JP2005528788A - 信頼性が改善された強誘電体メモリ集積回路 - Google Patents

信頼性が改善された強誘電体メモリ集積回路 Download PDF

Info

Publication number
JP2005528788A
JP2005528788A JP2004509953A JP2004509953A JP2005528788A JP 2005528788 A JP2005528788 A JP 2005528788A JP 2004509953 A JP2004509953 A JP 2004509953A JP 2004509953 A JP2004509953 A JP 2004509953A JP 2005528788 A JP2005528788 A JP 2005528788A
Authority
JP
Japan
Prior art keywords
capacitor
diffusion region
transistor
electrode
shared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004509953A
Other languages
English (en)
Inventor
ヤコブ,ミヒャエル
ヴェルハウゼン,ウーヴェ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of JP2005528788A publication Critical patent/JP2005528788A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/40Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

連鎖構造として配設されたメモリセルを有するICについて開示する。上端キャパシタ電極と活性領域との上端部局所配線に、帯(strap)が用いられている。この帯を用いることにより、追加の金属層を必要とせずに製造コストを低減させることができる。さらに、帯をキャパシタの各層から絶縁するために、側壁スペーサーが用いられている。このスペーサーを用いることにより、帯のセルフアラインが可能となる。

Description

発明の詳細な説明
〔発明の分野〕
本発明は、メモリ集積回路(IC)に関するものであり、より具体的には、直列構造を有するメモリIC(例えば強誘電体メモリIC)に関するものである。
〔発明の背景〕
強誘電体半導体メモリ装置に用いるために、ジルコン酸チタン酸鉛(PZT)などの強誘電性の金属酸化物セラミック材料が研究されてきた。また、タンタル酸ストロンチウムビスマス(SBT)などの他の強誘電性材料も用いることができる。図1は、トランジスタ130と強誘電体キャパシタ140とを備えた従来の強誘電体メモリセル105を示している。キャパシタ電極142はプレート線170に接続されており、もう一方のキャパシタ電極141はトランジスタに接続されている。このトランジスタは、そのゲートに接続されたワード線150の状態(活性か、非活性か)に応じて、キャパシタとビット線160との接続および切断を切り替えている。
強誘電体メモリは、キャパシタに情報を残留分極として格納する。メモリセルに格納された論理値は、強誘電体キャパシタの分極に応じて変化する。キャパシタの分極を反転させるためには、スイッチング電圧(抗電圧(coercive voltage))よりも大きな電圧をキャパシタの電極間に印加する必要がある。強誘電体キャパシタは、電源を切った後でもキャパシタの分極状態を保持するので、不揮発性メモリセルとすることができるという利点がある。
図2は、連鎖202中に形成された複数の強誘電体メモリセルを示している。このようなメモリ構造は、例えば、「1997 Symposium on VLSI Circuits Digest of Technical Papers、83ページ〜、Takashima他)」や、「IEEE J. Solid-State Circuits(1998年5月、第33巻、787〜792ページ、Takashima他)」などに記載されており、ここではこれらの文献を援用する。連鎖中の各メモリセル205はキャパシタ240と並列に接続されたトランジスタ230を備えており、これらのメモリセルは直列に接続されている。また、セルトランジスタのゲートは、例えば、ワード線として機能するゲート導体か、あるいはワード線に接続されたゲート導体となっている。連鎖の一端部213はビット線に接続されており、他端部214はプレート線に接続されている。そして、ワード線によって、複数の連鎖が相互に接続されたりアドレス指定されたりすることにより、メモリブロックまたはメモリアレイが形成される。
図3は、従来のメモリ連鎖302の断面図を示している。図に示すように、複数のメモリセルのトランジスタ330が基板310上に形成されており、隣接するセルトランジスタ同士が共有の拡散領域を有している。また、メモリ連鎖におけるキャパシタ340は対をなしている。下端電極341は、隣接するキャパシタ間で共有の電極となっている。あるキャパシタ対のキャパシタの上端電極342は、これと隣接するキャパシタ対の上端電極に接続されており、デイジーチェーン(daisy chain)が形成されている。これらの上端キャパシタ電極は、活性領域上端電極(active area top electrode,AATE)プラグ386を介して、セルトランジスタに接続されている。
従来、隣接するキャパシタ対の上端電極の接続は、プラグ348および導電線362によりなされている。それゆえ、連鎖構造に用いるには、接触プラグおよび金属線の形成を含むさらなる金属処理工程が必要となる。この処理工程の必要性により、実質処理時間だけでなく製造コストもかかってしまう。その上、接触部の形成には、さらなるエッチングダメージを生ずる追加のパターン形成工程や追加のエッチング工程が必要となる。
図4は、メモリ連鎖における隣り合う2つのキャパシタ対309の平面図を示している。キャパシタ対とキャパシタ対との間には、上部キャパシタ電極プラグ386が配置されている。このような上部キャパシタ電極プラグを使用するためには、ICの主要寸法または基本寸法(ground rule)をFとした場合、キャパシタ対とキャパシタ対との間に、3Fの隙間を必要とする。プラグを隣接するキャパシタ対の下端電極から隔てるために、プラグのそれぞれの側部に1Fを必要とし、また、プラグそのものに1Fを必要とするのである。このような隙間を必要とすることにより、セル寸法が増加するという不都合が生じてしまう。
上記課題に鑑みれば、さらなる金属処理工程を必要とせずにセル寸法を縮小させた連鎖構造を提供することが望ましい。
〔発明の概要〕
本発明は、連鎖構造を有するメモリブロックまたはメモリアレイを有するICに関するものであり、より具体的には、連鎖構造における金属層の低減に関するものである。この連鎖構造におけるメモリセルトランジスタは、隣接するトランジスタと拡散領域を共有している。また、セルキャパシタは対になっており、キャパシタ対内において下端電極が共有されている。隣接するキャパシタ対間において隣接している複数のキャパシタの上端電極は、セルトランジスタの共有の拡散領域(例えば、活性領域または(AA))に接続されている。連鎖の端部に位置するメモリセルのために、上端電極は、これらメモリセルの各セルトランジスタの拡散領域に接続されている。また、下端電極は、セルトランジスタの上述とは別の拡散領域に接続されている。
本発明では、キャパシタの上端電極をAAに接続するために、導電性の帯(strap)が用いられている。また、キャパシタの側壁にはスペーサーが備えられ、キャパシタの各層と帯とが絶縁されている。これらのスペーサーによって、帯のセルフアライン(自己整合,self-aligned)が可能となる。また、スペーサーは、強誘電性材料をカプセル化する役割も果たしている。一実施形態において、スペーサー材料には酸化アルミニウムが含まれている。
また、他の実施形態では、上端電極をAAに接続する接触部が、下端電極をAAに接続する接触部よりも低い位置にある。これにより、上端電極の接触部に対する下端電極の位置合せを、重要でないものにすることができる。電極とAAとの局所配線に帯を用いることにより、他の金属層を用いる必要がなくなり、製造コストを低減できる。
〔図面の簡単な説明〕
図1は、従来の強誘電体メモリセルを示している。図2は、従来のメモリ連鎖を示している。図3は、従来のメモリ連鎖の断面図である。図4は、従来のメモリ連鎖の一部を示す平面図である。図5は、本発明の一実施形態に係るメモリ連鎖の断面図である。図6〜図10は、本発明の一実施形態に係るメモリ連鎖の形成過程を示している。図11は、本発明の一実施形態に係るメモリ連鎖の一部における平面図である。
〔発明の詳細な説明〕
本発明は、概して連鎖メモリ構造に関するものである。また、本発明は、一実施形態において、連鎖構造を実現する強誘電体メモリセルに関するものである。また、本発明は、連鎖構造に配置された他の種類のメモリセルにも適用できる。図5は、本発明の一実施形態に係るメモリ連鎖402の断面図を示している。このメモリ連鎖は、基板410に沿って形成された複数のメモリセル4051〜405xを備えており、各メモリセルは、キャパシタと並列に接続されているセルトランジスタ430を備えている。そして、連鎖内の複数のセルは直列に接続されている。ここでは例として、上記メモリ連鎖が8つのメモリセル(すなわち、x=8)を備えているものとするが、これとは異なる数のメモリセルが1つのメモリ連鎖に備えられていてもよい。1つの連鎖におけるセル数は、2yであることが好ましい。ただし、yは1以上の整数とする。
トランジスタは、一例としてn‐FETであるとするが、p‐FET、p‐FETとn‐FETとの組み合わせ、または他の種類のトランジスタを用いてもよい。一実施形態において、トランジスタ430は、隣接するトランジスタとの間で共有の拡散領域を有している。また、連鎖の一端部には、連鎖とビット線との接続および切断を切り替える選択トランジスタ(図示せず)が備えられていてもよく、この選択トランジスタは、連鎖内の第1セルトランジスタとの間で共有の拡散領域を有してもよい。
これらのトランジスタの上には、セルキャパシタが備えられている。一実施形態において、これらのキャパシタは強誘電体キャパシタである。なお、強誘電体キャパシタの代わりに、非強誘電体メモリキャパシタなどの他の種類のキャパシタを備えていてもよい。この強誘電体キャパシタは、ジルコン酸チタン酸鉛(PZT)などの強誘電層を備えている。また、タンタル酸ストロンチウムビスマス(SBT)などの他の強誘電性材料を用いてもよい。また、多層化した強誘電性構造を用いてもよい。上記強誘電層は、例えばプラチナといった貴金属などで形成された第1電極と第2電極との間に配置されている。上記電極としては、酸化ストロンチウムルテニウム(SRO)または酸化イリジウム(IrO)などの他の種類の導体を用いてもよい。また、Ti、TiN、Irなどの追加材料を含んでいる多層化された電極構造を用いてもよい。なお、上記第1電極と第2電極とは、同じ材料で形成されていなくてもよい。
トランジスタとキャパシタとを隔てるために、中間誘電体(ILD)層426が備えられている。ILDには、一例として酸化シリコンが含まれている。上記ILDの形成には、窒化シリコンなどの他の種類の誘電性材料を用いてもよい。
また、酸素などがプラグへ拡散するのを防止または抑制するように、プラグと下端電極との間に障壁層を備えてもよい。この障壁層は、一実施形態としてイリジウムを含んでいるものとするが、他の種類の障壁層でもよい。障壁層の利用は、プラグの酸化が懸念される強誘電体または高比誘電率(high k)誘電体などを用いる場合において特に有用である。また、障壁層の接着を強化するために、障壁層とILDとの間に接着層を備えてもよい。この接着層は、例えばチタンを含むものであってもよいし、ILDと障壁層との接着を強化する他の種類の材料を用いてもよい。
一実施形態において、隣接する2つのキャパシタ440は、共有の電極を有することによりキャパシタ対409となっている。これらのキャパシタは、共有の下端電極を有していることが好ましい。ILDには活性領域下端電極(active area bottom electrode,AABE)プラグ485が備えられており、キャパシタの下端電極がトランジスタの拡散領域の何れかに接続されている。
また、AABEプラグは、キャパシタ対の下端電極とトランジスタの共有の拡散領域の何れかとを接続していることが好ましい。これらのプラグは、例えばタングステン(W)を含んでいてもよいし、ドープされたポリSiなどの他の種類の導体材料でもよい。ポリSiプラグを用いる場合は、プラグとキャパシタとの間に、コバルトまたはチタンなどの金属ケイ化物を備えてもよい。
本発明の一実施形態によれば、隣接するキャパシタ対間において隣接している2つのキャパシタの上端電極は、導電性の帯(おび)490によって接続されており、帯はAATEプラグ486を介してトランジスタの上述とは別の拡散領域に接続されている。また、帯は、異なるキャパシタ対間において隣接している2つのキャパシタの上端電極を、AATEプラグを介して2つのトランジスタの上述とは別の共有の拡散領域に接続することが好ましい。
一実施形態では、AATEとAABEとを別々の処理工程によって形成し、AATEプラグの上面をAABEプラグの上面よりも下に形成する。これにより、下端電極441とプラグとの位置合せが重要ではなくなるため、プロセス窓(process window)を拡大することができる。さらに、異なるプラグを別々に最適化してもよい。あるいは、AATEプラグとAABEプラグとを同じ処理工程において形成してもよい。
帯は上端キャパシタ電極と接触しているが、通常、所望の電気特性を得るために、電極と充分に接触している必要がある。一例では、この帯が上端電極の表面領域のほぼ半分と接触している。一実施形態において、帯はポリSiを含んでいる。また、帯の形成には、多層化された導電構造体だけでなく、アルミニウム、窒化チタン、チタン、またはタングステンなどの他の種類の導電性材料を用いてもよい。
一実施形態において、キャパシタの側壁には、キャパシタの側部を導電性の帯から電気的に絶縁するように、スペーサー478が備えられており、電極の短絡を防止している。これらのスペーサーは、酸化アルミニウム(Al23)などの誘電性材料を含んでいる。また、上記スペーサーとして、酸化チタン、窒化シリコン、酸化シリコン、または多層化された誘電性構造などの他の種類の誘電性材料を用いてもよい。一実施形態において、これらのスペーサーは強誘電性材料のためのカプセル化層の役割も果たしており、強誘電性材料を水素または水などの汚染から保護している。また、カプセル化層493は、キャパシタおよび帯の上に備えられていてもよい。これにより、強誘電性材料の特性を劣化させる水素などからメモリ連鎖を保護することができる。
メモリ連鎖の一端部がビット線に接続されている一方で、他端部はプレート線に接続されている。そして、セルトランジスタのゲートは、例えば、ワード線として機能するか、あるいはワード線に接続されている。ビット線およびプレート線は第1金属レベル上に形成することができる一方で、ワード線は第2金属レベル上に形成する。また、他の種類の配線案を用いてもよい。
図6〜図10は、本発明の一実施形態に係るメモリ連鎖の形成過程を示している。図6に示すように、半導体基板510が備えられている。この基板には、メモリ連鎖におけるセルトランジスタが備えられている。上記基板上には、IC用の他の構成部品(図示せず)を備えてもよい。一実施形態において、セルトランジスタは、隣接するセルトランジスタとの間で共有の拡散領域を有している。このセルトランジスタは、例えばn‐FETであるが、P‐FET、n‐FETとp‐FETとの組み合わせ、あるいは他の種類のトランジスタを用いてもよい。
基板の上には、ILD層525が備えられている。このILDには、酸化シリコンなどが含まれている。また、ILDとして、窒化シリコン、ドープしたケイ酸塩ガラス、ドープしていないケイ酸塩ガラス、あるいはスピンオングラス(塗布ガラス)などの他の種類の誘電性材料を用いてもよく、多層化されたILD構造であってもよい。上記ILDの形成には、化学気相成長法(CVD)などの各種技術を用いることができる。
誘電体の中には、プラグ585・586が形成されており、セルトランジスタの拡散領域と接続されている。一実施形態において、プラグ585(AABE)が下端キャパシタ電極をトランジスタと接続し、一方、プラグ586(AATE)が上端キャパシタ電極をトランジスタと接続している。これらのプラグには、例えば、ポリSiなどの導電性材料が含まれており、タングステンなどの他の種類の導電性材料を用いてもよい。
これらのプラグの形成には、従来の技術を用いる。例えば、ILD層の上にレジスト層を堆積させ、内部にプラグを形成するバイアと同じ大きさの開口部が形成されるように、レジスト層をパターン形成する。続いて、反応性イオンエッチング(RIE)などの異方性エッチングを行う。このRIEによって、レジストマスクから露出したILD層の一部が除去されて、バイアが形成される。次に、導電性材料を基板に堆積させることにより、バイアを充填する。そして、化学機械研磨(CMP)などによって、ILD上の余分な導電性材料を除去する。このCMPにより、プラグとILDとが平坦な面を形成する。
バイアを充填するに先立って、バイア壁を整列させる(line)ために、チタンなどの下地膜を基板に堆積させてもよい。また、この下地膜を、接触抵抗が低減するように基板材料のケイ化物化(silicidation)のために用いてもよい。さらに、バイア壁を整列させるために、窒化チタンなどの障壁を備えてもよい。この障壁層は、基板とプラグ材料との反応を抑制するものである。下地膜および/または障壁層が導電性であるか否かに応じて、拡散領域を露出させるべくバイアの下端部を除去してもよい。
一実施形態として、AATEプラグとAABEプラグとを別々に形成する。そして、AATEプラグ586の高さをAABEプラグ585よりも低くする。例えば、第1誘電層を堆積させ、続いてAATEプラグを形成する。その後、第2誘電層を堆積させて、AABEプラグを形成する。このようにプラグを別々に形成することは、プラグの電気特性(例えば抵抗)が上端電極と下端電極とで異なっていなければならない場合に特に有益である。さらに、プラグとキャパシタ下端電極との位置合せは重要でないため、AABEプラグより低いAATEプラグを有することによってプロセス窓が増加する。
他の実施形態では、2つの処理工程を用いて、トランジスタを上端電極に接続するためのものであるAATEプラグ586を形成する。AATEプラグ586の消費電力は、例えば、周辺装置(例えば抵抗器)用のプラグと同じかそれに近い消費電力であるため、周辺装置用のプラグを形成するときにAATEプラグの下部を形成する。あるいは、単一の処理工程にてプラグ586を形成してもよい。
図7に示すように、基板には各種キャパシタ層が堆積されている。これらのキャパシタ層は、一実施形態として強誘電性キャパシタを形成するための層を含んでいる。この強誘電性のキャパシタを形成するためには、第1電極641、強誘電層646、および第2電極646を、順次基板に堆積させていく。一実施形態において、電極材料はプラチナなどの貴金属を含んでおり、強誘電性材料はジルコン酸チタン酸塩(PZT)を含んでいる。また、他の導電性材料および他の強誘電性材料を用いてもよい。強誘電層の形成には、例えば、タンタル酸ストロンチウムビスマス(SBT)を用いてもよいし、電極の形成には、SROまたはIrOなどの他の導電性酸化物を用いてもよい。また、第1電極と第2電極とを異なる導電性材料で形成してもよい。変形例では、ダイナミックランダムアクセスメモリ(DRAM)キャパシタなどの非強誘電性キャパシタを形成するために、異なるキャパシタ層を用いる。例えば、従来のDRAM電極および誘電層の利用が挙げられる。上記各種キャパシタ層の形成には、CVD、MOCVD、PVD、およびスピンオン(spin-on)などの各種技術を用いることができる。
一実施形態では、第1電極を形成する前に障壁層を形成する。この障壁層は、イリジウムなどを含んでいる。上記障壁層には、酸素の拡散を抑制できる、窒化チタンなどの他の材料を用いてもよい。また、障壁層とILDとの接着を強化するために、障壁層の直下に接着層を備えてもよい。一実施形態において、この接着層にはチタンが含まれている。あるいは、チタンの代わりに、接着を強化する他の材料を用いてもよい。障壁層および接着層の形成にはPVDおよびCVDなどの各種技術を用いることができる。
プラグがポリSiを含んでいる場合、金属ケイ化物層をキャパシタ層よりも先にILD上に形成する。上記金属ケイ化物には、一例としてチタンまたはコバルトが含まれるが、他の金属ケイ化物を用いてもよい。この金属ケイ化物の形成は、例えば従来の技術によって行う。
図8に示すように、誘電層および上端電極層を選択的にパターン形成することにより、キャパシタの上部が形成されている。層のパターン形成には、従来のマスク技術およびエッチング技術を用いることができ、一例として、上端キャパシタ層に硬質マスクを堆積させることが挙げられる。一実施形態として硬質マスクはSiO2を含んでいるが、他の硬質マスク材料を用いてもよい。硬質マスク層の上には、フォトレジスト層を堆積させる。上記フォトレジストの直下には、反射防止(ARC)膜を形成してもよい。フォトレジスト層をパターン形成し、キャパシタ領域に相当する部分の硬質マスク層を保護するようにレジストブロックを残す。そして、硬質マスク層の露出部をRIEなどの異方性エッチングを用いて除去することにより上端キャパシタ層を露出させる。硬質マスクがパターン形成されたらレジストを除去する。次に、RIEを行うことにより、上端電極と、硬質マスクによって保護されていない部分の誘電層とを除去し、キャパシタ上部を形成する。
図9に示すように、キャパシタ層の下の層(例えば、ケイ化物層、接着層、および/または、障壁層)と共に下端電極をパターン形成することにより、キャパシタ下部を形成する。下端電極の形成は、硬質マスクなどを用いて行う。一実施形態において、下端電極は隣接する2つのキャパシタにおける共有の電極の役割を果たしている。キャパシタ下部を形成する処理工程により、AATEプラグの上面が露出する。AATEプラグの上面を確実に露出させるには、誘電層のオーバーエッチングを行う。
また、基板の表面に沿ってスペーサー層877を堆積させることにより、キャパシタおよびプラグ586を被覆する。一実施形態として、スペーサー層には酸化アルミニウムなどの誘電性材料が含まれている。また、スペーサー層はカプセル化層としても機能し、強誘電性材料を水素などから保護している。スペーサー層には、酸化チタン、窒化シリコン、または他の種類の窒化物などの他の誘電性材料を用いることもできる。あるいは、SiO2および/または窒化物を含む多層化された誘電体積層物でスペーサー層を形成してもよい。スペーサー層は、スパッタまたはPVDなどによって堆積させる。あるいはスペーサー層の形成に、CVDまたはALDなどの他の堆積技術を用いてもよい。
図10に示すように、異方性エッチングを行う。この腐食液には、RIEなどを含んでいる。RIEを用いてスペーサー層の水平部分を除去することにより、キャパシタおよびプラグ586の表面が露出するのに対して、スペーサー978によって保護されているキャパシタの側壁はそのままとなる。
一実施形態として、基板の上にエッチストップ層を堆積させる。エッチストップ層には、例えば、窒化チタンなどの導電性の層が含まれている。エッチストップ層を備えることにより、後のエッチングによる上端電極に対するダメージを減少させることができる。エッチストップ層には、酸化シリコンなどの非導電性の層を用いてもよい。非導電性の層を用いる場合には、上端電極部分と接触部586とが露出するようにパターン形成工程を行う。
次に、基板の上に導電層991を形成し、キャパシタを被覆するとともに隣接する2つのキャパシタ対に挟まれた領域を十分に充填する。一実施形態において、上記導電性材料はドープされたポリSiを含んでいる。また、例えば、窒化チタン、チタン、アルミニウム、タングステン、銅、プラチナの何れか、あるいはそれらの合金または化合物などの他の種類の導電性材料を用いてもよい。導電性材料の形成には、PVDまたはCVDなどの各種技術を用いることができる。
次に、導電層のパターン形成により帯を形成する。この帯は、隣接するキャパシタ対間で隣接している2つのキャパシタ上端電極をプラグ586に接続するものである。一実施形態において、これらの帯は、従来のマスキング技術およびエッチング技術を用いて形成する。これらの帯は、所望の電気特性が得られるように上端電極と十分に接触させる。一実施形態において、これらの帯を上端電極の表面のほぼ半分と接触させる。
側壁スペーサーは、キャパシタの各層を絶縁し、電極の短絡を防止している。キャパシタの上には、カプセル化層を堆積させてもよい。このカプセル化層は、例えば、水素が強誘電性材料を劣化させるのを低減または防止している。一実施形態において、カプセル化層には窒化シリコンまたは酸化アルミニウムが含まれている。カプセル化層としては、水素から強誘電性材料を保護する他の種類のカプセル化層を用いてもよい。上記カプセル化層は、PVDまたはCVDなどの従来の技術を用いて形成することができる。スペーサー層および帯を用いることにより、金属処理工程を要することなく、上端電極とトランジスタとの接続に必要なセルフアライン処理が可能となる。
図11は、本発明の一実施形態に係るメモリセルの見取り図を示している。図に示すように、隣接する2つのキャパシタ対909が備えられている。キャパシタ対とキャパシタ対との間には、AATEプラグ986が配置されている。帯は、異なるキャパシタ対間において隣接するキャパシタ上端電極をAATEプラグと接続している。この帯とキャパシタ電極とを絶縁するために側壁スペーサーが用いられている。本発明では、これによりキャパシタ対とキャパシタ対との間の隙間を1Fとすることができる。これにより、セル寸法の縮小および製造コストの削減が可能になる。
本発明を様々な実施形態に基づいて具体的に示し、説明してきたが、本発明の精神と範囲とに反することなく本発明に修正や変更を加えてもよいことは当業者にとって自明である。したがって、本発明の範囲は上記の記載に基づいて決定されるものではなく、添付の請求項に示した範囲に基づいて決定されるべきである。
従来の強誘電体メモリセルを示す図である。 従来のメモリ連鎖を示す図である。 従来のメモリ連鎖を示す断面図である。 従来のメモリ連鎖の一部を示す俯瞰図である。 本発明の一実施形態に関するメモリ連鎖を示す断面図である。 本発明の一実施形態に関するメモリ連鎖の形成過程を示す図である。 本発明の一実施形態に関するメモリ連鎖の形成過程を示す図である。 本発明の一実施形態に関するメモリ連鎖の形成過程を示す図である。 本発明の一実施形態に関するメモリ連鎖の形成過程を示す図である。 本発明の一実施形態に関するメモリ連鎖の形成過程を示す図である。 本発明の一実施形態に関するメモリ連鎖の一部を示す平面図である。

Claims (21)

  1. 第1および第2拡散領域を有する第1トランジスタ、および、上端電極と下端電極との間に誘電層を有する第1キャパシタを備えた、第1メモリセルと、
    第1および第2拡散領域を有する第2トランジスタ、および、上端電極と下端電極との間に誘電層を有する第2キャパシタを備えた、第2メモリセルとを具備し、
    上記第1トランジスタの第2拡散領域と上記第2トランジスタの第2拡散領域とが、共有の拡散領域を形成し、
    上記第1および第2キャパシタの上端電極を、上記共有の拡散領域に接続された第1接触部と接続し、キャパシタの側壁に位置するスペーサーによってキャパシタから絶縁されている、帯をさらに具備する、集積回路(IC)。
  2. 上記誘電層が強誘電層である、請求項1に記載のIC。
  3. 上記第1キャパシタの下端電極が、第3メモリセルの第3キャパシタと共有の電極であり、
    第2キャパシタの下端電極が、第4メモリセルの第4キャパシタと共有の電極である、請求項1に記載のIC。
  4. 上記第3トランジスタが第1および第2拡散領域を備え、第3トランジスタの第1拡散領域と第1トランジスタの第1拡散領域とが共有され、
    上記第4トランジスタが第1および第2拡散領域を備え、第4トランジスタの第1拡散領域が第2拡散領域の第1拡散領域と共有の拡散領域である、請求項3に記載のIC。
  5. 上記第1キャパシタの下端電極が、第3メモリセルの第3キャパシタと共有の電極であり、
    上記第2キャパシタの下端電極が、第4メモリセルの第4キャパシタと共有の電極である、請求項2に記載のIC。
  6. 上記第3トランジスタが第1および第2拡散領域を備え、第3トランジスタの第1拡散領域と第1トランジスタの第1拡散領域とが共有され、
    上記第4トランジスタが第1および第2拡散領域を備え、第4トランジスタの第1拡散領域が第2拡散領域の第1拡散領域と共有の拡散領域である、請求項5に記載のIC。
  7. 上記第1および第2キャパシタの下端電極が、第2接触部を介して、上記第1および第2トランジスタのそれぞれの第1拡散領域に接続されている、請求項1に記載のIC。
  8. 上記第1接触部が、第2接触部よりも低い位置にある、請求項7に記載のIC。
  9. 上記第1キャパシタの下端電極が、第3メモリセルの第3キャパシタと共有の電極であり、
    上記第2キャパシタの下端電極が、第4メモリセルの第4キャパシタと共有の電極である、請求項7に記載のIC。
  10. 上記第3トランジスタが第1および第2拡散領域を備え、第3トランジスタの第1拡散領域と第1トランジスタの第1拡散領域とが共有され、
    上記第4トランジスタが第1および第2拡散領域を備え、第4トランジスタの第1拡散領域が第2拡散領域の第1拡散領域と共有の拡散領域である、請求項9に記載のIC。
  11. 上記第1キャパシタの下端電極が、第3メモリセルの第3キャパシタと共有の電極であり、
    上記第2キャパシタの下端電極が、第4メモリセルの第4キャパシタと共有の電極である、請求項8に記載のIC。
  12. 上記第3トランジスタが第1および第2拡散領域を備え、第3トランジスタの第1拡散領域と第1トランジスタの第1拡散領域とが共有され、
    上記第4トランジスタが第1および第2拡散領域を備え、第4トランジスタの第1拡散領域が第2拡散領域の第1拡散領域と共有の拡散領域である、請求項11に記載のIC。
  13. 上記スペーサーが誘電性材料を含んでいる、請求項1に記載のIC。
  14. 上記誘電性材料が水素の拡散を抑制する、請求項13に記載のIC。
  15. 上記スペーサーが酸化アルミニウムを含んでいる、請求項13に記載のIC。
  16. 上記導電性の帯が、ポリシリコン、アルミニウム、チタン、窒化チタン、タングステン、プラチナ、および銅を含む群から選択された何れかの材料、またはそれらの合金、さらにまたはそれらの化合物を含んでいる、請求項13に記載のIC。
  17. 上記導電性の帯が、複数の導電性材料の積層物を備えている、請求項16に記載のIC。
  18. 上記導電性の帯が、ポリシリコン、アルミニウム、チタン、窒化チタン、タングステン、プラチナ、および銅を含む群から選択された何れかの材料、またはそれらの合金、さらにまたはそれらの化合物を含んでいる、請求項14に記載のIC。
  19. 上記導電性の帯が、複数の導電性材料の積層物を備えている、請求項14に記載のIC。
  20. 上記導電性の帯が、ポリシリコン、アルミニウム、チタン、窒化チタン、タングステン、プラチナ、および銅を含む群から選択された何れかの材料、またはそれらの合金、さらにまたはそれらの化合物を含んでいる、請求項15に記載のIC。
  21. 上記導電性の帯が、複数の導電性材料の積層物を備えている、請求項15に記載のIC。
JP2004509953A 2002-06-04 2003-06-04 信頼性が改善された強誘電体メモリ集積回路 Pending JP2005528788A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/161,908 US6858890B2 (en) 2002-06-04 2002-06-04 Ferroelectric memory integrated circuit with improved reliability
PCT/EP2003/005858 WO2003102957A1 (en) 2002-06-04 2003-06-04 Ferroelectric memory integrated circuit with improved reliabilityand density

Publications (1)

Publication Number Publication Date
JP2005528788A true JP2005528788A (ja) 2005-09-22

Family

ID=29583508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004509953A Pending JP2005528788A (ja) 2002-06-04 2003-06-04 信頼性が改善された強誘電体メモリ集積回路

Country Status (8)

Country Link
US (1) US6858890B2 (ja)
EP (1) EP1509923B1 (ja)
JP (1) JP2005528788A (ja)
KR (1) KR100644999B1 (ja)
CN (1) CN100562941C (ja)
DE (1) DE60315290T2 (ja)
TW (1) TWI244754B (ja)
WO (1) WO2003102957A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476945B2 (en) * 2004-03-17 2009-01-13 Sanyo Electric Co., Ltd. Memory having reduced memory cell size
DE102005042071B4 (de) * 2005-08-31 2007-11-08 Infineon Technologies Ag Verfahren zum Herstellen einer Halbleiterstruktur
JP4301227B2 (ja) * 2005-09-15 2009-07-22 セイコーエプソン株式会社 電気光学装置及びその製造方法、電子機器並びにコンデンサー
US8130527B2 (en) 2008-09-11 2012-03-06 Micron Technology, Inc. Stacked device identification assignment
DE102010024206B4 (de) * 2009-07-08 2015-08-20 Sumitomo Wiring Systems, Ltd. Verbinder und Steckverbindung mit Verbinder
CN102136465B (zh) * 2010-01-27 2013-04-10 中芯国际集成电路制造(上海)有限公司 微电容mos变容管和变容二极管的开路去嵌测试结构
US9768181B2 (en) * 2014-04-28 2017-09-19 Micron Technology, Inc. Ferroelectric memory and methods of forming the same
US10038092B1 (en) * 2017-05-24 2018-07-31 Sandisk Technologies Llc Three-level ferroelectric memory cell using band alignment engineering
US10748986B2 (en) * 2017-11-21 2020-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and formation method of semiconductor device with capacitors
US10818666B2 (en) 2019-03-04 2020-10-27 Micron Technology, Inc. Gate noble metal nanoparticles
US11296147B2 (en) * 2019-05-16 2022-04-05 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing memory device having spacer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0513894B1 (en) * 1991-05-08 1996-08-28 Koninklijke Philips Electronics N.V. Method of manufacturing a semiconductor device comprising a capacitor with a ferroelectric dielectric, and semiconductor device comprising such a capacitor
US5384287A (en) * 1991-12-13 1995-01-24 Nec Corporation Method of forming a semiconductor device having self-aligned contact holes
US5330931A (en) * 1993-09-22 1994-07-19 Northern Telecom Limited Method of making a capacitor for an integrated circuit
US5902131A (en) 1997-05-09 1999-05-11 Ramtron International Corporation Dual-level metalization method for integrated circuit ferroelectric devices
KR100247934B1 (ko) * 1997-10-07 2000-03-15 윤종용 강유전체 램 장치 및 그 제조방법
JP2000031398A (ja) * 1998-07-15 2000-01-28 Toshiba Corp 半導体装置及びその製造方法
JP2000150810A (ja) * 1998-11-17 2000-05-30 Toshiba Microelectronics Corp 半導体装置及びその製造方法
US6242299B1 (en) * 1999-04-01 2001-06-05 Ramtron International Corporation Barrier layer to protect a ferroelectric capacitor after contact has been made to the capacitor electrode

Also Published As

Publication number Publication date
TWI244754B (en) 2005-12-01
KR20050010863A (ko) 2005-01-28
WO2003102957A1 (en) 2003-12-11
DE60315290T2 (de) 2008-04-17
EP1509923B1 (en) 2007-08-01
CN100562941C (zh) 2009-11-25
DE60315290D1 (de) 2007-09-13
EP1509923A1 (en) 2005-03-02
TW200401439A (en) 2004-01-16
CN1659661A (zh) 2005-08-24
KR100644999B1 (ko) 2006-11-10
US20030222279A1 (en) 2003-12-04
US6858890B2 (en) 2005-02-22

Similar Documents

Publication Publication Date Title
US6642564B2 (en) Semiconductor memory and method for fabricating the same
US7494866B2 (en) Semiconductor device and related method of manufacture
US6828611B2 (en) Integrated circuit ferroelectric memory devices including plate lines directly on ferroelectric capacitors
US6897501B2 (en) Avoiding shorting in capacitors
JP2005528788A (ja) 信頼性が改善された強誘電体メモリ集積回路
KR100714467B1 (ko) 캐패시터 오버 플러그 구조체용 배리어
US6858442B2 (en) Ferroelectric memory integrated circuit with improved reliability
US6724026B2 (en) Memory architecture with memory cell groups
JP4073912B2 (ja) 直列に接続されたメモリーセルを備えた強誘電体メモリー
US6800890B1 (en) Memory architecture with series grouped by cells
US6534810B2 (en) Semiconductor memory device having capacitor structure formed in proximity to corresponding transistor
US6720598B1 (en) Series memory architecture
US20080296646A1 (en) Semiconductor memory device and method for fabricating the same
US20030224536A1 (en) Contact formation
JP2004153293A (ja) 容量素子、半導体記憶装置及びその製造方法
KR100432787B1 (ko) 강유전체 소자의 제조 방법
JP2005539387A (ja) プラグ構造上のキャパシタ
JP2004153292A (ja) 容量素子、半導体記憶装置及びその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106