミリトルのチャンバ圧力及び−2.0kVの中空陰極パルス電圧を表し、曲線412は50ミリトルのチャンバ圧力及び−1.3kVの中空陰極パルス電圧を表す。図17Cは図17Aと同じ条件下で半径位置の関数として相対イオン電流値を示す。相対イオン電流はラングミュアプローブにより測定された。図17Cにおいて、曲線420は15ミリトルのチャンバ圧力及び−2.0kVの中空陰極パルス電圧を表し、曲線422は50ミリトルのチャンバ圧力及び−1.35kVの中空陰極パルス電圧を表す。図17Aの光学信号は、図17Bのサーマウエイブ値及び図17Cのイオン電流値と類似の半径方向プロファイル形状を示している。それぞれの測定技術に対して、15ミリトル及び−2.0kVの条件は中央ピークプロファイルを生成し、それぞれの測定技術に対して、50ミリトル及び−1.3kVの条件は比較的均一なプロファイルを生成する。
図18は異なる波長範囲に対するウエハ電流(mA)の関数として、規格化された光学信号を示すグラフである。光学信号は中心位置(R=0)において光学センサーにより捕捉され、スペクトロメータへ与えられた。BF3圧力は30ミリトルであり、プラズマはウエハパルスにより生成された。200〜800ナノメートル、300〜600ナノメートル、及び400〜450ナノメートルの波長範囲に渡って平均化された測定結果はほぼ同一の結果を示した。それぞれの場合において、光学信号はウエハ電流と線形関係を示した。
図19は、異なる動作圧力に対して、ウエハ電流の関数として350〜400ナノメートルの波長範囲にわたる光学信号を示すグラフである。曲線450は20ミリトルの圧力、曲線452は50ミリトルの圧力、曲線454は100ミリトルの圧力を表す。光学信号は中心位置(R=0)で光学センサーにより捕捉され、350と400ナノメートルとの間で積分された。
波長の選択範囲で平均化されまたは積分された光学センサー信号はプラズマ状態を表すことがわかった。光学センサー信号は選択された波長範囲にわたって平均化され、または選択された波長範囲にわたって感知されたプラズマ放射スペクトル領域を与えるよう積分される。これらの関数は例えば図11に示されたコンピュータ250により実行される。光学センサー信号は異なる波長範囲にわたって平均化または積分されてもよい。ある実施例において、50から600ナノメートルの幅を有する波長範囲が使用される。選択された波長範囲の中心は、処理ガスの放射光特性に依存する。処理ガスがBF3である場合、プラズマ放射光は可視スペクトルの青色部分にあり、選択された波長範囲は約350〜400ナノメートルに集中する。光学センサーは選択された波長範囲に対応する透過特性を有する光学フィルタを含んでもよい。
プラズマモニターはドーズ量均一性モニターとの関係で説明されてきた。光学センサーはプラズマ反復性センサーとしても使用可能である。光学センサーはプラズマ状態の約1%またはそれ以下の変化を検出するのに十分な感度を有する。図18及び19に示されるように、光学信号とウエハ電流との間には線形関係が存在し、それはプラズマ密度を表している。プラズマからの放射光を感知する光学センサーは、日毎またはバッチ毎の処理に変更を生じさせるプラズマ状態の変化を検出することができる。典型的に、光学センサーは光学感度と光学解像度との間のトレードオフにより特徴づけられる。
プラズマモニターはプラズマドーピング処理を制御するべくフィードバック制御装置内で使用される。例えば、感知されたプラズマパラメータは、プラズマドーピング時間、チャンバ圧力、プラズマ発火電圧等のようなプラズマドーピング条件を調節するのに使用される。
明細書及び図面に記載された実施例のさまざまな変更及び修正が本発明の思想及び態様の範囲内で可能である。よって、上記されたすべての事項は例示に過ぎず発明を限定するものではない。発明は特許請求の範囲の記載によってのみ制限される。
図1は、プラズマドーピング装置の略示ブロック図である。 図2は、プラズマモニターの第1実施例を示す、プラズマドーピング装置の略示部分断面図である。 図3は、プラズマモニターの第2実施例を示す、陽極の底面図である。 図4は、プラズマモニターの第3実施例を示す、陽極の底面図である。 図5は、プラズマモニターの第4実施例を示す、陽極の底面図である。 図6は、プラズマモニターの第5実施例を示す、陽極の底面図である。 図7は、プラズマモニターの第6実施例を示す、陽極の底面図である。 図8は、プラズマモニターの第7実施例を示す、プラズマドーピング装置の略示部分断面図である。 図9は、図8に示された陽極の拡大部分断面図である。 図10は、図8に示された陽極の平面図である。 図11は、図8に示されたプラズマモニターの出力を処理するための電子処理回路のブロック図である。 図12は、時間の関数として示したセンサー信号のグラフである。 図13は、プラズマモニターの第8実施例を示す、プラズマドーピング装置の部分断面図である。 図14は、プラズマモニターの第9実施例を示す、プラズマドーピング装置の部分断面図である。 図15は、プラズマモニターの第10実施例を示す、プラズマドーピング装置の部分断面図である。 図16は、プラズマモニターの第11実施例を示す、プラズマドーピング装置の部分断面図である。 図17Aは、プラズマドーピング装置内の放射位置の関数として感知された放射光の相対強度のグラフである。 図17Bは、プラズマドーピング装置内の放射位置の関数としての相対サーマ・ウェイブ値のグラフである。 図17Cは、プラズマドーピング装置内の放射位置の関数としての相対イオン電流のグラフである。 図18は、異なる波長範囲に対するウエハ電流の関数として規格化された光学信号のグラフである。 図19は、異なる動作圧力に対するウエハ電流の関数としての光学信号のグラフである。

Claims (74)

  1. プラズマドーピング装置であって、
    プラズマドーピングチャンバと、
    被処理体を支持するための、前記プラズマドーピングチャンバ内に配置されたプラテンと、
    前記プラズマドーピングチャンバ内にあって、前記プラテンから離隔された陽極と、
    前記プラズマドーピングチャンバに結合された処理ガスソースであって、処理ガスのイオンを含むプラズマが前記陽極と前記プラテンとの間のプラズマ放電領域内で生成される、ところの処理ガスソースと、
    プラズマから被処理体へイオンを加速するために、前記プラテンと前記陽極との間にパルスを印加するためのパルスソースと、
    プラズマのパラメータの空間分布を感知するための感知デバイスから成るプラズマモニターと、
    から成る装置。
  2. 請求項1に記載のプラズマドーピング装置であって、前記感知デバイスは被処理体から離隔されて前記プラズマドーピングチャンバ内に配置されたセンサーの直線アレイから成る、ところの装置。
  3. 請求項1に記載のプラズマドーピング装置であって、前記感知デバイスは被処理体から離隔されて前記プラズマドーピングチャンバ内に配置されたセンサーの円形アレイから成る、ところの装置。
  4. 請求項1に記載のプラズマドーピング装置であって、前記感知デバイスは被処理体から離隔されて前記プラズマドーピングチャンバ内に配置されたセンサーの2次元アレイから成る、ところの装置。
  5. 請求項1に記載のプラズマドーピング装置であって、前記感知デバイスは被処理体から離隔されて前記プラズマドーピングチャンバ内に配置されたセンサーの放射状アレイから成る、ところの装置。
  6. 請求項1に記載のプラズマドーピング装置であって、前記感知デバイスはひとつまたはそれ以上の光学センサーから成る、ところの装置。
  7. 請求項6に記載のプラズマドーピング装置であって、前記ひとつまたはそれ以上の光学センサーは広帯域の光を感知するように構成されている、ところの装置。
  8. 請求項6に記載のプラズマドーピング装置であって、前記ひとつまたはそれ以上の光学センサーは狭帯域の光を感知するように構成されている、ところ装置。
  9. 請求項1に記載のプラズマドーピング装置であって、前記感知デバイスはひとつまたはそれ以上の電気センサーから成る、ところの装置。
  10. 請求項1に記載のプラズマドーピング装置であって、前記感知デバイスは前記陽極内または付近に設置されたひとつまたはそれ以上のセンサーから成る、ところの装置。
  11. 請求項1に記載のプラズマドーピング装置であって、前記感知デバイスは被処理体から離隔されて前記プラズマドーピングチャンバ内に配置されたイメージセンサーから成る、ところの装置。
  12. 請求項1に記載のプラズマドーピング装置であって、前記感知デバイスは、被処理体から離隔されて前記プラズマドーピングチャンバ内に配置された可動センサーと、プラズマに関してセンサーを移動させるためのアクチュエータとから成る、ところの装置。
  13. 請求項1に記載のプラズマドーピング装置であって、前記感知デバイスはプラズマ放電領域内のプラズマ密度の空間分布を感知するように構成されている、ところの装置。
  14. 請求項1に記載のプラズマドーピング装置であって、前記感知デバイスは被処理体内へ注入されるイオンのドーズ量分布を示すプラズマパラメータを感知するように構成されている、ところの装置。
  15. 請求項1に記載のプラズマドーピング装置であって、さらに、感知デバイスによる測定を処理し、被処理体内へ注入されるイオンのドーズ量分布を評価するためのドーズプロセッサから成る装置。
  16. 請求項15に記載のプラズマドーピング装置であって、さらに、イオン電流を感知するためのファラデーカップから成り、ドーズプロセッサはビームセンサーの測定に応答して、被処理体へ分配されたイオンドーズ量を評価する、ところの装置。
  17. 請求項1に記載のプラズマドーピング装置であって、前記感知デバイスは被処理体のプラズマドーピング中のプラズマ密度の空間分布を感知するように構成されている、ところの装置。
  18. 請求項1に記載のプラズマドーピング装置であって、前記感知デバイスは前記陽極内に設置されたセンサーのアレイから成り、前記プラズマモニターはさらにセンサーに接続された処理回路を含む、ところの装置。
  19. 請求項18に記載のプラズマドーピング装置であって、前記センサーのアレイは、前記陽極内に設置されかつ前記陽極と電気的に絶縁された電気センサーから成る、ところの装置。
  20. 請求項19に記載のプラズマドーピング装置であって、さらに、前記陽極の下面全体を覆う電気的絶縁カバーを含む装置。
  21. 請求項18に記載のプラズマドーピング装置であって、前記処理回路は前記センサーの全部または選択された集合を同時にサンプリングするための回路を含む、ところの装置。
  22. 請求項18に記載のプラズマドーピング装置であって、前記処理回路は、前記プラテンと前記陽極との間に印加されたパルスの安定部分の間に、前記センサーの全部または選択された集合をサンプリングするための回路を含む、ところの装置。
  23. 請求項18に記載のプラズマドーピング装置であって、前記処理回路は、前記プラテンと前記陽極との間に印加された各パルスの開始時またはその付近で、前記センサーの全部または選択された集合をサンプリングするための回路を含む、ところの装置。
  24. 請求項18に記載のプラズマドーピング装置であって、前記処理回路は、前記プラテンと前記陽極との間に印加された各パルスの後の残光時間間隔の間に、前記センサーの全部または選択された集合をサンプリングするための回路を含む、ところの装置。
  25. 請求項18に記載のプラズマドーピング装置であって、前記処理回路は、前記プラテンと前記陽極との間に印加された各パルスの幅以下のサンプリング時間中に、前記センサーの全部または選択された集合をサンプリングするための回路を含む、ところの装置。
  26. 請求項18に記載のプラズマドーピング装置であって、前記処理回路は、前記プラテンと前記陽極との間に印加された各パルスの幅以上のサンプリング時間中に、前記センサーの全部または選択された集合をサンプリングするための回路を含む、ところの装置。
  27. 請求項18に記載のプラズマドーピング装置であって、前記処理回路は、前記プラテンと前記陽極との間に印加されたパルスの2個またはそれ以上を含むサンプリング時間中に、前記センサーの全部または選択された集合をサンプリングするための回路を含む、ところの装置。
  28. プラズマドーピング装置であって、
    プラズマドーピングチャンバと、
    被処理体を支持するための、前記プラズマドーピングチャンバ内に配置されたプラテンと、
    前記プラズマドーピングチャンバ内にあって、前記プラテンから離隔された陽極と、
    前記プラズマドーピングチャンバに結合された処理ガスソースであって、処理ガスのイオンを含むプラズマが前記陽極と前記プラテンとの間のプラズマ放電領域内で生成される、ところの処理ガスソースと、
    プラズマから被処理体へイオンを加速するために、前記プラテンと前記陽極との間にパルスを印加するためのパルスソースと、
    プラズマの空間分布を感知するために前記陽極上またはその付近に設置されたひとつまたはそれ以上の光学センサーから成るプラズマモニターであって、プラズマの空間分布は被処理体内に注入されるイオンのドーズ量分布を示す、ところのプラズマモニターと、
    から成る装置。
  29. 請求項28に記載のプラズマドーピング装置であって、前記ひとつまたはそれ以上の光学センサーは、被処理体から離隔されて前記プラズマドーピングチャンバ内に配置されたセンサーの直線アレイから成る、ところの装置。
  30. 請求項28に記載のプラズマドーピング装置であって、前記ひとつまたはそれ以上の光学センサーは被処理体から離隔されて前記プラズマドーピングチャンバ内に配置されたセンサーの2次元アレイから成る、ところの装置。
  31. 請求項28に記載のプラズマドーピング装置であって、前記ひとつまたはそれ以上の光学センサーは、被処理体から離隔されて前記プラズマドーピングチャンバ内に配置されたイメージセンサーから成る、ところの装置。
  32. 請求項28に記載のプラズマドーピング装置であって、前記ひとつまたはそれ以上の光学センサーは、被処理体から離隔されて前記プラズマドーピングチャンバ内に配置された可動センサーと、プラズマに関してセンサーを移動するためのアクチュエータと、から成るところの装置。
  33. 請求項28に記載のプラズマドーピング装置であって、前記ひとつまたはそれ以上の光学センサーの各々は、前記プラズマドーピングチャンバ内に設置された光学プローブ、遠隔配置された光センサー及び感知した放射光を遠隔配置された光センサーまで運ぶための光ファイバーから成る、ところの装置。
  34. 請求項28に記載のプラズマドーピング装置であって、前記ひとつまたはそれ以上の光学センサーは、約20ナノメートルまたはそれ以上の幅を有する選択された波長範囲にわたってプラズマの空間分布を感知するように構成されている、ところの装置。
  35. 請求項34に記載のプラズマドーピング装置であって、選択された波長範囲は約50から600ナノメートルの幅を有する、ところの装置。
  36. 請求項34に記載のプラズマドーピング装置であって、選択された波長範囲は処理ガスからの放射光と一致する、ところの装置。
  37. 請求項34に記載のプラズマドーピング装置であって、処理ガスはBF3であり、選択された波長範囲は約350から400ナノメートルに集中している、ところの装置。
  38. 請求項34に記載のプラズマドーピング装置であって、前記プラズマモニターはさらに、選択された波長範囲にわたって感知した放射光を平均化するための処理回路を含む、ところの装置。
  39. 請求項34に記載のプラズマドーピング装置であって、前記プラズマモニターはさらに、選択された波長範囲にわたって感知した放射光を積分するための処理回路を含む、ところの装置。
  40. プラズマドーピング方法であって、
    プラズマドーピングチャンバ内においてプラテン上で被処理体を支持する工程と、
    プラズマを生成し、該プラズマから被処理体へイオンを加速する工程と、
    プラズマパラメータの空間分布を感知する工程と、
    から成る方法。
  41. 請求項40に記載の方法であって、プラズマパラメータの空間分布を感知する工程は、光学センサーのアレイによってプラズマパラメータの空間分布を光学的に感知する工程から成る、ところの方法。
  42. 請求項40に記載の方法であって、プラズマパラメータの空間分布を感知する工程は、プラズマドーピングチャンバ内に配置されたイメージセンサーによりプラズマパラメータの空間分布を感知する工程から成る、ところの方法。
  43. 請求項40に記載の方法であって、プラズマパラメータの空間分布を感知する工程は、前記プラズマドーピングチャンバ内に配置されたセンサーをプラズマに関して移動させる工程から成る、ところの方法。
  44. 請求項40に記載の方法であって、プラズマパラメータの空間分布を感知する工程は、被処理体内に注入されるイオンのドーズ量分布を示すプラズマパラメータの空間分布を感知する工程から成る、ところの方法。
  45. 請求項40に記載の方法であって、プラズマパラメータの空間分布を感知する工程は、電気センサーのアレイによりプラズマパラメータの空間分布を電気的に感知する工程から成る、ところの方法。
  46. 請求項40に記載の方法であって、プラズマパラメータの空間分布を感知する工程は、センサーのアレイによりプラズマパラメータの空間分布を感知する工程及びプラズマを生成し該プラズマから被処理体内へイオンを加速する工程中にセンサーの全部または選択された集合を同時にサンプリングする工程から成る、ところの方法。
  47. 請求項40に記載の方法であって、プラズマを生成してイオンを加速する工程はプラズマドーピングパルスに応答してパルス化されたプラズマを生成する工程から成り、プラズマパラメータの空間分布を感知する工程はひとつまたはそれ以上のセンサーによりプラズマパラメータを感知し、プラズマドーピングパルスの安定部分の間にひとつまたはそれ以上のセンサーの出力をサンプリングする工程から成る、ところの方法。
  48. 請求項40に記載の方法であって、プラズマを生成してイオンを加速する工程はプラズマドーピングパルスに応答してパルス化されたプラズマを生成する工程から成り、プラズマパラメータの空間分布を感知する工程はひとつまたはそれ以上のセンサーによりプラズマパラメータを感知し、プラズマドーピングパルスの各々の開始時またはその付近でひとつまたはそれ以上のセンサーの出力をサンプリングする工程から成る、ところの方法。
  49. 請求項40に記載の方法であって、プラズマを生成してイオンを加速する工程はプラズマドーピングパルスに応答してパルス化されたプラズマを生成する工程から成り、プラズマパラメータの空間分布を感知する工程はひとつまたはそれ以上のセンサーによりプラズマパラメータを感知し、プラズマドーピングパルスの各々の後の残光時間間隔の間にひとつまたはそれ以上のセンサーの出力をサンプリングする工程から成る、ところの方法。
  50. 請求項40に記載の方法であって、プラズマを生成してイオンを加速する工程はプラズマドーピングパルスに応答してパルス化されたプラズマを生成する工程から成り、プラズマパラメータの空間分布を感知する工程はひとつまたはそれ以上のセンサーによりプラズマパラメータを感知し、プラズマドーピングパルスの各々の幅以下のサンプリング時間中にひとつまたはそれ以上のセンサーの出力をサンプリングする工程から成る、ところの方法。
  51. 請求項40に記載の方法であって、プラズマを生成してイオンを加速する工程はプラズマドーピングパルスに応答してパルス化されたプラズマを生成する工程から成り、プラズマパラメータの空間分布を感知する工程はひとつまたはそれ以上のセンサーによりプラズマパラメータを感知し、プラズマドーピングパルスの各々の幅以上のサンプリング時間中にひとつまたはそれ以上のセンサーの出力をサンプリングする工程から成る、ところの方法。
  52. 請求項40に記載の方法であって、プラズマを生成してイオンを加速する工程はプラズマドーピングパルスに応答してパルス化されたプラズマを生成する工程から成り、プラズマパラメータの空間分布を感知する工程はひとつまたはそれ以上のセンサーによりプラズマパラメータを感知し、プラズマドーピングパルスの2個またはそれ以上を含むサンプリング時間中にひとつまたはそれ以上のセンサーの出力をサンプリングする工程から成る、ところの方法。
  53. プラズマドーピング方法であって、
    プラズマドーピングチャンバ内においてプラテン上で被処理体を支持する工程と、
    プラズマを生成し、該プラズマから被処理体へイオンを加速する工程と、
    プラズマの空間分布を光学的に感知する工程であって、プラズマの空間分布は被処理体内に注入されたイオンのドーズ量分布を示す、ところの工程と、
    から成る方法。
  54. 請求項53に記載の方法であって、プラズマの空間分布を光学的に感知する工程は光学センサーのアレイによりプラズマを光学的に感知する工程から成る、ところの方法。
  55. 請求項54に記載の方法であって、さらに、感知したプラズマの空間分布を処理し、被処理体中に注入されたイオンのドーズ量分布を評価する工程を含む、ところの方法。
  56. 請求項53に記載の方法であって、プラテン上で被処理体を支持する工程は、プラテン上で半導体ウエハを支持する工程から成る、ところの方法。
  57. 請求項53に記載の方法であって、プラズマの空間分布を光学的に感知する工程は約20ナノメートルまたはそれ以上の幅を有する選択された波長範囲にわたってプラズマからの放射光を感知する工程から成る、ところの方法。
  58. 請求項57に記載の方法であって、選択された波長範囲にわたってプラズマからの放射光を感知する工程は約50から600ナノメートルの幅を有する選択された波長範囲にわたって放射光を感知する工程から成る、ところの方法。
  59. 請求項57に記載の方法であって、さらに、選択された波長範囲を、プラズマを生成するのに使用される処理ガスからの放射光と一致させる工程を含む方法。
  60. 請求項57に記載の方法であって、プラズマはBF3から生成され、選択された波長範囲は約350から400ナノメートルに集中している、ところの方法。
  61. 請求項57に記載の方法であって、さらに、選択された波長範囲にわたって感知した放射光を平均化する工程を含む、ところの方法。
  62. 請求項57に記載の方法であって、さらに、選択された波長範囲にわたって感知した放射光を積分する工程を含む、ところの方法。
  63. プラズマドーピング方法であって、
    プラズマドーピングチャンバ内においてプラテン上で被処理体を支持する工程と、
    プラズマを生成し、該プラズマから被処理体へイオンを加速する工程と、
    プラズマの空間分布を電気的に感知する工程であって、プラズマの空間分布は被処理体内に注入されたイオンのドーズ量分布を示す、ところの工程と、
    から成る方法。
  64. 請求項63に記載の方法であって、プラズマの空間分布を電気的に感知する工程は電気的センサーのアレイによりプラズマを電気的に感知する工程から成る、ところの方法。
  65. プラズマドーピング装置であって、
    プラズマドーピングチャンバと、
    被処理体を支持するための、前記プラズマドーピングチャンバ内に配置されたプラテンと、
    前記プラズマドーピングチャンバ内にあって、前記プラテンから離隔された陽極と、
    前記プラズマドーピングチャンバに結合された処理ガスソースであって、処理ガスのイオンを含むプラズマが前記陽極と前記プラテンとの間のプラズマ放電領域内で生成される、ところの処理ガスソースと、
    プラズマから被処理体へイオンを加速するために、前記プラテンと前記陽極との間にパルスを印加するためのパルスソースと、
    選択された波長範囲にわたってプラズマからの放射光を感知するための光学センサー及び選択された波長範囲にわたって感知した放射光を処理するために光学センサーに接続された処理回路から成るプラズマモニターと、
    から成る装置。
  66. 請求項65に記載のプラズマドーピング装置であって、選択された波長範囲は約20ナノメートルまたはそれ以上の幅を有する、ところの装置。
  67. 請求項65に記載のプラズマドーピング装置であって、選択された波長範囲は約50から600ナノメートルの幅を有する、ところの装置。
  68. 請求項65に記載のプラズマドーピング装置であって、選択された波長範囲は処理ガスからの放射光と一致する、ところの装置。
  69. 請求項65に記載のプラズマドーピング装置であって、処理ガスはBF3から成り、選択された波長範囲は約350から400ナノメートルに集中している、ところの装置。
  70. 請求項65に記載のプラズマドーピング装置であって、処理回路は選択された波長範囲にわたって感知した放射光を平均化する、ところの装置。
  71. 請求項65に記載のプラズマドーピング装置であって、処理回路は選択された波長範囲にわたって感知した放射光を積分する、ところの装置。
  72. プラズマドーピング方法であって、
    プラズマドーピングチャンバ内においてプラテン上で被処理体を支持する工程と、
    プラズマを生成し、該プラズマから被処理体へイオンを加速する工程と、
    選択された波長範囲にわたってプラズマからの放射光を感知する工程と、
    プラズマ状態を表す測定値を与えるよう選択された波長範囲にわたって感知した放射光を処理する工程と、
    から成る方法。
  73. 請求項72に記載の方法であって、感知した放射光を処理する工程は選択された波長範囲にわたって感知した放射光を平均化する工程から成る、ところの方法。
  74. 請求項72に記載の方法であって、感知した放射光を処理する工程は、選択された波長範囲にわたって感知した放射光を積分する工程から成る、ところの方法。
JP2004524733A 2002-07-26 2003-07-24 プラズマドーピング装置内のプラズマパラメータをモニターするための方法及び装置 Pending JP2005534187A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/205,961 US20040016402A1 (en) 2002-07-26 2002-07-26 Methods and apparatus for monitoring plasma parameters in plasma doping systems
PCT/US2003/023072 WO2004012220A2 (en) 2002-07-26 2003-07-24 Methods and apparatus for monitoring plasma parameters in plasma doping systems

Publications (2)

Publication Number Publication Date
JP2005534187A true JP2005534187A (ja) 2005-11-10
JP2005534187A5 JP2005534187A5 (ja) 2006-09-07

Family

ID=30770185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004524733A Pending JP2005534187A (ja) 2002-07-26 2003-07-24 プラズマドーピング装置内のプラズマパラメータをモニターするための方法及び装置

Country Status (5)

Country Link
US (1) US20040016402A1 (ja)
EP (1) EP1525601A2 (ja)
JP (1) JP2005534187A (ja)
TW (1) TW200403704A (ja)
WO (1) WO2004012220A2 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220501A (ja) * 2006-02-17 2007-08-30 Noritsu Koki Co Ltd プラズマ発生装置およびそれを用いるワーク処理装置
JP2008059839A (ja) * 2006-08-30 2008-03-13 Noritsu Koki Co Ltd プラズマ発生装置およびそれを用いるワーク処理装置
JP2008071520A (ja) * 2006-09-12 2008-03-27 Noritsu Koki Co Ltd プラズマ発生装置及びワーク処理装置
JP2010500702A (ja) * 2006-09-13 2010-01-07 ノーリツ鋼機株式会社 プラズマ発生装置およびこれを用いたワーク処理装置
US7921804B2 (en) 2008-12-08 2011-04-12 Amarante Technologies, Inc. Plasma generating nozzle having impedance control mechanism
JP2011517849A (ja) * 2008-03-14 2011-06-16 アプライド マテリアルズ インコーポレイテッド プラズマイオン注入中にドーパント濃度を測定するための方法
US7976672B2 (en) 2006-02-17 2011-07-12 Saian Corporation Plasma generation apparatus and work processing apparatus
US8035057B2 (en) 2004-07-07 2011-10-11 Amarante Technologies, Inc. Microwave plasma nozzle with enhanced plume stability and heating efficiency
WO2013047000A1 (ja) * 2011-09-30 2013-04-04 東京エレクトロン株式会社 マイクロ波放射機構、表面波プラズマ源および表面波プラズマ処理装置
JP5179511B2 (ja) * 2007-11-22 2013-04-10 パナソニック株式会社 半導体装置の製造方法
JP2014505553A (ja) * 2012-01-09 2014-03-06 ムー・メディカル・デバイスズ・エルエルシー プラズマ補助皮膚処置
JP2014508378A (ja) * 2011-01-04 2014-04-03 アドバンスト・エナジー・インダストリーズ・インコーポレイテッド プラズマ処理負荷へのシステムレベルの電力送達
US11651939B2 (en) 2017-07-07 2023-05-16 Advanced Energy Industries, Inc. Inter-period control system for plasma power delivery system and method of operating same
US11670487B1 (en) 2022-01-26 2023-06-06 Advanced Energy Industries, Inc. Bias supply control and data processing
US11842884B2 (en) 2017-11-17 2023-12-12 Advanced Energy Industries, Inc. Spatial monitoring and control of plasma processing environments
US11942309B2 (en) 2022-01-26 2024-03-26 Advanced Energy Industries, Inc. Bias supply with resonant switching
US11978613B2 (en) 2022-09-01 2024-05-07 Advanced Energy Industries, Inc. Transition control in a bias supply

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE215132T1 (de) * 1997-12-15 2002-04-15 Volkswagen Ag Plasmaborierung
US20030139043A1 (en) * 2001-12-11 2003-07-24 Steve Marcus Apparatus and method for monitoring a plasma etch process
US6902646B2 (en) * 2003-08-14 2005-06-07 Advanced Energy Industries, Inc. Sensor array for measuring plasma characteristics in plasma processing environments
KR100816312B1 (ko) * 2004-01-06 2008-03-24 가부시키가이샤 이디알 스타 이온 주입 방법 및 이온 주입 장치
US7396746B2 (en) * 2004-05-24 2008-07-08 Varian Semiconductor Equipment Associates, Inc. Methods for stable and repeatable ion implantation
US7878145B2 (en) * 2004-06-02 2011-02-01 Varian Semiconductor Equipment Associates, Inc. Monitoring plasma ion implantation systems for fault detection and process control
US20060052883A1 (en) * 2004-09-08 2006-03-09 Lee Sang H System and method for optimizing data acquisition of plasma using a feedback control module
US7687787B2 (en) * 2005-03-15 2010-03-30 Varian Semiconductor Equipment Associates, Inc. Profile adjustment in plasma ion implanter
WO2006099438A1 (en) * 2005-03-15 2006-09-21 Varian Semiconductor Equipment Associates, Inc. Profile adjustment in plasma ion implantation
US20060236931A1 (en) * 2005-04-25 2006-10-26 Varian Semiconductor Equipment Associates, Inc. Tilted Plasma Doping
US20070170867A1 (en) * 2006-01-24 2007-07-26 Varian Semiconductor Equipment Associates, Inc. Plasma Immersion Ion Source With Low Effective Antenna Voltage
TW200816881A (en) * 2006-08-30 2008-04-01 Noritsu Koki Co Ltd Plasma generation apparatus and workpiece processing apparatus using the same
US20080132046A1 (en) * 2006-12-04 2008-06-05 Varian Semiconductor Equipment Associates, Inc. Plasma Doping With Electronically Controllable Implant Angle
US20080169183A1 (en) * 2007-01-16 2008-07-17 Varian Semiconductor Equipment Associates, Inc. Plasma Source with Liner for Reducing Metal Contamination
US7820533B2 (en) * 2007-02-16 2010-10-26 Varian Semiconductor Equipment Associates, Inc. Multi-step plasma doping with improved dose control
US7592212B2 (en) * 2007-04-06 2009-09-22 Micron Technology, Inc. Methods for determining a dose of an impurity implanted in a semiconductor substrate
JP4719184B2 (ja) * 2007-06-01 2011-07-06 株式会社サイアン 大気圧プラズマ発生装置およびそれを用いるワーク処理装置
US20090008577A1 (en) * 2007-07-07 2009-01-08 Varian Semiconductor Equipment Associates, Inc. Conformal Doping Using High Neutral Density Plasma Implant
US8894804B2 (en) * 2007-12-13 2014-11-25 Lam Research Corporation Plasma unconfinement sensor and methods thereof
US20100074810A1 (en) * 2008-09-23 2010-03-25 Sang Hun Lee Plasma generating system having tunable plasma nozzle
US20100201272A1 (en) * 2009-02-09 2010-08-12 Sang Hun Lee Plasma generating system having nozzle with electrical biasing
US20100254853A1 (en) * 2009-04-06 2010-10-07 Sang Hun Lee Method of sterilization using plasma generated sterilant gas
TWI466158B (zh) * 2009-07-03 2014-12-21 Univ Lunghwa Sci & Technology 電漿測量裝置、電漿系統及測量電漿特性之方法
DE102013203996A1 (de) * 2013-03-08 2014-09-11 Von Ardenne Anlagentechnik Gmbh Vorrichtung und Verfahren zur Messung der Plasmastöchiometrie bei der Beschichtung eines Substrates
KR101700391B1 (ko) 2014-11-04 2017-02-13 삼성전자주식회사 펄스 플라즈마의 고속 광학적 진단 시스템
US10553411B2 (en) 2015-09-10 2020-02-04 Taiwan Semiconductor Manufacturing Co., Ltd. Ion collector for use in plasma systems
KR102364528B1 (ko) 2017-07-07 2022-02-17 어드밴스드 에너지 인더스트리즈 인코포레이티드 플라즈마 전력 전달 시스템을 위한 주기 간 제어 시스템 및 그 동작 방법
US11615943B2 (en) 2017-07-07 2023-03-28 Advanced Energy Industries, Inc. Inter-period control for passive power distribution of multiple electrode inductive plasma source
US20190256973A1 (en) * 2018-02-21 2019-08-22 Southwest Research Institute Method and Apparatus for Depositing Diamond-Like Carbon Coatings
US11114279B2 (en) 2019-06-28 2021-09-07 COMET Technologies USA, Inc. Arc suppression device for plasma processing equipment
US11527385B2 (en) 2021-04-29 2022-12-13 COMET Technologies USA, Inc. Systems and methods for calibrating capacitors of matching networks
US11596309B2 (en) 2019-07-09 2023-03-07 COMET Technologies USA, Inc. Hybrid matching network topology
US11887820B2 (en) 2020-01-10 2024-01-30 COMET Technologies USA, Inc. Sector shunts for plasma-based wafer processing systems
US11670488B2 (en) 2020-01-10 2023-06-06 COMET Technologies USA, Inc. Fast arc detecting match network
US11521832B2 (en) 2020-01-10 2022-12-06 COMET Technologies USA, Inc. Uniformity control for radio frequency plasma processing systems
US11830708B2 (en) * 2020-01-10 2023-11-28 COMET Technologies USA, Inc. Inductive broad-band sensors for electromagnetic waves
US11961711B2 (en) 2020-01-20 2024-04-16 COMET Technologies USA, Inc. Radio frequency match network and generator
US11605527B2 (en) 2020-01-20 2023-03-14 COMET Technologies USA, Inc. Pulsing control match network
US20220392785A1 (en) * 2021-06-07 2022-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Small gas flow monitoring of dry etcher by oes signal
US11923175B2 (en) 2021-07-28 2024-03-05 COMET Technologies USA, Inc. Systems and methods for variable gain tuning of matching networks
US11657980B1 (en) 2022-05-09 2023-05-23 COMET Technologies USA, Inc. Dielectric fluid variable capacitor
CN115144908A (zh) * 2022-07-04 2022-10-04 山东大学 一种高空间分辨阻滞势电位分析仪及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304622A (ja) * 1987-06-04 1988-12-12 Matsushita Electric Ind Co Ltd 不純物ド−ピング方法及びその装置
JPH02112229A (ja) * 1988-10-21 1990-04-24 Fuji Electric Co Ltd 不純物の導入方法
JP2000003880A (ja) * 1998-05-13 2000-01-07 Eaton Corp イオン注入処理の調整に使用する方法及びそのイオン注入装置
WO2000008670A2 (en) * 1998-08-03 2000-02-17 Varian Semiconductor Equipment Associates, Inc. Dose monitor for plasma-monitor ion implantation doping system
JP2000114198A (ja) * 1998-10-05 2000-04-21 Matsushita Electric Ind Co Ltd 表面処理方法および装置
JP2000323422A (ja) * 1999-05-14 2000-11-24 Canon Sales Co Inc プラズマドーピング装置及びプラズマドーピング方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807994A (en) * 1987-11-19 1989-02-28 Varian Associates, Inc. Method of mapping ion implant dose uniformity
US5728253A (en) * 1993-03-04 1998-03-17 Tokyo Electron Limited Method and devices for detecting the end point of plasma process
US5572038A (en) * 1993-05-07 1996-11-05 Varian Associates, Inc. Charge monitor for high potential pulse current dose measurement apparatus and method
US5354381A (en) * 1993-05-07 1994-10-11 Varian Associates, Inc. Plasma immersion ion implantation (PI3) apparatus
US5980767A (en) * 1994-02-25 1999-11-09 Tokyo Electron Limited Method and devices for detecting the end point of plasma process
US5451784A (en) * 1994-10-31 1995-09-19 Applied Materials, Inc. Composite diagnostic wafer for semiconductor wafer processing systems
US5711812A (en) * 1995-06-06 1998-01-27 Varian Associates, Inc. Apparatus for obtaining dose uniformity in plasma doping (PLAD) ion implantation processes
US5653811A (en) * 1995-07-19 1997-08-05 Chan; Chung System for the plasma treatment of large area substrates
US5658423A (en) * 1995-11-27 1997-08-19 International Business Machines Corporation Monitoring and controlling plasma processes via optical emission using principal component analysis
US6209480B1 (en) * 1996-07-10 2001-04-03 Mehrdad M. Moslehi Hermetically-sealed inductively-coupled plasma source structure and method of use
US5654043A (en) * 1996-10-10 1997-08-05 Eaton Corporation Pulsed plate plasma implantation system and method
US6101971A (en) * 1998-05-13 2000-08-15 Axcelis Technologies, Inc. Ion implantation control using charge collection, optical emission spectroscopy and mass analysis
US6034781A (en) * 1998-05-26 2000-03-07 Wisconsin Alumni Research Foundation Electro-optical plasma probe
US6300643B1 (en) * 1998-08-03 2001-10-09 Varian Semiconductor Equipment Associates, Inc. Dose monitor for plasma doping system
US6050218A (en) * 1998-09-28 2000-04-18 Eaton Corporation Dosimetry cup charge collection in plasma immersion ion implantation
JP4258789B2 (ja) * 1999-03-17 2009-04-30 東京エレクトロン株式会社 ガス処理方法
US6706541B1 (en) * 1999-10-20 2004-03-16 Advanced Micro Devices, Inc. Method and apparatus for controlling wafer uniformity using spatially resolved sensors
AU2001251216A1 (en) * 2000-03-30 2001-10-15 Tokyo Electron Limited Optical monitoring and control system and method for plasma reactors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304622A (ja) * 1987-06-04 1988-12-12 Matsushita Electric Ind Co Ltd 不純物ド−ピング方法及びその装置
JPH02112229A (ja) * 1988-10-21 1990-04-24 Fuji Electric Co Ltd 不純物の導入方法
JP2000003880A (ja) * 1998-05-13 2000-01-07 Eaton Corp イオン注入処理の調整に使用する方法及びそのイオン注入装置
WO2000008670A2 (en) * 1998-08-03 2000-02-17 Varian Semiconductor Equipment Associates, Inc. Dose monitor for plasma-monitor ion implantation doping system
JP2000114198A (ja) * 1998-10-05 2000-04-21 Matsushita Electric Ind Co Ltd 表面処理方法および装置
JP2000323422A (ja) * 1999-05-14 2000-11-24 Canon Sales Co Inc プラズマドーピング装置及びプラズマドーピング方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035057B2 (en) 2004-07-07 2011-10-11 Amarante Technologies, Inc. Microwave plasma nozzle with enhanced plume stability and heating efficiency
US7976672B2 (en) 2006-02-17 2011-07-12 Saian Corporation Plasma generation apparatus and work processing apparatus
JP2007220501A (ja) * 2006-02-17 2007-08-30 Noritsu Koki Co Ltd プラズマ発生装置およびそれを用いるワーク処理装置
JP2008059839A (ja) * 2006-08-30 2008-03-13 Noritsu Koki Co Ltd プラズマ発生装置およびそれを用いるワーク処理装置
JP4647566B2 (ja) * 2006-08-30 2011-03-09 株式会社サイアン プラズマ発生装置およびそれを用いるワーク処理装置
JP2008071520A (ja) * 2006-09-12 2008-03-27 Noritsu Koki Co Ltd プラズマ発生装置及びワーク処理装置
JP4597931B2 (ja) * 2006-09-12 2010-12-15 株式会社サイアン プラズマ発生装置及びワーク処理装置
JP4865034B2 (ja) * 2006-09-13 2012-02-01 株式会社サイアン プラズマ発生装置およびこれを用いたワーク処理装置
JP2010500702A (ja) * 2006-09-13 2010-01-07 ノーリツ鋼機株式会社 プラズマ発生装置およびこれを用いたワーク処理装置
US8128783B2 (en) 2006-09-13 2012-03-06 Amarante Technologies, Inc. Plasma generator and work processing apparatus provided with the same
JP5179511B2 (ja) * 2007-11-22 2013-04-10 パナソニック株式会社 半導体装置の製造方法
JP2012129530A (ja) * 2008-03-14 2012-07-05 Applied Materials Inc プラズマイオン注入中にドーパント濃度を測定するための方法
JP2011517849A (ja) * 2008-03-14 2011-06-16 アプライド マテリアルズ インコーポレイテッド プラズマイオン注入中にドーパント濃度を測定するための方法
US7921804B2 (en) 2008-12-08 2011-04-12 Amarante Technologies, Inc. Plasma generating nozzle having impedance control mechanism
JP2014508378A (ja) * 2011-01-04 2014-04-03 アドバンスト・エナジー・インダストリーズ・インコーポレイテッド プラズマ処理負荷へのシステムレベルの電力送達
US9478397B2 (en) 2011-01-04 2016-10-25 Advanced Energy Industries, Inc. System level power delivery to a plasma processing load
WO2013047000A1 (ja) * 2011-09-30 2013-04-04 東京エレクトロン株式会社 マイクロ波放射機構、表面波プラズマ源および表面波プラズマ処理装置
JP2014505553A (ja) * 2012-01-09 2014-03-06 ムー・メディカル・デバイスズ・エルエルシー プラズマ補助皮膚処置
US11651939B2 (en) 2017-07-07 2023-05-16 Advanced Energy Industries, Inc. Inter-period control system for plasma power delivery system and method of operating same
US11842884B2 (en) 2017-11-17 2023-12-12 Advanced Energy Industries, Inc. Spatial monitoring and control of plasma processing environments
US11670487B1 (en) 2022-01-26 2023-06-06 Advanced Energy Industries, Inc. Bias supply control and data processing
US11942309B2 (en) 2022-01-26 2024-03-26 Advanced Energy Industries, Inc. Bias supply with resonant switching
US11978613B2 (en) 2022-09-01 2024-05-07 Advanced Energy Industries, Inc. Transition control in a bias supply

Also Published As

Publication number Publication date
EP1525601A2 (en) 2005-04-27
US20040016402A1 (en) 2004-01-29
TW200403704A (en) 2004-03-01
WO2004012220A2 (en) 2004-02-05
WO2004012220A3 (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP2005534187A (ja) プラズマドーピング装置内のプラズマパラメータをモニターするための方法及び装置
KR101120350B1 (ko) 오류 검출 및 처리 제어를 위한 플라즈마 이온 주입모니터링 시스템
JP4803878B2 (ja) プラズマ浸漬イオン注入ドーピング装置用のドーズ量モニター
US6182604B1 (en) Hollow cathode for plasma doping system
JP5013563B2 (ja) プラズマドーピングシステムのためのドーズ量モニター
US6050218A (en) Dosimetry cup charge collection in plasma immersion ion implantation
KR100306526B1 (ko) 고전위펄스전류도우즈량측정방법및축적전하측정장치
JPH0628141B2 (ja) イオン注入のための注入量の測定及び均一性のモニタリング装置
JP2005294269A (ja) イオン打込み製品の制御電荷中和
JP2011517849A (ja) プラズマイオン注入中にドーパント濃度を測定するための方法
JP2008041651A (ja) 遅延電場を用いたイオンエネルギー分布分析器に基づいたイオン分析システム
US7675730B2 (en) Techniques for detecting wafer charging in a plasma processing system
US7309997B1 (en) Monitor system and method for semiconductor processes
KR101563634B1 (ko) 기판 처리 장치 및 방법
KR20050019932A (ko) 플라즈마 도핑 시스템에서 플라즈마 매개 변수를모니터링하기 위한 장치 및 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100407