JP2005522616A - 内燃機関に対する燃料噴射装置の駆動方法 - Google Patents

内燃機関に対する燃料噴射装置の駆動方法 Download PDF

Info

Publication number
JP2005522616A
JP2005522616A JP2003582405A JP2003582405A JP2005522616A JP 2005522616 A JP2005522616 A JP 2005522616A JP 2003582405 A JP2003582405 A JP 2003582405A JP 2003582405 A JP2003582405 A JP 2003582405A JP 2005522616 A JP2005522616 A JP 2005522616A
Authority
JP
Japan
Prior art keywords
charging
piezoelectric element
discharging
injection
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003582405A
Other languages
English (en)
Inventor
ローアチェク アンドレアス−ユルゲン
ウド シュルツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=28792825&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2005522616(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2005522616A publication Critical patent/JP2005522616A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

内燃機関に対する燃料噴射装置の駆動方法であって、1つのシリンダに燃料を噴射するための1つの圧電素子を充電または放電すべき時間インターバルが、別のシリンダに燃料を噴射するための別の圧電素子を充電または放電すべき時間インターバルとオーバラップするか否かを監視する方法において、低優先度の噴射が行われる際に、充電または放電が所定の時間インターバル内で、高優先度の噴射の充電または放電の時点で発生するか否かを監視し、燃料噴射装置の駆動中に、時間的な充電エッジおよび/または放電エッジの間隔(エッジオーバラップ)を検出し、ここから低優先度の噴射の高優先度の噴射に対するシフトおよび/または短縮の大きさを検出する。

Description

従来の技術
本発明は、請求項1と6の上位概念による内燃機関に対する燃料噴射装置の駆動方法に関する。
DE10033343A1から、内燃機関、とりわけディーゼル機関に対する燃料噴射装置が公知である。この燃料噴射装置はアクチュエータ素子を駆動制御する際にコリージョンを監視および/または解決するための噴射制御部、とりわけコンフリクトマネージメントを有し、これは圧電アクチュエータの噴射経過に重畳される。
圧電コモンレールアクチュエータでは、同時には1つの駆動エッジだけを実行し得る。しかし内燃技術的理由から、複雑なバンクの制御を、噴射に重畳されるよう適用することが必要である。このことはDE10033343A1から公知の圧電素子の切り換え回路装置により可能である。ただしこれは圧電素子の充電/放電エッジがオーバラップしていない場合に可能である。エッジがオーバラップしている場合、DE10033343A1の燃料噴射装置では、優先度の低い駆動制御(以下では、低優先度駆動制御と称する)がシフトされるかまたは短縮される。
本発明の課題は、エッジオーバラップを識別し、検出し、ここからオーバラップ領域からの時間的シフトないし短縮の必要な程度を導出することである。
この課題は、冒頭に述べた形式の燃料噴射装置の駆動方法において、独立請求項1および6に記載の構成により解決される。
この方法の有利な構成は従属請求項の対象である。
エッジオーバラップは有利には噴射装置の駆動中に制御回路の静的および動的解釈により検出される。この検出は有利には内燃機関の回転数およびクランクシャフト角度に依存して行われる。
ここでは個々のエッジ時点が対でオーバラップについて検査される。
さらなる利点および詳細は実施例の以下の説明および図面から明らかとなる。
図1は、従来技術から公知の圧電素子回路を示す。
図2aは、圧電素子の充電を示す。
図2bは、圧電素子の充電を示す。
図2cは、圧電素子の放電を示す。
図2dは、圧電素子の放電を示す。
図3は、制御ICを示す。
図4は、従来技術から公知のインターラップの時間的経過を示す。
図5は、角度領域におけるエッジペアのコリージョン領域を概略的に示す。
図6は、低優先度エッジを遅れ方向にシフトする様子を示す概略図である。
図7は、低優先度駆動制御の短縮を示す概略図である。
図1は圧電素子10,20,30,40,50,60、並びにそれらの駆動制御のための手段を示す。ここでAは詳細表示領域であり、Bは非詳細表示領域である。これらの分離は破線cにより示されている。詳細表示領域Aは圧電素子10,20,30,40,50,60を充電および放電するための回路を有する。この実施例では、圧電素子10,20,30,40,50,60は内燃機関の燃料噴射弁(とりわけいわゆるコモンレールインジェクタ)のアクチュエータである。この実施例では内燃機関内の6つの気筒を独立して制御するために6つの圧電素子10,20,30,40,50,60が使用される。しかし任意の他の目的のために他の任意の数の圧電素子が適当な場合もある。
非詳細表示領域Bは、制御装置Dと制御IC Eを備える噴射制御部Fを有する。この噴射制御部は詳細表示領域A内の素子の制御に用いる。制御IC Eには電圧および電流の種々の測定値が圧電素子の残りの駆動制御回路全体から供給される。本発明では制御コンピュータDおよび制御IC Eが制御電圧並びに制御時間を圧電素子に対して調整するように構成されている。制御コンピュータDおよび/または制御IC Eも同様に圧電素子の全制御回路の種々の電圧および電流を監視するように構成されている。
以下ではまず詳細表示領域Aの個々の素子を説明する。それから圧電素子10,20,30,40,50,60の充電および放電過程を一般的に説明する。最後にこの2つの過程が制御コンピュータDおよび制御IC Eによりどのように制御および監視されるのかを詳細に説明する。
圧電素子10,20,30,40,50,60は第1のグループG1と第2のグループG2に分けられ、これらのグループはそれぞれ3つの圧電素子を含む(圧電素子10,20,30が第1のグループG1,圧電素子40,50,60が第2のグループG2である)。グループG1とG2は並列接続された回路部分の構成部である。グループ選択スイッチ310ないし320により、圧電素子10,20,30ないし40,50,60のどちらのグループG1,G2をそれぞれ共通の充電および放電装置によって放電するかを設定することができる。充電過程に対してグループ選択スイッチ310,320は、後で詳細に説明するが、重要ではない。第1のグループG1の圧電素子10,20,30は一方のアクチュエータバンクに、第2のグループG2の圧電素子40,50,60は別のアクチュエータバンクに配置されている。ここでアクチュエータバンクとしてブロックが示されており、ここでは2つまたはそれ以上のアクチュエータ素子、とりわけ圧電素子が固定的に配置されており、例えば鋳込まれている。
グループ選択スイッチ310,320はコイル240とそれぞれのグループG1とG2の間に配置されており(それらのコイル側端部)、トランジスタとして実現されている。グループ選択スイッチ310,320にはドライバ311,321が配置されており、これらは制御IC Eから受信された制御信号を電圧に変換する。この電圧は必要に応じてスイッチの閉成または開放を選択することができる。
グループ選択スイッチ310,320に並列に、グループ選択ダイオードとしてダイオード315ないし325が設けられている。グループ選択スイッチ310,320がMOSFETないしIGBTとして構成されていれば、これらのグループ選択ダイオード315および325は寄生ダイオード自体により形成することができる。充電過程の間、グループ選択スイッチ310,320はダイオード315,325により橋絡される。従ってグループ選択スイッチ310,320の機能は圧電素子10,20,30のグループG1ないし40,50,60のグループG2を単に放電過程のために選択するだけである。
グループG12ないしグループG2内で圧電素子10,20,30および40,50,60はそれぞれ並列接続された圧電分岐路110,120および130(グループ1)、および140,150および160(グループG2)の構成部材として配置されている。各圧電分岐路は第1の並列回路と第2の並列回路からなる直列回路を有する。第1の並列回路は圧電素子10,20,30,40,50,60および(分岐抵抗としての)抵抗13,23,33,43,53,63からなり、第2の並列回路はトランジスタ11,21,31,41,51,61として構成された(分岐路スイッチと称される)選択スイッチおよび(分岐路ダイオードと称される)ダイオード12,22,32,42,62,62からなる。
分岐路抵抗13,23,33,43,53,63は、それぞれ相応の圧電素子10,20,30,40,50,60が充填過程中および充電過程後に連続的に放電するように作用する。なぜなら分岐路抵抗は容量性圧電素子10,20,30,40,50,60の両端子を相互に接続するからである。しかし分岐路抵抗13,23,33,43,53,63は、制御される充電および放電過程に対してこの過程を緩慢に行わせるために十分な大きさを有する。これについては後で説明する。従って任意の圧電素子10,20,30,40,50,60の電荷は充電過程後の関連時間内で不変であると見なされる。
個々の圧電分岐路110,120,130,140,150,160にある分岐路選択スイッチ/分岐路ダイオードペア、すなわち圧電分岐路110の選択スイッチ11とダイオード12,圧電分岐路120の選択スイッチ21とダイオード22等は、寄生ダイオードを伴う電子スイッチ(トランジスタ)として実現されている。これは例えばMOSFETないしIGBTである(前記のグループ選択スイッチ/ダイオード310および315ないし320および325と同じ)。
分岐路選択スイッチ11,21,31,41,51,61によって、圧電素子10,20,30,40,50,60のどれをそれぞれ共通の充電および放電装置によって充電するかを設定することができる。充電はそれぞれその分岐路スイッチ11,21,31,41,51,61が後で説明する充電過程中に閉じられている圧電素子10,20,30,40,50,60で行われる。通常は常に1つの分岐路スイッチだけが閉じられている。
分岐路ダイオード12,22,32,42,52,62は放電過程中に分岐路スイッチ11,21,31,41,51,61を橋絡するのに用いられる。従ってこの実施例では充電過程のために個々の圧電素子を選択することができ、放電過程に対しては圧電素子10,20,30の第1のグループまたは圧電素子40,50,60の第2のグループ、ないしは両方のグループが選択される。
圧電素子10,20,30,40,50,60自体に話しを戻すと、分岐路選択圧電端子15,25,35,45,55,65は分岐路選択スイッチ11,21,31,41,51,61によって、または相応のダイオード12,22,32,42,52,62を介して、および両方の場合で付加的に抵抗300を介してアースへ接続できる。
抵抗300によって圧電素子10,20,30,40,50,60の充電および放電中に、分岐路選択圧電端子15,25,35,45,55,65とアースとの間で流れる電流が測定される。この電流の知識により、圧電素子10,20,30,40,50,60の充電と放電を制御することができる。とりわけ充電スイッチ220ないし放電スイッチ230を電流量に依存して閉成および開放することによって、充電電流ないし放電電流を所定の平均値に調整し、および/またはこれが所定の最大値および/または最小値を上回らない、ないし下回らないようにすることができる。
この実施例では測定自体のために電圧源621と分圧器が必要である。電圧源は例えばDC5Vの電圧を送出し、分圧器は2つの抵抗622および623の形態にある。これにより制御IC E(測定を実行する)が負の電圧から保護される。この負の電圧は測定点620に発生することがあり、制御IC Eにより制御することができない。この種の負の電圧は、前記の電圧源621と分圧抵抗622、623から送出される正の電圧との加算によって変化される。
それぞれの圧電素子10,20,30,40,50,60の他方の端子、すなわちそれぞれのグループ選択圧電端子14,24,34,44,54,64はグループ選択スイッチ310ないし320またはグループ選択ダイオード315ないし325とコイル240を介し、さらに充電スイッチ220と充電ダイオード221からなる並列回路を介して減圧源のプラス極に接続されている。さらに択一的にまたは付加的にグループ選択スイッチ310ないし320またはダイオード315ないし325とコイル240、および放電スイッチ230と放電ダイオード231からなる並列回路を介してアースに接続される。充電スイッチ20と放電スイッチ230は例えばトランジスタとして実現されており、ドライバ222ないし232を介して駆動される。
電圧源はコンデンサ210を有する。コンデンサ210はバッテリー200(例えば自動車のバッテリー)および後置接続された直流電圧変換器201から充電される。直流電圧変換器201はバッテリー電圧(例えば12V)を実質的に任意の他の電圧(例えば250V)に変換し、コンデンサ210をこの電圧に充電する。直流電圧変換器201の制御はトランジスタスイッチ202と抵抗203を介して行われる。この抵抗203は測定テイン630から取り出される電流の測定に用いられる。
対向制御の目的で、制御IC Eの制御並びに抵抗651,652,653および例えば5V直流電圧源654によって、さらなる電流測定を測定点650で行うことができる。さらに制御IC E並びに分圧抵抗641と642により測定点640での電圧測定が可能である。
(全体放電抵抗と称される)抵抗330、(ストップスイッチと称される)スイッチ331,並びに(全体放電ダイオードと称される)ダイオード332は、最終的に圧電素子10,20,30,40,50,60の放電に用いられる(これらが通常モードでない場合には、後で説明するように通常の放電過程によっては放電されない)。ストップスイッチ31は有利には通常の放電過程後(放電スイッチ230を介する周期的放電)に閉成され、これにより圧電素子10,20,30,40,50,60は抵抗330と300を介してアースに接続される。これにより場合により圧電素子10,20,30,40,50,60に残る残留電圧が除去される。全体放電ダイオード332は負の電圧が圧電素子10,20,30,40,50,60に発生するのを阻止する。圧電素子は場合により負の電圧によって損傷することがある。
すべての圧電素子10,20,30,40,50,60ないし所定の圧電素子10,20,30,40,50,60の充電と放電はただ1つの充電および放電装置によって行われる。この充電および放電装置はすべてのグループとその圧電素子に共通である。本実施例では、共通の充電および放電装置がバッテリー200,直流電圧変換器201,コンデンサ210,放電スイッチ220および放電スイッチ230,充電ダイオード221および放電ダイオード213並びにコイル240を有する。
各圧電素子の充電と放電は同じ形式で行われる。これについては後で第1の圧電素子10を参照して説明する。
充電および放電過程中に発生する状態を図2Aから図2Dを参照して説明する。それらのうち図2Aと2bは圧電素子10の充電を、図2Cと2Dは圧電素子10の放電を説明するものである。
1つまたは複数の充電ないし放電すべき圧電素子10,20,30,40,50,60を以下で説明するように充電並びに放電するための選択制御は、制御IC Eと制御装置Dにより、上記のスイッチ11,21,31,41,51,61;310,320;220;230および331の1つまたは複数の開放ないし閉成により行われる。詳細図示領域A内の素子と、制御IC Eおよび制御装置Dとの相互作用を以下に説明する。
充電過程を基準にすると、まず充電すべき圧電素子10,20,30,40,50,60を選択しなければならない。第1の圧電素子10だけを充電するために、第1の分岐路110の分岐路スイッチ11が閉成され、残りの分岐路選択スイッチ21,31,41,51,61は開放されたままである。引き続き他の任意の圧電素子20,30,40,50,60の1つを充電するために、または複数を同時に充電するために、それらの選択は相応の分岐路スイッチ21,31,41,51および/または61の閉成により行われる。
次に充電過程自体を実行することができる:
本実施例では、充電過程のために一般的には正の電位差がコンデンサ210と第1の圧電素子10のグループ選択圧電端子14との間で必要である。しかし充電スイッチ220と放電スイッチ230が開放されている限り、圧電素子10の充電ないし放電は行われない。この状態では図1に示した回路は静止状態にある。すなわち圧電素子10はその充電状態を維持し、実質的に変化しない。ここでは電流が流れない。
第1の圧電素子10を充電するためにスイッチ220が閉成される。理論的には第1の圧電素子10はこのことによってだけ充電することができる。しかしそれでは過度に大きな電流が流れてしまい、この電流は該当する素子を損傷することがある。従って発生する電流を測定点620で測定し、検出された電流が所定の限界値を上回ると直ちにスイッチ220を再び開放する。従って第1の圧電素子10で任意の電荷に達するために充電スイッチ220は繰り返し閉成および開放される。一方、放電スイッチ230は開放されたままである。
詳細に観察すると充電スイッチ220が閉じられている場合、図2Aに示された関係が生じる。すなわち圧電素子10,コンデンサ210およびコイル240からなる直列回路を含む閉じた回路が発生する。この回路には図2Aに矢印により示した電流iLE(t)が流れる。この電流に基づいて第1の圧電素子10のグループ選択圧電端子14とコイル240には正の電荷が供給され、コイル240にはエネルギーが蓄積される。
充電スイッチ220が閉成後短時間で(例えば数μs)開放されると、図2Bに示した関係が生じる。すなわち圧電素子10,放電ダイオード231およびコイル240からなる直列回路を含む閉じた回路が発生する。ここでこの回路には図2Bに矢印により示したように電流iLA(t)が流れる。この電流に基づいて、コイル240に蓄積されたエネルギーは圧電素子10に流れる。圧電素子10へのエネルギー供給に相応して、圧電素子に発生する電圧は上昇し、その寸法を拡大する。コイル240から圧電素子10へのエネルギー伝達が行われると、図1に示し、すでに説明した回路の静止状態に再び到達する。
この時点ないし(充電過程の所望の充電プロフィールに応じて)それより早くまたは遅れて、充電スイッチ220が新たに閉成され再び開放される。その結果、前記の過程が新たに経過する。充電スイッチ220を新たに閉成および開放することにより、圧電素子10に蓄積されたエネルギーが増大し(このエネルギーは圧電素子10にすでに蓄積されているエネルギーと新たに供給されたエネルギーの和である)、圧電素子10に発生する電圧は上昇し、圧電素子の寸法は相応に拡大する。
充電スイッチ220の上記の閉成と開放が複数回繰り返されるなら、圧電素子10に発生する電圧並びに圧電素子10の膨張もステップごとに増大する。
充電スイッチ220が所定回数だけ閉成および開放されるか、および/または圧電素子10が所望の充電状態に達すると、圧電素子の充電は充電スイッチ220を開放したままにすることにより終了する。
放電過程に関しては、本実施例でグループ(G1および/またはG2)の圧電素子10,20,30,40,50,60は以下に説明するように放電される:
まずその圧電素子を放電すべきグループG1および/またはG2のグループ選択スイッチ310および/または320が閉成される(分岐路選択スイッチ11,21,31,41,51,61は放電過程に影響しない。なぜならこの場合ダイオード12,22,32,42,52,62により橋絡されているからである)。従って圧電素子10を第1のグループG1の位置日として放電するために第1のグループ選択スイッチ310が閉成される。
放電スイッチ230が閉成されると、図2Cに示した関係が生じる。すなわち圧電素子10とコイル240からなる直列回路を含む閉じた回路が発生する。ここでは図2Cに矢印で示したように回路に電流iEE(t)が流れる。この電流に基づいて、圧電素子に蓄積されたエネルギー(その一部)がコイル240に伝達される。圧電素子10からコイル240へのエネルギー伝達に相応して、圧電素子10に発生する電圧は低下し、圧電素子の寸法は減少する。
放電スイッチ230が開放後に短時間で(例えば数μs)開放されると、図2Dに示した関係が生じる。すなわち、圧電素子10,コンデンサ210,充電ダイオード221およびコイル240からなる直列回路を含む閉じた回路が発生する。このとき回路には図2Dに矢印で示したように電流iEA(t)が流れる。この電流に基づいてコイル240に蓄積されたエネルギーはコンデンサ210に逆に供給される。コイル240からコンデンサ210へのエネルギー伝達が行われると、図1に示し、すでに説明した回路の静止状態に再び達する。
この時点ないし(放電過程の所望の時間プロフィールに応じて)それより早くまたは遅れて、放電スイッチ230は新たに閉成され、再び開放される。その結果、前記の過程が新たに経過する。この放電スイッチ230の新たな閉成と新たな開放に基づいて、圧電素子10に蓄積されたエネルギーはさらに減少し、圧電素子10に発生する電圧並びに圧電素子10の外寸も同様に相応して減少する。
放電スイッチ230が上記のように複数回繰り返して閉成および開放されると、圧電素子10に発生する電圧並びに圧電素子10の膨張はステップごとに減少する。
放電スイッチ230が所定数だけ閉成および開放されるか、および/または圧電素子が所望の充電状態に達すると、圧電素子の放電は放電スイッチ230を開放したままにすることによって終了する。
制御IC Eおよび制御コンピュータDと詳細図示領域A内の素子との相互作用は制御信号によって行われる。これらの制御信号は分岐路選択制御線路410,420,430,440,450,460、グループ選択制御線路510,520、ストップスイッチ制御線路530,充電スイッチ制御線路540および放電スイッチ制御線路550並びに制御線路560を介して、詳細図示領域A内の素子に制御IC Eから供給される。また詳細図示領域A内の測定点600,610,620,630,640,650でセンサ信号が検出され、これらのセンサ信号は制御IC Eにセンサ線路700,710,720,730,740,750を介して供給される。
前に説明した相応のスイッチの開放と閉成による個々のまたは複数の圧電素子10,20,30,40,50,60の充電ないし放電過程を実施するため、圧電素子10,20,30,40,50,60が選択される。このためにトランジスタベースには制御線路によって電圧が印加されるかまたは印加されない。センサ信号によってとりわけ圧電素子10,20,30、ないしは40,50,60に生じた電圧が測定点600ないし610で検出され、充電電流および放電電流が測定点620で検出される。
図3には、制御IC Eに含まれる複数の素子が示されている:論理回路800,メモリ810,D/A変換素子820並びに比較素子830である。さらに(制御信号に対して使用される)高速パラレルバス840が制御IC Eの論理回路800と接続されており、緩慢なシリアルバス850がメモリ810と接続されている。論理回路800はメモリ810,比較素子830並びに信号線路410,420,430,440,450,460;510,520;530,540,550,560と接続されている。メモリ810は論理回路800並びにD/A変換素子820と接続されている。さらにD/A変換素子820は比較素子830と接続されている。さらに比較素子830はセンサ線路700,710,720,730,740,750,およびすでに述べたように論理回路800と接続されている。
図4は、従来技術から公知の、以下で詳細に説明するメイン噴射HE並びに2つのパイロット噴射VE1およびVE2の開始をプログラミングするための割り込みの時間経過をクランクシャフトの上死点に依存して示す概略図である。図4から分かるように、6気筒機関の場合、静的割り込みが例えば約78°のクランクシャフト角度並びに例えば約138°のクランクシャフト角度で形成され、これらの割り込みによりパイロット噴射VE2の開始並びにメイン噴射HEの直前にあるパイロット噴射VE1の開始がそれぞれプログラミングされる。これらの噴射の終了は動的割り込みに基づきプログラミングされる。前記のクランクシャフト角度は単なる例である。割り込みは基本的には他のクランクシャフト角度で形成することもできる。前記の記載は単にパイロット噴射のプログラミングを説明するためのものである。相応にしてポスト噴射を実行することができる。
エッジオーバラップを識別するための計算は各静的および動的割り込みで行われる。割り込みの時点で既知であるエッジ間のオーバラップだけが計算できる。
各割り込みでは次のステップが実行される:
1. 瞬時の回転数nが検出される。この回転数nは割り込み全体で使用される(回転数の凍結)。
2. 各割り込みにより、エッジに関する新たな情報が既知となる。これにより瞬時の情報だけがペアごとに比較され、情報状態が更新される。従って各割り込みの際に、フラグが新たな情報に対してセットされ、フラグがセットされた際の制御がすでに処理されているか否かが検査される。処理されている場合には、該当するフラグは消去される。
3. エッジ処理の時点が任意の時点、例えばクランクシャフト角度phi=0°での基準時点t=0を基準にして検出される。ここでは開始角、タイムオフセット、開始および持続時間が瞬時の回転数を考慮して外挿計算に使用される。回転数n、角度phiおよび時間t間の一般的関係は:
n=(phi/t)*c 式(1)
である。ここで時間はμsで、クランクシャフト角度phiは、°KWで測定され、定数cは166667(回転数/分)/(°KW/μs)である。
4. 個々のエッジ時点はペアごとにオーバラップについて検査される。有利には混合バンク所属のペアだけをテストする。なぜなら同じバンク内のオーバラップはアプリケーションエラーから生じるからである。しかし確実なストラテジーでは考えられる各エッジペアをテストする。
5. 各噴射に優先度が割り当てられる。システムパラメータおよび環境パラメータに依存して、各噴射には所定の優先度が割り当てられる。このことにより各噴射ペアでは低優先度の制御と高優先度の制御とが区別される。これにより計算経過中の優先度切り換えが負の作用を及ぼさないことが保証される。例えば実際に優先度配置すれば、オーバラップを識別し、対抗措置を静的割り込みで取ることができる。引き続き優先度を切り換える、すなわち変更することができる。このペアリングの後続の動的割り込みでは、新たな優先度に従い動作しなければならないこととなる。このことは最悪の場合、高優先度の噴射の制御に対抗する措置を取ることとなる。従ってこの種の優先度の切り換えの際にも優先度割り当ての一貫性を保証しなければならない。有利にはこのことは各ペアリングへの優先度セットの割り当てによって実現される。ここで種々の優先度セットに対するバッファの大きさは、優先度セットの変更における最大可能数がペアリングの処理全体の間で記憶されるように選択しなければならない。ペアリングの優先度セットはそれを完全に処理した後、電子制御回路の優先度マネージャにより設定された瞬時のセットにより更新される。
6. コリージョンを探査する際には、2つのエッジのそれぞれ開始の間隔が相互に時間ベースで検出される。この間隔に基づいて、オーバラップが存在するか否かを決定することができる。エッジ時点は噴射の角度に基づくものであるから、ここではとりわけ720゜KWオーバフローに注意しなければならない。基本的に間隔計算および評価では多数の実現手段が考えられる。以下に説明する本発明の構成では、3つの計算が行われる。
図5には角度ベースの計算が示されている。横軸には低優先度エッジAの値が、縦軸には高優先度エッジBの値がプロットされている。高優先度エッジは進み(pre)と遅れ(post)で領域により保護されている。ここで低優先度エッジがこの領域と交差すると、コリージョンが存在する。この領域は図面でマーキングされている。720゜KW=phimaxより外の領域は割り当てに相応して許容領域に転移される。次式
B−A 式(2)
B−A−phimax 式(3)
B−A+phimax 式(4)
による計算の結果は図5に示されている。個々の計算により識別されるオーバラップはここではそれぞれ同じハッチングにより示されている。図5では関係が角度ベースで説明され、時間ベースへの変換は上記の式(1)により行われる。A=50゜とB=100゜の例は式(2)により、この値で進み(pre)および遅れ(past)へシフトする際にはオーバラップとなる。
7. オーバラップ程度に依存して、シフトないし短縮の程度が検出される。シフトは遅れ方向に、低優先度の開始エッジが余裕時間の間隔で高優先度エッジの予想される終了後に位置するように行われる。シフトの際には持続時間は維持される。動的割り込みの時点もシフトされ、この動的割り込みは開始エッジに固定間隔で結合される。短縮は、低優先度の終了エッジが早めにシフトされるよう行われる。開始エッジの時点は維持される。シフトするかまたは短縮するかの決定は、オーバラップ識別の時点で開始エッジがすでに処理されているか否かに依存して行われる。開始エッジがすでに処理されていれば、これは燃焼過程の経過の開始と理解され、シフトはもはや不可能であり、短縮だけが可能である。ここから低優先度終了エッジのすべてのオーバラップにおいては短縮だけを行うことができる。なぜならオーバラップ識別は低優先度噴射の動的割り込みの時点でだけ可能だからである。しかしこの低優先度噴射は開始エッジの実行とは結び付いていない。
例として図6にはシフトが示されている。オーバラップは式(2)により識別され、生じたオーバラップ量tkはシフトの程度に直接入り込む。シフトの程度は、
tk+余裕時間+保護領域post 式(5)
である。式(5)はオーバラップが式(3)または式(4)から検出された場合にも当てはまる。
さらに制御持続時間の短縮が図6に例として示されている。オーバラップは式(2)により識別される。生じたオーバラップ量tkはここでも短縮の程度に直接入り込む、短縮の程度は、
tk−余裕時間−保護領域pre 式(6)
である。式(6)はオーバラップが式(3)または式(4)から検出された場合にも当てはまる。
一次コリージョンの他に二次コリージョンが生じることもある。二次コリージョンは例えば、静的割り込みで低優先度開始エッジが遅れ方向にシフトされ、この開始エッジが高優先度終了エッジとコリージョンするときに生じる。コリージョン識別は高優先度制御の動的割り込みの時点で行われる。従って低優先度開始エッジはこの二次コリージョンの場合にさらに遅れ方向にシフトしなければならない。三次コリージョンの場合も相応に行われる。本発明の有利な構成では、オーバラップの識別と所属の措置により終了したすべてのペアリングの検査後に、もう一度すべてのペアリングで検査を実行し、これを実行数に基づいた中止基準が発生するか、またはオーバラップのないことが検出されるまで繰り返す。
本発明の別の構成では、1つの圧電素子を充電または放電すべき時間インターバルと、他の圧電素子を充電または放電すべき時間インターバルとが不所望に交差していなかを識別する。この識別は使用される角度領域の計算と許容される所定の角度領域(すなわちコリージョンがないかまたはコリージョン公差の角度領域)との比較により行われる。
コリージョンのない角度領域とはここでは、内燃機関の1つのシリンダで種々異なる噴射タイプを、アクチュエータの駆動制御にオーバラップを生じさせることなしに実行できる角度領域であると理解されたい。コリージョンのない角度領域は1バンク構造の4気筒内燃機関の場合、値720゜KWを気筒数、すなわち4により割り算することによって求められる。従ってコリージョンのない角度領域はこの形式の内燃機関では180゜クランクシャフト角度である。使用される角度領域とは、もっとも早いパイロット噴射の開始からもっとも遅いポスト噴射の終了までに経過するクランクシャフト角度領域である。使用される角度領域がコリージョンのない角度領域を越えると、例えば1つのシリンダの後の噴射が同じバンクの別のシリンダの早期の噴射とオーバラップする。すでに述べたように1つのバンクでは同時には1つのアクチュエータだけが充電されなければならず、そうでないと充電調整を行うことになるが、このことは制御の障害につながり得る。
1バンク構造の他に、複数のシリンダを1つのバンクにまとめることもでき、この場合は複数のバンクが同じ給電ユニットにより充電または放電のために制御される。このような構成は擬似マルチバンク構造と称される。この場合、制御のコリージョンが異なるバンクでエッジマネージメントによりトリガされ得る角度領域をコリージョン公差領域と称する。この場合、コリージョン公差角度領域+コリージョンのない角度領域を越えると制御経過が妨害される。
擬似2バンク構造を有する6気筒内燃機関の例では、コリージョンのない角度領域は120゜クランクシャフト角度であり、コリージョン公差角度領域も同様に120゜クランクシャフト角度である。全体で許容される角度領域はコリージョンのない角度領域とコリージョン公差角度領域との和により決められる。擬似2バンク構造を有する6気筒内燃機関の場合、許容角度領域は240゜クランクシャフト角度である。一般的に擬似2バンク構造を有する内燃機関での許容角度領域は、値720゜クランクシャフト角度を気筒数で割り算し、商をバンク数で乗算することにより決められる。
内燃機関に対する燃料噴射装置の駆動方法での構成の要点は、使用される角度領域の計算、およびこれと許容角度領域、すなわちコリージョンのない角度領域またはコリージョンのない角度領域とコリージョン公差角度領域との和との比較である。
以下にこの方法の実施例を説明する。
1. 瞬時の回転数nを検出し、この回転数を割り込み全体で使用する(回転数の凍結)。
2. 各割り込みによりエッジに関する新たな情報が既知となる。この情報は瞬時の回転数nを使用して角度ベースに変換される。
3. 新たに追加すべき角度情報が使用される角度領域に計算で含められる。ここでは既知の角度情報の量から最小/最大選択が行われる。これは動作遊びに所属す最も早い制御エッジおよび最も遅れた制御エッジを検出するためである。最も早い制御エッジおよび最も遅い制御エッジの角度情報から差分形成により既知の使用される角度領域が求められる。
最後のポスト噴射の動的割り込み後にこのようにして、最も早いパイロット噴射から最も遅いポスト噴射までに使用される全体角度領域が既知となる。ここでは回転数n、角度phiおよび時間tの一般的関係が上記式(1)の形態ですでに説明されている。
4. 既知の使用される角度領域を所定のコリー人のない角度領域およびコリージョン公差角度領域と比較する。領域を越える場合にはエラー通報、および領域超過の数量化が行われる。
5. すべての計算において、回転数ダイナミクスは計算開始時点から処理終了時点まで、すなわちアクチュエータの制御時点までその作用が考慮される。
エラー通報への応答手段では、
a)低優先度の噴射を相応にシフトし、使用される角度領域を再び許容領域に入れる;
b)エラー通報と領域超過の程度を後続の制御の際に同じ動作点または類似の動作点で考慮する。
従来技術から公知の圧電素子の回路を示す。
AとBは圧電素子の充電を示し、CとDは圧電素子の放電を示す。
制御ICのブロック回路図である。
従来技術から公知の、割り込みの時間経過を示す線図である。
エッジペアのコリージョン領域を角度領域に概略的に示す図である。
低優先度のエッジを遅れ方向にシフトする様子を示す概略図である。
低優先度の制御を短縮する様子を示す概略図である。

Claims (9)

  1. それぞれ1つのバンクに配属された少なくとも2つのシリンダを有する内燃機関に対する噴射装置の駆動方法であって、
    燃料噴射装置は少なくとも2つの圧電素子を有し、
    各シリンダにはそれぞれ少なくとも1つの圧電素子が、燃料をシリンダに当該圧電素子の充電または放電により噴射するため配属されており、
    圧電素子には当該圧電素子を充電または放電するための給電ユニットが配属されており、
    1つの圧電素子を充電または放電すべき時間インターバルが別の圧電素子を充電または放電すべき時間インターバルとオーバラップするか否かを監視する方法において、
    低優先度の噴射が行われる際に、充電または放電が所定の時間インターバル内で、高優先度の噴射の充電または放電の時点で発生するか否かを監視し、
    燃料噴射装置の駆動中に、時間的な充電エッジおよび/または放電エッジの間隔(エッジオーバラップ)を検出し、ここから低優先度の噴射の高優先度の噴射に対するシフトおよび/または短縮の大きさを検出する、
    ことを特徴とする駆動方法。
  2. 噴射の優先度を設定し、当該設定は1噴射サイクルの間、維持する、請求項1記載の方法。
  3. エッジオーバラップの検出を、燃料噴射装置駆動中の制御回路の割り込みの際に行う、請求項1または2記載の方法。
  4. エッジオーバラップの検出を、内燃機関の回転数およびクランクシャフト角度に依存して行う、請求項3記載の方法。
  5. エッジオーバラップをペアで、有利にはバンク帰属性の混合されたペアで検出する、請求項1から4までのいずれか1項記載の方法。
  6. それぞれ少なくとも1つのバンクに配属された少なくとも2つのシリンダを有する内燃機関に対する燃料噴射装置の駆動方法であって、
    燃料噴射装置は少なくとも2つの圧電素子を有し、
    各シリンダにはそれぞれ1つの圧電素子が、燃料をシリンダに当該圧電素子の充電または放電により噴射するために配属されており、
    圧電素子には給電ユニットが、当該圧電素子の充電および放電のために配属されており、
    1つの圧電素子を充電または放電すべき時間インターバルが別の圧電素子を充電または放電すべき時間インターバルとオーバラップするか否かを監視する方法において、
    最も早い噴射から最も遅い噴射までに経過したクランクシャフト角度領域(使用される角度領域)が所定の許容角度領域を越えるか否かを監視し、
    そこから低優先度の噴射の高優先度の噴射に対するシフトおよび/または短縮の大きさを検出する、
    ことを特徴とする駆動方法。
  7. 1バンク構造を有する内燃機関での許容角度領域は、値720゜クランクシャフト角度を気筒数により割り算することによって決められる、請求項6記載の方法。
  8. 複数にシリンダが1つのバンクにまとめられており、複数のバンクが同じ給電ユニットから圧電素子の充電または放電のために給電される(擬似マルチバンク構造)形式の内燃機関では、許容角度領域は、値720゜クランクシャフト角度をシリンダ数で割り算し、商をバンク数で乗算することにより決められる、請求項6記載の方法。
  9. 使用される角度領域は、最も早い噴射と最も遅い噴射の角度情報の最小数/最大数により決められる、請求項6から8までのいずれか1項記載の方法。
JP2003582405A 2002-04-09 2003-04-08 内燃機関に対する燃料噴射装置の駆動方法 Pending JP2005522616A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10215609 2002-04-09
DE10310955A DE10310955A1 (de) 2002-04-09 2003-03-13 Verfahren zum Betrieb einer Kraftstoffeinspritzanlage für einen Verbrennungsmotor
PCT/DE2003/001154 WO2003085247A1 (de) 2002-04-09 2003-04-08 Verfahren zum betrieb einer kraftstoffeinspritzanlage für einen verbrennungsmotor

Publications (1)

Publication Number Publication Date
JP2005522616A true JP2005522616A (ja) 2005-07-28

Family

ID=28792825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003582405A Pending JP2005522616A (ja) 2002-04-09 2003-04-08 内燃機関に対する燃料噴射装置の駆動方法

Country Status (5)

Country Link
US (1) US6983731B2 (ja)
EP (1) EP1497544B1 (ja)
JP (1) JP2005522616A (ja)
DE (2) DE10310955A1 (ja)
WO (1) WO2003085247A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121249A (ja) * 2007-11-12 2009-06-04 Bosch Corp インジェクタドライバ回路

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016894A1 (de) * 2004-04-06 2005-10-27 Robert Bosch Gmbh Kraftstoffeinspritzanlage für einen Verbrennungsmotor und Verfahren zum Betreiben einer solchen
EP1847705B1 (en) * 2006-04-12 2012-09-26 Delphi Technologies Holding S.à.r.l. Control method and apparatus for a piezoelectric injector
DE102006034419A1 (de) * 2006-07-25 2008-01-31 Siemens Ag Vorrichtung und Verfahren zum Betreiben von Stellgliedern
DE102007005361B3 (de) * 2007-02-02 2008-10-09 Continental Automotive Gmbh Vorrichtung und Verfahren zur Steuerung der Kraftstoffeinspritzung
DE102008047384A1 (de) 2008-09-16 2010-04-15 Continental Automotive Gmbh Verfahren zum Definieren oder Vergeben von Einspritz-Zeitabschnitten für Kraftstoffinjektoren, sowie Verfahren zum Ansteuern von Kraftstoffinjektoren
DE102009007792B4 (de) * 2009-02-06 2016-03-03 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102009025480B3 (de) 2009-06-18 2011-01-13 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102013214828A1 (de) 2013-07-30 2015-02-05 Robert Bosch Gmbh Verfahren zum Betrieb eines Einspritzsystems einer dreizylindrigen Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
DE102016207036B4 (de) 2016-04-26 2018-01-25 Continental Automotive Gmbh Verfahren und Vorrichtung zur Steuerung der Kraftstoffeinspritzung bei einer Brennkraftmaschine
DE102016213522B4 (de) * 2016-07-22 2023-10-12 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Ansteuerung eines Piezoaktors eines Einspritzventils eines Kraftfahrzeugs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159414A (ja) * 1997-12-01 1999-06-15 Hitachi Ltd 燃料噴射弁用圧電アクチェータの駆動回路
DE10033343A1 (de) 2000-07-08 2002-01-17 Bosch Gmbh Robert Kraftstoffeinspritzanlage für einen Verbrennungsmotor
DE10039786A1 (de) * 2000-08-16 2002-02-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121249A (ja) * 2007-11-12 2009-06-04 Bosch Corp インジェクタドライバ回路

Also Published As

Publication number Publication date
WO2003085247A1 (de) 2003-10-16
EP1497544A1 (de) 2005-01-19
US20050235965A1 (en) 2005-10-27
DE50302294D1 (de) 2006-04-13
US6983731B2 (en) 2006-01-10
DE10310955A1 (de) 2003-11-06
EP1497544B1 (de) 2006-01-25

Similar Documents

Publication Publication Date Title
JP5079068B2 (ja) 噴射器配列における故障検出
US7784445B2 (en) Control unit for internal combustion engine
JP2005522616A (ja) 内燃機関に対する燃料噴射装置の駆動方法
JP4741543B2 (ja) インジェクタ構成装置のための駆動回路及び診断方法
JP4550861B2 (ja) インジェクタ構成のための駆動回路及び診断方法
JP5185411B2 (ja) 噴射装置における障害の検出
GB2364576A (en) A fuel injection conflict monitoring and resolution installation
EP1953372A2 (en) Solenoid valve driver and fuel injection system equipped with the same for compensating lag of operation of solenoid valve
CN103580589B (zh) 用于机动车辆的电旋转机器
JP3955622B2 (ja) 少なくとも1つの電磁的負荷の制御装置
US5375056A (en) Arrangement for monitoring a transducer for detecting an operating variable in a motor vehicle
CN104727962B (zh) 喷射器驱动器及其控制方法
US6680620B2 (en) Method for timed measurements of the voltage across a device in the charging circuit of a piezoelectric element
US8193816B2 (en) Detection of faults in an injector arrangement
CN101806875A (zh) 压电执行器的诊断检测方法及装置
US5370099A (en) Ignition system for internal combustion engines
JP2000046231A (ja) 電磁負荷の制御方法および制御装置
ITMI20000413A1 (it) Procedimento atto al controllo di un attuatore capacitivo
US6853201B2 (en) Method for testing a capacitive actuator
EP1139445A1 (en) Method and apparatus for diagnosing a fault in a system utilizing a piezoelectric element
US20050284443A1 (en) Fuel injection system for an internal combustion engine and method for operating a fuel injection system
JP2005522615A (ja) 内燃機関のための燃料噴射装置および燃料噴射装置の動作方法
US8360032B2 (en) Circuit arrangement for controlling an inductive load
JP2009036190A (ja) 内燃機関の点火装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090625