JP2005501374A - 氷点下の温度における電池スタック組立体の作動のための方法および装置 - Google Patents

氷点下の温度における電池スタック組立体の作動のための方法および装置 Download PDF

Info

Publication number
JP2005501374A
JP2005501374A JP2002579363A JP2002579363A JP2005501374A JP 2005501374 A JP2005501374 A JP 2005501374A JP 2002579363 A JP2002579363 A JP 2002579363A JP 2002579363 A JP2002579363 A JP 2002579363A JP 2005501374 A JP2005501374 A JP 2005501374A
Authority
JP
Japan
Prior art keywords
refrigerant
inlet
manifold
flow path
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002579363A
Other languages
English (en)
Other versions
JP2005501374A5 (ja
JP4663960B2 (ja
Inventor
バリンジャー,エミリー,エー.
コンディット,デイヴィッド,エー.
カウチ,ハロルド,ティー.
レイサー,カール,エー.
レスニック,ジナディー
ヤン,デリアン
Original Assignee
ユーティーシー フューエル セルズ,エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユーティーシー フューエル セルズ,エルエルシー filed Critical ユーティーシー フューエル セルズ,エルエルシー
Publication of JP2005501374A publication Critical patent/JP2005501374A/ja
Publication of JP2005501374A5 publication Critical patent/JP2005501374A5/ja
Application granted granted Critical
Publication of JP4663960B2 publication Critical patent/JP4663960B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04253Means for solving freezing problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

電池スタック組立体(102)冷媒システムは、冷媒排出マニホールド(108)および冷媒ポンプ(112)と流体連通する冷媒排出導管(110)を備える。冷媒入口導管(120)が、冷媒入口マニホールドへの冷媒の輸送を可能にする。冷媒システムは、さらに、冷媒排出マニホールドおよび冷媒入口マニホールドと流体連通するバイパス導管(132)を含み、一方、ブリード弁(130)が、冷媒排出導管および気体の供給源と流体連通する。ブリード弁の作動が、冷媒流路から、さらに停止導管(124)を通る冷媒の排出を可能にする。冷媒と反応物気体の間の増加された圧力差が、水を、電極基体(107,109)内の細孔から引き出す。エゼクター(250)が、空気がポンプを阻害するのを防止する。パルス空気が、冷媒流路を通って流されて(238,239,243,245)、より多くの水が除去される。

Description

【技術分野】
【0001】
本発明は、一般に、氷点下の温度における電池スタック組立体の作動のための方法および装置に関し、より詳細には、電池スタック組立体が、過酷な環境条件を経験するとき、特に、作動上の停止または始動の時に、その構成要素部分への構造上の損傷を避けることができる、方法および装置に関する。
【0002】
本願は、2001年4月5日に出願された米国特許出願番号第09/826,739号の出願の利益および優先権を主張する。
【背景技術】
【0003】
電気化学的燃料電池組立体は、アノードに供給された燃料とカソードに供給された酸化剤との反応を通して、電気とそれに伴う反応生成物を生成し、それによって、これらの電極間に電位を生成する能力で知られている。このような燃料電池組立体は、内燃燃料システムなどに比較してその効率が高いので非常に有用かつ必要とされている。燃料電池組立体は、水などの生成される化学反応副生成物が環境にやさしいのでさらに有利である。燃料電池組立体内の温度を制御するために、冷媒が燃料電池組立体に供給される。冷媒は、通常は水であり、冷媒流路の構成を介して燃料電池組立体の全体を通して循環される。燃料電池組立体内で水を使用することによって、燃料電池組立体は、凝固温度に特に影響を受けやすくなる。
【0004】
電気化学的燃料電池組立体では、通常、燃料として水素に富んだ気体を、酸化剤として酸素を使用するが、上に示したように、ここでの反応副生成物は、水である。このような燃料電池組立体では、固体高分子電解質からなる膜またはイオン交換膜であってその上に所望の電気化学反応を促進するように形成された触媒層を有する膜が使用され得る。触媒化された膜は、多孔質の導電性シート材料、通常は炭素繊維紙、から形成された2つの電極基体の間に配置される。イオン交換膜は、デュポン社(DuPont)により販売されている商標名ナフィオン(NAFIONTM)などのプロトン交換膜(以下、PEMと呼ぶ)としても知られている。
【0005】
作動中は、水素燃料は、アノードの多孔質電極基体材料に浸透し、触媒層において反応して、水素イオンと電子を生成する。水素イオンは、膜を通ってカソードへ移動し、電子は、外部回路を通ってカソードへ流れる。カソードでは、酸素を含む気体供給物が、同様に、多孔質電極基体材料に浸透し、触媒層でアノードからの水素イオンおよび電子と反応して、副生成物の水を生成する。イオン交換膜は、この水素イオンのアノードからカソードへの移動を促進するばかりでなく、イオン交換膜は、酸素を含む気体酸化剤から水素燃料を隔てるように機能する。アノード触媒層とカソード触媒層で生じる反応は、次の式:
アノード反応:H2 → 2H++2e-
カソード反応:1/2O2+2H++2e- → H2O 、
で示され得る。
【0006】
通常のPEM型燃料電池は、アノードプレートおよびカソードプレートと呼ばれる2枚の気体不透過性の導電性プレートの間に配置されたPEMおよび電極基体から成る膜電極組立体を有する。これらのプレートは、通常は、黒鉛、黒鉛−高分子複合材などから形成される。プレートは、集電体として機能し、さらに燃料と酸化剤をそれぞれアノードとカソードに運ぶ手段を提供するばかりでなく、これら2つの多孔質の導電性電極の構造支持体として機能する。プレートは、燃料電池の作動中に、反応物の副生成物である水を運び去るためにも使用される。
【0007】
これらのプレート内に、燃料または酸化剤をアノードプレートとカソードプレートに循環させる目的で、流れ用の流路(channel)が形成されるとき、これらは、流体の流れの場のプレートと呼ばれる。これらのプレートは、特定の燃料電池の構成では、水移動プレートとしても機能できるものであり、一体化された冷媒通路を一般に含み、それによって、それらのよく知られた水管理機能に加えて、冷却器プレートとしても機能する。これらの流体流れ場プレートが、単に、アノードとカソードの多孔質材料内に形成された流路に、重ねられるときは、これらは、セパレータプレートと呼ばれる。さらに、流体流れ場プレート内には、燃料をアノードの流れ用の流路に、あるいは、酸化剤をカソードの流れ用の流路に、供給するのに使用される反応物供給マニホールドが、形成され得る。また、プレートは、燃料および酸化剤の流れの未反応成分を、さらには副生成物として生成されるどのような水も、燃料電池から導くために、対応する排出マニホールドを有し得る。あるいは、マニホールドは、同一出願人によるクンツ(Kunz)らに付与された米国特許第3,994,748号に示されているように、燃料電池自体の外部に形成することもできる。
【0008】
燃料電池組立体内の触媒層は、他の貴金属または貴金属合金を使用することもできるが、通常は、炭素により保持された白金または白金合金である。2つまたはそれを上まわるアノードプレート/膜/カソードプレートの組み合わせからなる複数の電気的に接続された燃料電池組立体は、電池スタック組立体と呼ぶことができる。電池スタック組立体は、通常は電気的に直列に接続される。
【0009】
燃料電池組立体用の燃料を製造しようとする最近の努力は、メタン、天然ガス、ガソリンなどの炭化水素燃料の化学的変換から製造された水素に富んだ気体の流れを用いることに集中している。この処理によって、水素に富んだ気体の流れができる限り効率的に製造され、それによって、生成される一酸化炭素および他の好ましくない化学的副生成物が、確実に最小限の量となる。炭化水素のこの変換は、水蒸気改質器および当業技術内でよく知られる関連する燃料処理装置を用いることによって一般に達成される。
【0010】
先に説明したように、アノードプレートとカソードプレートには、水冷媒の循環のためばかりでなく、燃料電池組立体の作動による副生成物として生成された水を逃しおよび運び去るために、冷媒流路が設けられ得る。冷媒流路内を燃料電池組立体を通してこのように集められおよび循環される水は、32°F(0℃)より下で凝固しやすく、従って、水が凝固するときに膨張するので、燃料電池組立体の作動に損傷を与えかつ作動を損ない得る。従って、過酷な環境条件下において燃料電池組立体を保護し得る方法および装置を提供する必要がある。
【0011】
1998年8月25日にフレッチャー(Fletcher)らに付与された米国特許第5,798,186号には、凍結した燃料電池スタックを直接的および間接的に解凍するためのさまざまな電気的加熱構成が開示されている。さらに、スタックマニホールドヘッダー内にしなやかなまたは圧縮性の装置を配置して燃料電池スタック内で凝固する水の膨張を吸収することが言及されている。このようなシステムは、スタックマニホールドヘッダー内にだけ場所が限定されており、燃料電池スタックまたは冷媒流路の全体を、凝固しかつ膨張する冷媒の影響から十分には保護しないものである。
【0012】
特に、燃料電池組立体の始動が、氷点下の環境条件での所定期間の非作動状態の後に、望まれるような状況がある。そのような場合には、燃料電池組立体内の凍結状態を緩和するために冷媒流路を通して冷媒を循環させる試みは、許容できる性能特性をもたらさないことが見出された。例えば、水が冷媒として使用されるときは、燃料電池組立体の温度は、一般に、小さな寸法の冷媒流路への入口において局部的な凍結を引き起こし、それによって、そこを通る循環が部分的に妨げられるとともに、始動に必要とされる時間が過度に長くなる。非多孔質の冷媒流路またはプレートが不凍液溶液冷媒と共に使用されるときは、低温での不凍液溶液の高い粘性に起因して、同様の問題が存在し、またもや、始動に必要とされる時間が長くなる。
【0013】
上述した問題および懸念を念頭におくと、本発明の一般的な目的は、氷点下の温度にある時でさえ上述した欠点を克服する、方法と装置を燃料電池組立体に提供することである。
【発明の開示】
【課題を解決するための手段】
【0014】
本発明の一実施態様によれば、冷媒を循環させるための冷媒ポンプと、冷媒入口マニホールドおよび冷媒排出マニホールドと流体連通する冷媒流路とを含む、電池スタック組立体のための冷媒システムが提案される。冷媒システムは、冷媒排出マニホールドおよび冷媒ポンプと流体連通する冷媒排出導管を備えており、この冷媒排出導管は、冷媒排出マニホールドからの排出された冷媒の輸送を可能にする。冷媒戻り導管が、冷媒入口マニホールドおよび冷媒ポンプと流体連通するように設けられ、この冷媒戻り導管は、冷媒入口マニホールドへの冷媒の輸送を可能にする。さらに、冷媒システムは、冷媒排出導管および冷媒戻り導管と流体連通するバイパス導管を含み、一方、ブリード弁が、冷媒排出導管および気体状の流れと流体連通する。ブリード弁の作動は、冷媒排出導管および冷媒入口圧力制御弁を塞いだままで、冷媒流路から、さらに前記バイパス導管および前記ポンプを通して冷媒貯蔵器(coolant accumulator)への冷媒の排出を可能にする。
【0015】
本発明の重要な態様は、冷媒と反応物気体との間の14kPaといった通常の作動圧力差で、アノード電極基体およびカソード電極基体内の粗い細孔の50%程度が水で満たされることになり;しかしながら、圧力差が約28kPaに増加されると、電極基体内の粗い細孔の5%から10%程度だけが、水で満たされることになる、ということの理解にある。従って、本発明のこの態様は、上には達成されていない仕方で、支持プレートおよび拡散層から水をかなりの程度まで引き出し、その後、この水を冷媒流路から除去することに向けられている。従って、燃料電池停止手順の好ましい実施態様は、排出される冷媒流路から水の全てを冷媒ポンプによってバイパス導管を通して引き出す前に、まず、気体状反応物と冷媒水の間の圧力差の増加を提供する。
【0016】
本発明にさらに従うと、冷媒ポンプにより冷媒流路から引き出すことができる水の全てが、一旦、冷媒ポンプにより流路から除去されると、空気などの気体のパルスが、水輸送流路を通して流されて、冷媒ポンプによっては除去されないどのような残留水も拾い上げかつ除去する。
【0017】
本発明の別の態様によれば、燃料電池システムの始動は、冷媒を加熱し、加熱された冷媒を冷媒入口マニホールドを通し、次に、バイパス導管を通して直接、冷媒排出マニホールドへと流し、それによって、燃料電池は、冷媒流路を通って流れる実質的な冷媒なしに、マニホールドを通って流れる冷媒により加熱される。
【0018】
本発明のこれらと他の態様、その好ましい実施態様は、明細書、特許請求の範囲、図面を全体として考慮することにより、明らかになるであろう。
【発明を実施するための最良の形態】
【0019】
図1は、本発明の一実施態様による冷媒システム100を例示しており、この冷媒システム100は、始動手順中および停止手順中に氷点下の温度による有害な影響から電池スタック組立体102を保護するように作動され得る。図1に図示するように、電池スタック組立体(以下、「CSA」と呼ぶ)102は、互いに電気的に連通した複数の燃料電池組立体103から構成される。燃料電池組立体は、それぞれ、アノード電極基体(または支持プレート)とカソード電極基体(または支持プレート)の間に配置された固体高分子電解質から成るイオン交換膜を使用し得る。アノード支持プレート107およびカソード支持プレート109は、反応物燃料流路111および反応物酸化剤流路113をそれぞれ、提供する。イオン交換膜は、約0.001インチの厚みの高分子フィルムから構成されるプロトン交換膜(PEM)105とすることができる。カソード電極基体およびアノード電極基体は、多孔質の導電性シート材料、通常はテフロン(Teflon)(登録商標)被覆を有する炭素繊維紙から、一般には形成される。冷媒流路104が、これらのPEM型燃料電池組立体103のそれぞれの中の通常は多孔質の冷媒プレート内などに形成され、水が、冷媒流路104を通って循環する冷媒として通常は使用される。
【0020】
PEM型燃料電池組立体について説明してきたとはいえ、他の膜および電極材料も、それらが、反応物および副生成物の分子、イオン、および電子の必要とされる流れを可能とするならば、代替として使用することができるので、本発明は、この点に関して制限されない。特に、非多孔質の冷媒プレート内の冷媒流路を通って循環する不凍液溶液を利用する燃料電池組立体も、本発明のより広い態様から逸脱することなく使用できる。
【0021】
さらに図1を参照すると、冷媒入口マニホールド106が、冷媒を複数の冷媒流路104に実質的に均等に分配し、この冷媒流路104は、電池スタック組立体102を構成する燃料電池組立体103のそれぞれの周りに冷媒を均一に循環させるように設計されている。冷媒流路104は、それ自体、冷媒が電池スタック組立体102を通って循環された後に、冷媒排出マニホールド108へと排出される。排出された冷媒は、冷媒ポンプ112の動的な力のもとで、冷媒排出導管110を介して冷媒マニホールド108から出て行く。次に、冷媒は、より詳細に以下に説明するように、さまざまな割合で熱交換器116と即時の加熱器118に分流される前に、排出される貯蔵器114に導かれる。冷媒入口導管120が、冷媒を冷媒入口マニホールド106にもう一度流すように備えられる。
【0022】
多孔質の冷媒の流路またはプレートを有するPEM型燃料電池組立体が、電池スタック組立体102内に使用されるとき、図1のさまざまな構成要素を通って循環する冷媒は、冷媒ポンプ112および冷媒入口圧力制御弁122によって周囲下圧力(subambient pressure)に維持される。反応物の流れを周囲圧力より上になるように適合させながら、冷媒を周囲下圧力に維持することによって、燃料または酸化剤反応物の流れのいずれかの中に液体冷媒が蓄積するのが効果的に避けられる。さらに、熱交換器116を備えることによって、冷媒が電池スタック組立体102に戻される前に、循環する冷媒により吸収された熱を除去する既知の手段が提供される。
【0023】
上述したように、それによって、図1の冷媒システム100は、電池スタック組立体102の能動的な作動中に、電池スタック組立体102の全体を通した、冷媒、通常は水、の連続的な供給および循環に備える。容易に明らかになるように、電池スタック組立体102内で水冷媒を使用することは、水および熱の管理の目的には有利であるとはいえ、電池スタック組立体102が、水の凝固点またはそれより下の温度、すなわち、32°F(0℃)またはそれより下の温度、を経験するとき、問題が生じる。電池スタック組立体102が、そのような温度を経験する間に、電池スタック組立体102内に含まれる水は、凝固しかつ膨張し始め、多分、電池スタック組立体102の構成要素に損傷を引き起こし得る。従って、停止および始動の間に水冷媒の凝固を補償するとともに、対応する損傷を確実に防止する、装置を、電池スタック組立体102に備え付けるのは、非常に有益であろう。
【0024】
従って、本発明の重要な態様は、氷点下の温度において停止手順を安全に実行する方法および装置を電池スタック組立体102に提供することである。既知の実施では、電池スタック組立体102の停止が命令されると、水冷媒は、重力のもとで、電池スタック組立体102から排出される。事実上、これは、冷媒供給物と反応物の流れの間の圧力差が、もはや、冷媒ポンプ112および圧力制御弁122によっては維持されず、従って、冷媒が、反応物流れ場の中に落ち込んでしまい、電池スタック組立体102の一部を、水、燃料、および酸化剤の混合物の中に浸すことを意味する。この状態は、停止期間の間中、無期限に続き得るものであり、あるいは、むしろ、より短い期間、電池スタック組立体102に影響を与え得る。いずれにせよ、水冷媒が、氷点下の温度の環境にある電池スタック組立体102内に溜められるときに、損傷が、電池スタック組立体102にもたらされ得る。
【0025】
図2は、本発明の一実施態様による停止手順200を例示しており、この停止手順200によって、上述した欠点が避けられるとともに、電池スタック組立体102の停止作動が、氷点下の温度において、電池スタック組立体102への損害なしに、確実に達成できる。ここでは、停止手順200は、好ましくは、電気負荷が電池スタック組立体102から除去された後に、かつ、反応物の流れが停止されるとともにどのような腐食制御段階も完了された後に、開始される。
【0026】
停止手順200は、停止バイパス導管124および排出空気の流入などを用いる。図1および図2を組み合わせて参照すると、本発明による停止手順200は、ステップ202において手動または自動で停止シーケンスを始めることによって開始される。ステップ202に示すように、冷媒ポンプ112は、停止が開始された後も、冷媒導管内で周囲下圧力を維持するために作動し続ける。このような仕方で、本発明は、冷媒が反応物および冷媒の流れ場の中に落ち込むという先に述べた問題を回避する。
【0027】
図2の停止手順200のステップ204に戻ると、停止弁126が、冷媒の流れの実質的な部分を停止バイパス導管124を通して分流させるために、開にされる。次には、冷媒排出導管110に沿って配置された冷媒出口弁128が、次のステップ206において、電池スタック組立体102を通る冷媒の流れを禁止するために、閉にされる。ステップ208において、電池スタック組立体102は、圧力制御弁122を閉にすることによって、冷媒のどのような付加的な供給からも隔離され、一方、ステップ210は、ブリード弁130を開にするように作動し、それによって、冷媒システム100を空気供給源と連通させる。本発明の好ましい実施態様においては、ブリード弁130は、外部の周囲空気供給源または大気と連通しており、周囲空気を冷媒導管および流れ場の中へ流入させることにより、冷媒システムを排出するように機能する。理解されるように、排出措置は、冷媒導管および流れ場に真空を維持する冷媒ポンプ112の継続された作動により可能となる。所望ならば、ポンプに到達する空気の泡によりもたらされる空洞現象の結果としてポンプの作動が停止する可能性を避けるには、遠心ポンプよりはむしろも容積式ポンプ112が使用でき;あるいは、以下に図7に関して説明するように、エゼクターが使用できる。大気空気の代わりに、加圧空気が、所望ならば、空気ポンプ238(図5)により弁239、243を通して提供され得る。
【0028】
本発明は、冷媒導管および流れ場を周囲空気供給源により排出するとして説明してきたとはいえ、冷媒導管および流れ場から冷媒を排出する代替の方法が、本発明のより広い態様から逸脱することなく使用できる。代替として、空気の加圧供給源は、ブリード弁130の開口部に冷媒導管および流れ場と連通するように配置でき、それによって、冷媒導管および流れ場からどのような残りの冷媒もパージされる。
【0029】
上に説明したように、上述した冷媒システム100のさまざまな弁を閉にすることにより、ブリード弁130を通って吸い込まれる空気が、冷媒排出マニホールド108、冷媒流路104、および冷媒入口マニホールド106からこれらの中に残っているどのような冷媒も排出するように機能する。排出された冷媒は、停止バイパス導管124を通って導かれ、最終的には貯蔵器114内に入れられ、電池スタック組立体102内の反応物流路および冷媒流路は、実質的に全ての水冷媒がない状態にされるとはいえ、いくらかの水は、多孔質の水輸送プレート内に残り得る。
【0030】
排出処理の間に、ステップ212において、電池スタック組立体102内の反応物流路および冷媒流路の中にまだ少しでも冷媒が残っているかが決定される。冷媒が検知される間は、パージ処理は、上述したように継続される。電池スタック組立体102内に実質的に全く冷媒が残っていないと決定されると、停止バイパス導管124は、閉にされ、冷媒ポンプ112は、ステップ214において無効にされる。次に、ブリード弁130が、ステップ216において閉にされて、停止手順200のパージ処理は、終了する。理解されるように、さまざまな検出器装置が、ステップ212に従って、電池スタック組立体102内に少しでも過剰の水冷媒が残っているかを決定するのに、冷媒排出マニホールド108、冷媒入口マニホールド106、または冷媒入口導管120内に配置され得る。
【0031】
停止手順200の効果は、電池スタック組立体102から実質的に全ての冷媒を除去し、それによって、氷点下の温度における次に続く停止の期間の電池スタック組立体102内の冷媒の有害な膨張を防止することである。
【0032】
燃料電池スタック組立体を停止する改善された手順が、図5および図6に関して例示される。図1の熱交換器116および加熱器118ばかりでなく、始動バイパス導管132が、明確にするために図5から省かれているが、いくつかの始動装置が、通常は、どのような与えられた適用においても図5の実施態様とともに使用できる。図5においては、矢印は、通常の流れの方向を示しており、逆の流れが生じるときの逆の流れの方向は示していない。停止は、図6におけるステップ220により例示されるように、冷媒ポンプの作動とともに始められる。第1のステップ221は、反応物気体と冷媒の間の圧力差を増加することである。これは、単に圧力制御弁122をわずかに閉にすることにより行うことができ、それによって、冷媒入口導管120内の冷媒圧力は、燃料電池が一般に作動され得る約−14kPa(−2psi)の圧力である代わりに、例えば、約−28kPa(−4psi)となり、燃料反応物気体および酸化剤反応物気体の両方とも、実質的に大気圧である。圧力差のこの増加は、多孔質の親水性カソード基体109および多孔質の疎水性のアノード基体107の粗い細孔から冷媒を引き出す傾向となり、それによって、細孔の実質的な部分から、水がなくなり、この水は、低い圧力の冷媒流路内に流れる。本発明は、親水性のアノード基体およびカソード基体を含む電池に使用されるものとして説明してきたけれども、それは、基体の1つが疎水性である電池にも使用できる。電極基体を防水処理し、ポリテトラフルオロエチレンなどの疎水性ポリマーでこれを処理することによってこれを疎水性にすることが、当業技術内で知られている。
【0033】
冷媒水流路と、水素222などの燃料反応物気体、および空気などの酸化剤反応物気体の間の圧力差の増加は、反応物気体の圧力を代わりに増加することにより達成することもできる。そしてまた、これは、燃料圧力制御弁223または燃料出口弁224を、またはこれらの両方を調整することによるばかりでなく、酸化剤反応物気体流れ場の出口における弁225を調整することによって、達成できる。
【0034】
冷媒と反応物気体の間の付加的な圧力差(ステップ221、図6)をステップ231のパージ中に維持することは、有利なので、反応物気体の圧力を増加することは、ある場合には、好ましくなり得る。すなわち、反応物気体の圧力を増加すると同時に、水の圧力を低減することができて、所望の28kPaの圧力差が達成される。燃料システムは、所望ならば、ポンプ226および他の装置(図示せず)を含む回収ループを含み得る。次のステップ227、図6は、バイパス弁126を開にすることにより冷媒をバイパスさせることを可能にする。次に、ステップ228において、ポンプ112および貯蔵器114からの冷媒入口マニホールド106内への流れは、冷媒入口圧力制御弁122および冷媒出口弁128を遮断することにより、ステップ228において、妨げられる。次に、ステップ231は、ブリード弁130を開にすることにより冷媒パージの流れを可能にする。弁122および128が閉にされるとともに弁126および130が開されると、空気は、大気から弁130を通り、冷媒排出マニホールド108を通り、冷媒流路104を通り、冷媒入口マニホールド106を通り、冷媒入口導管120を通り、停止バイパス導管124および停止弁126を通って、ポンプ112へと流れる。その結果、冷媒流路104、冷媒マニホールド106および108内に以前は含まれていた水は、ここで、ポンプ112により貯蔵器114内へさっと流れ込む。図5および図6の実施態様の方法によって親水性基体の大きな細孔から除去される水の量は、図1および図2の実施態様によって達成されるものより、かなり大量になる。
【0035】
さらに本発明に従うと、一旦、ポンプ112によるパージが完了すると、ステップ232の好ましい結果が示すように、特に小さな液滴の形態で冷媒流路内に、依然として残り得る水は、空気などの加圧された気体により追い出される。ポンプが、それが除去することになる全ての水を冷媒水流路104から除去すると、水流路104は、ステップ236に示すように、弁122、126、128および130を閉にすることにより密閉される。このようにして、ポンプシステム内の水は、冷媒水流路104内に全く引き戻されることがない。次に、酸化剤反応物気体ポンプ238は、冷媒出口マニホールド108、冷媒水流路104、および冷媒入口マニホールド106を通して空気を送るのに使用される。弁239は、通常、空気の流れを、ポンプ238からカソード109の酸化剤反応物気体流路113(図5には図示せず)内へ、さらに弁225を通して、排出部へまたは望ましくなり得るどのような適切な回収システムへも導く。しかしながら、本発明のステップ242(図6)において、弁239は、空気の流れを別の弁243に向けるように切り換えられる。弁243は、ポンプ238からの空気の流れを、大気(ATMS)へまたは冷媒流路104へと交互に向けるように制御される。弁243が、空気の流れを大気へ向けると、ポンプ238は、実質的に全く背圧を有さないことになり、より速い回転速度へと回転することになり、次に、弁243は、切り換えられて、流れを、冷媒流路104、冷媒マニホールド106および108を通し、さらに弁245を通して大気へと導く。次に、弁243は、再び空気を大気へと向けることになり、それによって、ポンプ238は、より回転することができ、その後、弁243は、ポンプの空気を冷媒流路104を通して導く。これによって、空気のパルスが、大気へ約10秒間および冷媒流路へ10秒間の程度となり得るデューティーサイクルで、冷媒流路104、冷媒マニホールド106および108へと提供される。所望ならば、弁243は、必ずしも使用する必要はなく、それによって、弁239は、ステップ242の間に、空気の定常の流れを、ポンプ238から冷媒流路104へと提供できる。さらに、所望ならば、空気ポンプ238以外の加圧された気体の供給源が、ステップ242の間に冷媒流路104を通して、加圧された窒素が特に望ましい場合は加圧された窒素などの気体の流れを提供するように利用できる。冷媒流路104内の気体の圧力は、残留水が電極基体内に押し込まれることが確実に生じないように、反応物気体通路内の気体の圧力を超えてはいけない。これを達成する一方法は、ステップ221(図6)の圧力差を生成するために増加された反応物気体圧力を用い、弁239がステップ242のために切り換えられた途端に弁225を閉にすることにより、さらには、燃料通路内の燃料の加圧された流れを密閉するかまたは維持することにより、圧力が維持される間に、酸化剤通路を密閉する。
【0036】
水が、ポンプ238などを用いてあるいは別な方法によって、パルス式または定常式で、冷媒流路から吹き出された後に、ポンプ238は、止めることができ、冷媒流路は、弁243を大気に向かせることにより密閉され、弁122、126、128、130および245は、閉にされる。これによって、停止処理は、完了する。所望ならば、冷媒流路および冷媒マニホールドは、弁245から、冷媒入口マニホールド106を通り、冷媒流路104を通り、冷媒排出出口マニホールド108を通り、弁130または弁243などの弁を通って、外の方へと大気を通る方向へ吹かれることができる。
【0037】
図7において、エゼクター250は、たとえ弁122が閉のときでも、導管252によりポンプの流れによって駆動される。これによって、ポンプの流れが、ポンプ内への空気の噴射により遮断されてしまうことは確実に生じない。
【0038】
停止後、電池スタック組立体102は、氷点下の温度での始動命令を実行するという関連する挑戦に直面する。経済性および信頼性を含む実際上の関心事では、電池スタック組立体102が、始動命令を受け取った後できるだけすぐに電気を生成し始めることが重要である。さらに、始動が開始された直後に電池スタック組立体102が冷媒の流れおよび反応物の流れを迅速に循環させることが作動上は重要であるが、これは、万一かなりのタイムラグがこれら2つのイベントの間に生じた場合は、電池スタック組立体102に損傷が生じ得るからである。従って、本発明の重要な態様は、氷点下の温度における電池スタック組立体102の始動手順のための方法および装置を提供することである。
【0039】
図3には、電池スタック組立体102の始動作動が、始動バイパス導管132を用いることにより氷点下の温度において達成され得ることを確実にする始動手順300が、例示される。加熱された冷媒を、入口冷媒マニホールド106および排出冷媒マニホールド108のそれぞれを通して流すことにより、冷媒流路104自体を通るさほど大量の流れを必要とせずに、伝導によって電池スタック組立体102の温度を迅速に上昇させることが可能なことが見出された。先に述べたように、氷点下の電池スタック組立体の初期の始動の間に冷媒流路104を実質的に避けることにより、冷媒流路内の凍結障害物の生成と、従って電池スタック組立体102全体に起こり得る損傷と、が効果的に回避され得る。
【0040】
図1および図3を組み合わせて参照すると、本発明による始動手順300は、ステップ302において手動または自動で始動シーケンスを始めることによって開始される。ステップ302における始動シーケンスは、冷媒ポンプ112を作動させることを含むばかりでなく、停止弁126が確実に閉にされかつ圧力制御弁122が確実に開にされることを含む。ステップ304において、電池スタック組立体102のバイパスは、始動バイパス導管132に沿って配置された始動弁136を開にすることにより達成される。このような仕方で、冷媒入口マニホールド106に提供される冷媒は、実質的に全体が、始動バイパス導管132を通って、冷媒排出マニホールド108内へと戻され、それによって、冷媒流路104を避ける。
【0041】
ステップ306において、熱交換器116は、熱バイパス導管140に沿って配置された熱バイパス弁138を開にすることによりバイパスされる。サーモスタット弁装置115が使用されて、電池スタック組立体102の始動が達成されることおよび冷媒温度が予め決められた温度を超えることの少なくとも一方が生じるまでは、熱交換器116を通って冷媒が流れることが確実に生じないようにする。
【0042】
図1の熱バイパス弁138を開にした後で、ポンプ112により循環される冷媒は、冷媒マニホールド106および108のそれぞれに提供される冷媒の温度を迅速に上昇させるように、ステップ308において作動される即時の加熱器118を通して導かれることになる。上で説明したように、加熱された冷媒が、冷媒入口マニホールド106および冷媒排出マニホールド108の両方を通して循環されるので、電池スタック組立体102は、冷媒マニホールド106および108に由来する熱伝導により迅速に加熱されることになる。温度検出器142が、ステップ310において電池スタック組立体102の温度をモニタして、電池スタック組立体102が予め決められた温度Tを超えたかを決定する。一旦、電池スタック組立体102が、予め決められた温度Tを超えると、始動手順300のステップ312が、始動弁136および熱バイパス弁138を閉にするばかりでなく、即時の加熱器118を停止する。
【0043】
容易に理解されるように、予め決められた温度Tは、冷媒流路104に提供される冷媒が凝固しかつ冷媒流路104を塞いでしまうことが確実に生じることのないような温度しきい値として設定されるのが好ましい。最も好ましくは、予め決められた温度Tは、ほぼ32□Fまたはそれより高くに設定される。さらに、温度検出器142は、電池スタック組立体102内のさまざまな位置に配置され得るが、真ん中の位置の配置が、電池スタック組立体の全体の加熱が確実に実質的に達成されるのには、好ましい。
【0044】
ここで説明するように、始動手順300は、多孔質の水輸送プレートと共に水冷媒を使用するPEM型燃料電池ばかりでなく、非多孔質の水輸送プレートを有する不凍液冷媒を使用するような燃料電池にも、同様に適用できる。
【0045】
図1に図示するように、冷媒システム100のさらなる別の重要な特徴は、始動手順を助けるように貯蔵器114を使用することである。本発明に従うと、貯蔵器114は、断熱されるように設計されて、内部に入れられた冷媒を高い温度に保ち、それによって、図3に示す始動手順300を助ける。容易に理解されるように、貯蔵器114は、多層構造を含む熱反射構成要素を有するサーモス型構造、あるいは貯蔵された冷媒が数日間またはそれを超えてまで延びる期間、実質的な熱エネルギーを保持するという条件でどのような代替の構造ともすることができる。
【0046】
図4は、本発明の別の実施態様による冷媒システム400を例示する。冷媒システム400は、電池スタック組立体410に提供される冷媒の流れを加熱することにより、電池スタック組立体410の温度を迅速に上昇させるのに使用され得る。図4に示すように、燃焼器412が、電池スタック組立体410の例示されていない反応物燃料流れ場から燃料排出導管411を介して排出される残留燃料の供給物を燃焼させる。この加熱された燃焼器排気は、次に、多管式熱交換器420の管状部分414内に排出される。管状部分414を通して供給される加熱された燃焼器排気と共に、シェル416は、内部に冷媒の流れを受け入れ、それによって、燃焼器排気と冷媒の流れの間の熱交換を促進する。新たに加熱された冷媒の流れは、次に、電池スタック組立体410内に導入され、電池スタック組立体410の加熱速度が増加される結果となる。
【0047】
電池スタック組立体410の加熱速度をさらに増加するために、本発明は、さらに、加熱された燃焼器排気を、熱導管418を介して、電池スタック組立体410のアノード流れ場とカソード流れ場の少なくとも一方に導くことを考慮する。また、本発明は、本発明のより広い態様から逸脱することなく、図4の冷媒システム400を図1の冷媒システム100内に組み込むことを考慮する。
【0048】
本発明では、燃焼器412内で残留排出反応物燃料を燃焼させることが記載されているとはいえ、本発明は、燃焼器412が、本発明のより広い態様から逸脱することなく、それ自体の燃料供給物を供給され得るので、それほどは限定されない。
【0049】
従って、本発明の主要な態様は、停止中かつ電池スタック非作動中の氷点下の温度での破壊的な影響に対する保護を提供するばかりでなく、始動手順中に電池スタック組立体を凝固温度より上に迅速に上昇させるように作動する、電池スタック組立体のための冷媒システムを提供することである。
【図面の簡単な説明】
【0050】
【図1】本発明の一実施態様による冷媒システムの概略図。
【図2】停止手順中の図1の冷媒システムの作動を例示する流れ図。
【図3】始動手順中の図1の冷媒システムの作動を例示する流れ図。
【図4】本発明の別の実施態様による冷媒システムの概略図。
【図5】図1の実施態様に対する改良を含む冷媒システムの概略図。
【図6】停止手順中の図5の冷媒システムの作動を例示する流れ図。
【図7】図5の冷媒システムの変形物の概略図。

Claims (24)

  1. 入口を有する冷媒入口マニホールド(106)と、出口を有する冷媒排出マニホールド(108)と、冷媒を前記入口マニホールドから前記排出マニホールドへ流すための冷媒流路(104)とを含むスタック(102)内に配置された複数の燃料電池(103)と、
    入口を有する冷媒ポンプ(112)と、
    前記入口マニホールドの入口を前記ポンプからの冷媒と選択的に相互に接続するための冷媒入口弁(122)と、
    を備える燃料電池システム(100)であって、
    前記ポンプの入口を前記排出マニホールドの出口と選択的に相互に接続するための冷媒出口弁(128)と、
    前記入口マニホールドの入口を前記ポンプの入口と選択的に相互に接続するための停止弁(126)と、
    気体を前記排出マニホールドの出口の中に選択的に流すためのブリード弁(130)と、
    を備え、それによって、前記ポンプを作動させながら、前記停止弁および前記ブリード弁を開にするとともに前記入口弁および前記出口弁を閉にすることで、前記出口マニホールド、前記冷媒流路、および前記入口マニホールドの中へ気体を引き込み、それによって、前記出口マニホールド、前記冷媒流路、および前記入口マニホールドから冷媒が引き出されることになる、
    ことを特徴とする燃料電池システム(100)。
  2. 前記冷媒ポンプから下流に配置されており、冷媒を蓄積するための貯蔵器(114)をさらに備えることを特徴とする請求項1記載の燃料電池システム。
  3. 前記貯蔵器は、断熱されていることを特徴とする請求項2記載の燃料電池システム。
  4. 前記気体は、空気の流れであることを特徴とする請求項1記載の燃料電池システム。
  5. 前記空気は、周囲空気および加圧空気のうちの1つであることを特徴とする請求項4記載の燃料電池システム。
  6. 入口を有する冷媒入口マニホールド(106)と、出口を有する冷媒排出マニホールド(108)と、冷媒を前記入口マニホールドから前記排出マニホールドへ流すための冷媒流路(104)とを含むスタック(102)内に配置された複数の燃料電池(103)と、
    入口を有する冷媒ポンプ(112)と、
    を備える燃料電池システム(100)であって、
    冷媒の流れが前記入口マニホールドの入口に流入しないように前記ポンプからの冷媒の流れを阻止する手段(122)と、
    前記排出マニホールドの出口から前記ポンプの入口への冷媒の流れを阻止する手段(128)と、
    前記入口マニホールドの入口を前記ポンプの入口に接続する手段(126)と、
    前記排出マニホールドの出口を気体の供給源に接続する手段(130)と、
    を備え、それによって、気体が、前記ポンプにより前記冷媒流路を通して引かれ、それによって、この冷媒流路から水が除去される、
    ことを特徴とする燃料電池システム(100)。
  7. 燃料反応物気体流路(111)を有する多孔質のアノード支持プレート(107)と、
    酸化剤反応物気体流路(113)を有する多孔質のカソード支持プレート(109)と、
    を備え、さらに、
    前記ポンプからおよび前記ポンプへの冷媒の流れを阻止する前に、前記支持プレート内の細孔の大部分から前記冷媒流路内へと水を引き出すのに十分な前記反応物気体流路内の気体と前記冷媒の間の圧力差を提供する手段(122,223−225)を備える、
    ことを特徴とする請求項6記載の燃料電池システム。
  8. 前記圧力差は、14kPa(2psi)と56kPa(8psi)の間であることを特徴とする請求項7記載の燃料電池システム。
  9. 水が前記ポンプにより前記冷媒流路を通して引かれた後に、この冷媒流路からさらなる水を除去するようにこの冷媒流路を通して気体を送る手段(238,239,243,245)をさらに備えることを特徴とする請求項6記載の燃料電池システム。
  10. 前記気体を送る手段は、前記冷媒流路を通して気体のパルスを送る手段(238,243)を備えることを特徴とする請求項9記載の燃料電池システム。
  11. 前記燃料電池システムは、前記酸化剤反応物気体流路を通して酸化剤反応物気体を提供する空気ポンプ(238)をさらに備え、
    前記気体を送る手段は、前記空気ポンプと弁(239)とを備えることを特徴とする請求項9記載の燃料電池システム。
  12. 前記気体を送る手段は、前記冷媒排出マニホールド内に気体を吹き込むことを特徴とする請求項9記載の燃料電池システム。
  13. 入口を有する冷媒入口マニホールド(106)と、出口を有する冷媒排出マニホールド(108)と、冷媒を前記入口マニホールドから前記排出マニホールドへ流すための冷媒流路(104)とを含むスタック(102)内に配置された複数の燃料電池(103)を備え、入口を有する冷媒ポンプ(112)を含む燃料電池システム(100)を停止する方法であって、
    (a) 冷媒の流れが前記入口マニホールドの入口に流入しないように前記ポンプからの冷媒の流れを阻止し(122)、
    (b) 前記排出マニホールドの出口から前記ポンプの入口への冷媒の流れを阻止し(128)、
    (c) 前記入口マニホールドの入口を前記ポンプの入口に接続し(126)、
    (d) 前記排出マニホールドの出口を気体の供給源に接続する(130)、
    ことを含み、それによって、水が、前記ポンプにより前記冷媒流路を通して引かれ、それによって、この冷媒流路から水が除去される、
    ことを特徴とする方法。
  14. 前記燃料電池システムは、燃料反応物気体流路(111)を有する多孔質の親水性アノード支持プレート(107)と、酸化剤反応物気体流路(113)を有する多孔質の親水性カソード支持プレート(109)とを備えており、
    前記方法は、前記ステップ(a)の前に、前記支持プレート内の細孔の大部分から前記冷媒流路内へと水を引き出すのに十分な前記反応物気体流路内の気体と前記冷媒の間の圧力差を提供する(122,223−225)ことをさらに含むことを特徴とする請求項12記載の燃料電池システムを停止する方法。
  15. 前記圧力差は、14kPa(2psi)と56kPa(8psi)の間であることを特徴とする請求項14記載の燃料電池システム。
  16. 前記ステップ(a)−(d)によって、水が前記ポンプにより前記冷媒流路を通して引かれた後に、この冷媒流路からさらなる水を除去するようにこの冷媒流路を通して気体を送る(238,239,243,245)ことをさらに含むことを特徴とする請求項13記載の燃料電池システム。
  17. 前記送ることは、前記冷媒流路を通して気体のパルス(238,243)を送ることを含むことを特徴とする請求項16記載の燃料電池システム。
  18. 前記送ることは、前記冷媒排出マニホールド内に気体を吹き込むことを含むことを特徴とする請求項16記載の燃料電池システム。
  19. 冷媒入口マニホールド(106)と、冷媒排出マニホールド(108)と、冷媒を前記入口マニホールドから前記排出マニホールドへ流すための冷媒流路(104)とを含むスタック(102)内に配置された複数の燃料電池(103)と、
    冷媒ポンプ(112)と、
    を備える燃料電池システム(100)であって、
    前記ポンプからの冷媒を加熱するための冷媒加熱器(118)と、
    前記流路を通して流すこととは別に、前記入口マニホールドから直接前記排出マニホールドに冷媒を選択的に流すための冷媒バイパス(132,136)と、
    を備え、それによって、前記加熱器を作動させるとともに前記バイパスを開にすることで、前記流路を通る実質的な冷媒の通過なしに、前記マニホールドを通って流れる加熱された冷媒で前記燃料電池が加熱されることになる、ことを特徴とする燃料電池システム(100)。
  20. 前記冷媒ポンプの下流で前記冷媒ポンプと前記加熱器との間に配置され、前記冷媒の流れの過剰量を蓄積するための断熱された貯蔵器(114)をさらに備えることを特徴とする請求項19記載の燃料電池システム。
  21. 冷媒入口マニホールド(106)と、冷媒排出マニホールド(108)と、冷媒を前記入口マニホールドから前記排出マニホールドへ流すための冷媒流路(104)とを含むスタック(102)内に配置された複数の燃料電池(103)と、
    冷媒ポンプ(112)と、
    を備える燃料電池システム(100)であって、
    前記ポンプからの冷媒を加熱する手段(118)と、
    前記流路を通して流すこととは別に、前記入口マニホールドから直接前記排出マニホールドに加熱された冷媒を流す手段(132,136)と、
    を備え、それによって、前記燃料電池は、前記流路を通る実質的な冷媒の通過なしに、前記マニホールドを通って流れる加熱された冷媒で加熱される、ことを特徴とする燃料電池システム(100)。
  22. 冷媒入口マニホールド(106)と、冷媒排出マニホールド(108)と、冷媒を前記入口マニホールドから前記排出マニホールドへ流すための冷媒流路(104)とを含むスタック(102)内に配置された複数の燃料電池(103)を備え、冷媒ポンプ(112)を含む燃料電池システム(100)を始動する方法であって、
    前記ポンプからの冷媒を加熱し(118)、
    前記流路を通して流すこととは別に、前記入口マニホールドから直接前記排出マニホールドに加熱された冷媒を流す(132,136)、
    ことを含み、それによって、前記燃料電池は、前記流路を通る実質的な冷媒の通過なしに、前記マニホールドを通って流れる加熱された冷媒で加熱される、ことを特徴とする方法。
  23. 入口を有する冷媒入口マニホールド(106)と、出口を有する冷媒排出マニホールド(108)と、冷媒を前記入口マニホールドから前記排出マニホールドへ流すための冷媒流路(104)とを含むスタック(102)内に配置された複数の燃料電池(103)と、
    入口を有する冷媒ポンプ(112)と、
    前記入口マニホールドの入口を前記ポンプからの冷媒と選択的に相互に接続するための冷媒入口弁(122)と、
    を備える燃料電池システム(100)であって、
    前記ポンプの入口を前記排出マニホールドの出口と選択的に相互に接続するための冷媒出口弁(128)と、
    前記入口マニホールドの入口を前記ポンプの入口と選択的に相互に接続するための停止弁(126)と、
    気体を前記排出マニホールドの出口の中に選択的に流すためのブリード弁(130)と、
    前記ポンプからの冷媒を選択的に加熱するための冷媒加熱器(138)と、
    前記流路を通して流すこととは別に、前記入口マニホールドから直接前記排出マニホールドに冷媒を選択的に流すための冷媒バイパス(132,136)と、
    を備え、前記ポンプを作動させながら、前記停止弁および前記ブリード弁を開にするとともに前記入口弁および前記出口弁を閉にすることで、前記出口マニホールド、前記冷媒流路、および前記入口マニホールドの中へ気体を引き込み、それによって、前記出口マニホールド、前記冷媒流路、および前記入口マニホールドから冷媒が引き出されることになり、かつ、前記加熱器を作動させるとともに前記バイパスを開にすることで、前記流路を通る実質的な冷媒の通過なしに、前記マニホールドを通って流れる加熱された冷媒で前記燃料電池が加熱されることになる、
    ことを特徴とする燃料電池システム(100)。
  24. 入口を有する冷媒入口マニホールド(106)と、出口を有する冷媒排出マニホールド(108)と、冷媒を前記入口マニホールドから前記排出マニホールドへ流すための冷媒流路(104)とを含むスタック(102)内に配置された複数の燃料電池(103)を備え、入口を有する冷媒ポンプ(112)を含む燃料電池システム(100)を停止および始動する方法であって、
    停止時において、
    冷媒の流れが前記入口マニホールドの入口に流入しないように前記ポンプからの冷媒の流れを阻止し(126)、
    前記排出マニホールドの出口から前記ポンプの入口への冷媒の流れを阻止し(128)、
    前記入口マニホールドの入口を前記ポンプの入口に接続し(126)、
    前記排出マニホールドの出口を気体の供給源に接続する(130)、
    ことを含み、それによって、気体が、前記ポンプにより前記冷媒流路を通して引かれ、それによって、この冷媒流路から水が除去され、
    始動時において、
    前記ポンプからの冷媒を加熱し(118)、
    前記流路を通して流すこととは別に、前記入口マニホールドから直接前記排出マニホールドに加熱された冷媒を流す(132,136)、
    ことを含み、それによって、前記燃料電池は、前記流路を通る実質的な冷媒の通過なしに、前記マニホールドを通って流れる加熱された冷媒で加熱される、
    ことを特徴とする方法。
JP2002579363A 2001-04-05 2002-04-05 氷点下の温度における電池スタック組立体の作動のための方法および装置 Expired - Fee Related JP4663960B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/826,739 US6596426B2 (en) 2001-04-05 2001-04-05 Method and apparatus for the operation of a cell stack assembly during subfreezing temperatures
PCT/US2002/010837 WO2002081367A2 (en) 2001-04-05 2002-04-05 Method an apparatus for the operation of a cell stack assembly during subfreezing temperatures

Publications (3)

Publication Number Publication Date
JP2005501374A true JP2005501374A (ja) 2005-01-13
JP2005501374A5 JP2005501374A5 (ja) 2005-07-28
JP4663960B2 JP4663960B2 (ja) 2011-04-06

Family

ID=25247405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002579363A Expired - Fee Related JP4663960B2 (ja) 2001-04-05 2002-04-05 氷点下の温度における電池スタック組立体の作動のための方法および装置

Country Status (7)

Country Link
US (1) US6596426B2 (ja)
EP (1) EP1386365A4 (ja)
JP (1) JP4663960B2 (ja)
KR (1) KR100840443B1 (ja)
CN (1) CN1274047C (ja)
AU (1) AU2002307156A1 (ja)
WO (1) WO2002081367A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509332A (ja) * 2002-12-04 2006-03-16 ユーティーシー フューエル セルズ,エルエルシー 改良された加湿システムを有する燃料電池システム
JP2008010311A (ja) * 2006-06-29 2008-01-17 Honda Motor Co Ltd 燃料電池の運転方法
JP2008536287A (ja) * 2005-04-15 2008-09-04 ユーティーシー パワー コーポレイション 氷点下での起動時に冷却および加湿をするための燃料電池セルスタック内での水の保持

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223490B2 (en) * 2001-04-06 2007-05-29 Honda Giken Kogyo Kabushiki Kaisha Fuel cell employing local power generation when starting at low temperature
KR100519130B1 (ko) * 2001-05-23 2005-10-04 마츠시타 덴끼 산교 가부시키가이샤 연료전지 발전장치
US7049016B2 (en) * 2001-11-08 2006-05-23 Nissan Motor Co., Ltd. Fuel cell system and its startup control
JP4131110B2 (ja) * 2002-02-28 2008-08-13 株式会社エクォス・リサーチ 燃料電池スタック
DE10213134A1 (de) * 2002-03-23 2003-10-09 Daimler Chrysler Ag Brennstoffzelle und Verfahren zum Kaltstarten einer solchen Brennstoffzelle
US7282285B2 (en) * 2002-04-05 2007-10-16 Utc Fuel Cells, Llc Method and apparatus for the operation of a cell stack assembly during subfreezing temperatures
US6986958B2 (en) 2003-02-06 2006-01-17 Utc Fuel Cells, Llc Fuel cell stack melting of coolant water during frozen startup
JP4815733B2 (ja) * 2003-03-24 2011-11-16 日産自動車株式会社 燃料電池システム
US20050019631A1 (en) * 2003-07-23 2005-01-27 Matsushita Electric Industrial Co., Ltd. Fuel cell cogeneration system
JP2005093374A (ja) * 2003-09-19 2005-04-07 Nissan Motor Co Ltd 燃料電池発電システムおよび燃料電池発電システムの停止方法
US20050079397A1 (en) * 2003-10-08 2005-04-14 Holger Winkelmann Metal hydride heating element
US20050260463A1 (en) * 2004-05-21 2005-11-24 Chapman Ivan D Fluid flow pulsing for increased stability in PEM fuel cell
KR101181838B1 (ko) 2004-10-04 2012-09-13 삼성에스디아이 주식회사 연료 전지용 스택과 이를 갖는 연료 전지 시스템
JP2006164670A (ja) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd 燃料電池システム
JP2006179198A (ja) * 2004-12-20 2006-07-06 Nissan Motor Co Ltd 燃料電池システム
US7547482B2 (en) * 2004-12-21 2009-06-16 Daimler Ag Passive microcoolant loop for an electrochemical fuel cell
JP2006228632A (ja) * 2005-02-18 2006-08-31 Nissan Motor Co Ltd 燃料電池スタックの配管構造
KR100628909B1 (ko) * 2005-08-18 2006-09-27 한국과학기술연구원 막전극집합체 성능 분석 방법 및 이에 사용되는 분할 셀
DE102005044825A1 (de) * 2005-09-20 2007-04-05 Sartorius Ag Brennstoffzellensystem und Verfahren zum Betreiben einer Brennstoffzelle
KR100664089B1 (ko) * 2005-12-06 2007-01-03 엘지전자 주식회사 연료전지시스템 및 이의 스택유닛 가열방법
US8389167B2 (en) * 2006-08-28 2013-03-05 GM Global Technology Operations LLC Detection of cell-to-cell variability in water holdup using pattern recognition techniques
JP4947299B2 (ja) * 2007-05-29 2012-06-06 トヨタ自動車株式会社 燃料電池システムおよびその温度制御方法
KR100921044B1 (ko) * 2007-10-19 2009-10-08 현대자동차주식회사 연료전지차량용 cod 겸용 가열장치
FR2974672B1 (fr) * 2011-04-27 2013-06-28 Commissariat Energie Atomique Pile a combustible a encombrement reduit
JP5929347B2 (ja) * 2011-06-30 2016-06-01 日産自動車株式会社 燃料電池の冷却液温度調整システム
JP5946714B2 (ja) * 2012-07-27 2016-07-06 東芝燃料電池システム株式会社 燃料電池発電装置及び燃料電池発電装置の冷却水回収方法
GB2505957B (en) 2012-09-18 2021-04-07 Intelligent Energy Ltd Coolant fluid feed to fuel cell stacks
KR101673360B1 (ko) * 2015-07-09 2016-11-07 현대자동차 주식회사 냉각 시스템 및 이의 운전 방법
DE102015215821A1 (de) 2015-08-19 2017-02-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennstoffzellenvorrichtung und Verfahren zum Betrieb einer Brennstoffzellenvorrichtung
KR101923893B1 (ko) * 2016-05-17 2019-02-25 현대자동차주식회사 연료전지의 냉시동 성능 향상을 위한 열관리 시스템
DE102018214640A1 (de) * 2018-08-29 2020-03-05 Nikola Corp. Kühlsystem für Brennstoffzellenstacks
DE102020208364A1 (de) * 2020-07-03 2022-01-05 Mahle International Gmbh Batteriemodul, insbesondere für ein Elektro- oder Hybridfahrzeug
DE102021111225A1 (de) 2021-04-30 2022-11-03 Audi Aktiengesellschaft Brennstoffzellensystem mit einem Entlüftungsventil zur Entgasung eines Kühlsystems
JP2023085940A (ja) * 2021-12-09 2023-06-21 株式会社東芝 燃料電池システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447674A (ja) * 1990-06-13 1992-02-17 Fuji Electric Co Ltd 燃料電池の温度制御装置
JPH06223855A (ja) * 1993-01-28 1994-08-12 Mazda Motor Corp 燃料電池自動車
JPH06231793A (ja) * 1993-02-04 1994-08-19 Mitsubishi Heavy Ind Ltd 固体高分子電解質型燃料電池
JPH06338338A (ja) * 1993-05-28 1994-12-06 Mitsubishi Heavy Ind Ltd 燃料電池の高分子イオン交換膜の加湿方法
JPH07272737A (ja) * 1994-03-31 1995-10-20 Toyota Motor Corp 燃料電池の停止装置
JPH09147892A (ja) * 1995-11-29 1997-06-06 Sanyo Electric Co Ltd 燃料電池システム及びその運転方法
JPH11273705A (ja) * 1998-03-20 1999-10-08 Sanyo Electric Co Ltd 燃料電池装置
JPH11273704A (ja) * 1998-03-20 1999-10-08 Sanyo Electric Co Ltd 燃料電池装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994748A (en) 1975-05-02 1976-11-30 United Technologies Corporation Method for feeding reactant gas to fuel cells in a stack and apparatus therefor
US4344850A (en) 1981-01-19 1982-08-17 United Technologies Corporation Fuel cell power plant coolant cleaning system and method
US4582765A (en) * 1981-08-25 1986-04-15 The United States Of America As Represented By The United States Department Of Energy Fuel cell system with coolant flow reversal
US4769297A (en) 1987-11-16 1988-09-06 International Fuel Cells Corporation Solid polymer electrolyte fuel cell stack water management system
US4965143A (en) * 1989-11-09 1990-10-23 Yamaha Hatsudoki Kabushiki Kaisha Shutdown method for fuel cell system
US5045414A (en) * 1989-12-29 1991-09-03 International Fuel Cells Corporation Reactant gas composition for fuel cell potential control
US5200278A (en) * 1991-03-15 1993-04-06 Ballard Power Systems, Inc. Integrated fuel cell power generation system
US5154986A (en) * 1991-03-22 1992-10-13 Yamaha Hatsudoki Kabushiki Kaisha Shut-off device for fuel cell system
US5366821A (en) * 1992-03-13 1994-11-22 Ballard Power Systems Inc. Constant voltage fuel cell with improved reactant supply and control system
US5316747A (en) 1992-10-09 1994-05-31 Ballard Power Systems Inc. Method and apparatus for the selective oxidation of carbon monoxide in a hydrogen-containing gas mixture
US5503994A (en) 1993-10-08 1996-04-02 The Board Of Trustees Of The Leland Stanford Junior University System for sample detection with compensation for difference in sensitivity to detection of components moving at different velocities
US5518705A (en) 1994-08-22 1996-05-21 Ballard Power Systems Inc. Method and apparatus for the two-stage selective oxidation of carbon monoxide in a hydrogen-containing gas mixture
US5514487A (en) 1994-12-27 1996-05-07 Ballard Power Systems Inc. Edge manifold assembly for an electrochemical fuel cell stack
US5503944A (en) * 1995-06-30 1996-04-02 International Fuel Cells Corp. Water management system for solid polymer electrolyte fuel cell power plants
US5798186A (en) 1996-06-07 1998-08-25 Ballard Power Systems Inc. Method and apparatus for commencing operation of a fuel cell electric power generation system below the freezing temperature of water
US6479177B1 (en) * 1996-06-07 2002-11-12 Ballard Power Systems Inc. Method for improving the cold starting capability of an electrochemical fuel cell
JP3499090B2 (ja) 1996-08-07 2004-02-23 本田技研工業株式会社 燃料電池
US6101988A (en) * 1996-11-13 2000-08-15 Evans Cooling Systems, Inc. Hermetically-sealed engine cooling system and related method of cooling
US5928805A (en) * 1997-11-20 1999-07-27 Siemens Westinghouse Power Corporation Cover and startup gas supply system for solid oxide fuel cell generator
CN1353869A (zh) * 1999-04-23 2002-06-12 泰勒戴尼能源系统公司 抗冻燃料电池系统及其运行方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447674A (ja) * 1990-06-13 1992-02-17 Fuji Electric Co Ltd 燃料電池の温度制御装置
JPH06223855A (ja) * 1993-01-28 1994-08-12 Mazda Motor Corp 燃料電池自動車
JPH06231793A (ja) * 1993-02-04 1994-08-19 Mitsubishi Heavy Ind Ltd 固体高分子電解質型燃料電池
JPH06338338A (ja) * 1993-05-28 1994-12-06 Mitsubishi Heavy Ind Ltd 燃料電池の高分子イオン交換膜の加湿方法
JPH07272737A (ja) * 1994-03-31 1995-10-20 Toyota Motor Corp 燃料電池の停止装置
JPH09147892A (ja) * 1995-11-29 1997-06-06 Sanyo Electric Co Ltd 燃料電池システム及びその運転方法
JPH11273705A (ja) * 1998-03-20 1999-10-08 Sanyo Electric Co Ltd 燃料電池装置
JPH11273704A (ja) * 1998-03-20 1999-10-08 Sanyo Electric Co Ltd 燃料電池装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509332A (ja) * 2002-12-04 2006-03-16 ユーティーシー フューエル セルズ,エルエルシー 改良された加湿システムを有する燃料電池システム
JP2008536287A (ja) * 2005-04-15 2008-09-04 ユーティーシー パワー コーポレイション 氷点下での起動時に冷却および加湿をするための燃料電池セルスタック内での水の保持
JP2008010311A (ja) * 2006-06-29 2008-01-17 Honda Motor Co Ltd 燃料電池の運転方法

Also Published As

Publication number Publication date
EP1386365A2 (en) 2004-02-04
AU2002307156A1 (en) 2002-10-21
US6596426B2 (en) 2003-07-22
KR100840443B1 (ko) 2008-06-20
JP4663960B2 (ja) 2011-04-06
US20020146608A1 (en) 2002-10-10
CN1274047C (zh) 2006-09-06
WO2002081367A3 (en) 2003-02-13
EP1386365A4 (en) 2010-03-03
CN1513217A (zh) 2004-07-14
KR20030090714A (ko) 2003-11-28
WO2002081367A2 (en) 2002-10-17

Similar Documents

Publication Publication Date Title
JP4663960B2 (ja) 氷点下の温度における電池スタック組立体の作動のための方法および装置
US7282285B2 (en) Method and apparatus for the operation of a cell stack assembly during subfreezing temperatures
JP5325929B2 (ja) 電気化学的燃料電池のコールドスタート能力を向上させる方法
US6068941A (en) Start up of cold fuel cell
US6699612B2 (en) Fuel cell power plant having a reduced free water volume
JP2007522623A (ja) 燃料電池システムのための細分割冷却回路
JP3883125B2 (ja) 燃料電池システムおよび燃料電池システムの停止方法
JP2000164233A (ja) 固体高分子型燃料電池発電システム
JP2008059922A (ja) 燃料電池システム
KR100813274B1 (ko) 연료전지 스택의 기동방법
JP2008522367A (ja) 停止工程中に作動可能な燃料電池システムによって動力を与えられるリアクタント用空気ポンプによる水の除去
JP2005093374A (ja) 燃料電池発電システムおよび燃料電池発電システムの停止方法
US7049018B2 (en) Method of operating a fuel cell system under freezing conditions
JP2007053015A (ja) 燃料電池システム
JP2002246052A (ja) 燃料電池装置及びその起動方法
JP2000208158A (ja) 固体高分子電解質型燃料電池発電装置
JP2009004169A (ja) 燃料電池システム
JP2006099992A (ja) 燃料電池システム及びその制御方法
JP2003272682A (ja) 燃料改質型燃料電池システム
US20220158204A1 (en) Catalytic heaters for evaporatively cooled fuel cell systems
JPH08222252A (ja) 固体高分子型燃料電池システム
JP2006093025A (ja) 燃料電池システム
JP2006049133A (ja) 燃料電池システム
JP2008300065A (ja) 燃料電池システム
JP2005353467A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080523

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080530

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080625

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080725

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100312

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

R150 Certificate of patent or registration of utility model

Ref document number: 4663960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees