KR101181838B1 - 연료 전지용 스택과 이를 갖는 연료 전지 시스템 - Google Patents

연료 전지용 스택과 이를 갖는 연료 전지 시스템 Download PDF

Info

Publication number
KR101181838B1
KR101181838B1 KR1020040078645A KR20040078645A KR101181838B1 KR 101181838 B1 KR101181838 B1 KR 101181838B1 KR 1020040078645 A KR1020040078645 A KR 1020040078645A KR 20040078645 A KR20040078645 A KR 20040078645A KR 101181838 B1 KR101181838 B1 KR 101181838B1
Authority
KR
South Korea
Prior art keywords
separator
fuel cell
cooling
heat
stack
Prior art date
Application number
KR1020040078645A
Other languages
English (en)
Other versions
KR20060029801A (ko
Inventor
서준원
나영승
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020040078645A priority Critical patent/KR101181838B1/ko
Publication of KR20060029801A publication Critical patent/KR20060029801A/ko
Application granted granted Critical
Publication of KR101181838B1 publication Critical patent/KR101181838B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

본 발명에 따른 연료 전지 시스템은, 수소와 산소의 전기 화학적인 반응을 통해 전기 에너지를 발생시키는 적어도 하나의 전기 발생부; 수소를 함유한 연료를 상기 전기 발생부로 공급하는 연료 공급원; 산소를 상기 전기 발생부로 공급하는 산소 공급원; 상기 전기 발생부에 형성되는 적어도 하나의 쿨링 통로로 냉매를 유통시켜 상기 전기 발생부에서 발생되는 열을 방출시키는 냉각부; 및 상기 전기 발생부에 연결 설치되고 상기 쿨링 통로 내부에 배치되어 상기한 열을 확산시키는 열 확산부를 포함한다.
Figure R1020040078645
연료전지, 스택, 전기발생부, 냉각부, 쿨링통로, 냉매, 열확산부, 열전도매체, 접촉면적

Description

연료 전지용 스택과 이를 갖는 연료 전지 시스템 {STACK FOR FUEL CELL AND FUEL CELL SYSTEM WITH THE SAME}
도 1은 본 발명의 실시예에 따른 연료 전지 시스템의 전체적인 구성을 도시한 개략도이다.
도 2는 본 발명의 제1 실시예에 따른 연료 전지 시스템의 스택 부위를 도시한 분해 사시도이다.
도 3은 도 2의 결합 정면 구성도이다.
도 4는 본 발명의 제2 실시예에 따른 연료 전지 시스템의 스택 부위를 도시한 평면 구성도이다.
도 5는 본 발명의 제3 실시예에 따른 연료 전지 시스템의 스택 부위를 도시한 평면 구성도이다.
본 발명은 연료 전지 시스템에 관한 것으로서, 더욱 상세하게는 냉각효율을 개선한 연료 전지용 스택 및 이를 갖는 연료 전지 시스템에 관한 것이다.
일반적으로, 연료 전지(fuel cell)는 메탄올, 에탄올 또는 천연 가스 등 탄 화수소 계열의 물질 내에 함유되어 있는 수소와 공기 중의 산소를 연료로 하여 일어나는 전기 화학 반응에 의하여 화학에너지를 직접 전기에너지로 변화시키는 발전 시스템이다.
근래에 개발되고 있는 고분자 전해질형 연료 전지(Polymer Electrolyte Membrane Fuel Cell : PEMFC, 이하 PEMFC라 한다)는, 다른 연료 전지에 비하여 출력 특성이 탁월하고 작동 온도가 낮을 뿐더러 빠른 시동 및 응답 특성을 가지고 있다.
상기와 같은 PEMFC가 기본적으로 시스템의 구성을 갖추기 위해서는, 스택(stack)이라 불리는 연료 전지 본체(이하, 편의상 스택이라 칭한다.), 연료 탱크 및 이 연료 탱크로부터 상기 스택으로 연료를 공급하기 위한 연료 펌프 등이 필요하다. 그리고 연료 탱크에 저장된 연료를 스택으로 공급하는 과정에서 연료를 개질하여 수소 가스를 발생시키고 그 수소 가스를 스택으로 공급하는 개질기(reformer)가 더욱 필요하다. 따라서, PEMFC는 연료 펌프의 펌핑력에 의해 연료 탱크에 저장된 연료를 개질기로 공급하고, 개질기가 연료를 개질하여 수소 가스를 발생시키며, 스택이 수소 가스와 산소를 전기 화학적으로 반응하여 전기에너지를 생산해 내게 된다.
상기와 같은 연료 전지 시스템에 있어서, 전기를 실질적으로 발생시키는 스택은 막-전극 어셈블리(Membrane Electrode Assembly : MEA, 이하 MEA라 한다)와 세퍼레이터(Bipolar Plate)(당 업계에서는 '바이폴라 플레이트(Bipolar Plate)라고도 한다.)로 이루어진 단위의 셀이 수 개 내지 수십 개로 적층된 구조로 이루어진 다. 여기서 MEA는 전해질막을 사이에 두고 애노드 전극과 캐소드 전극이 부착된 구조를 가진다. 그리고 세퍼레이터는 수소 가스와 공기를 MEA로 공급하는 역할과, 각 MEA의 애노드 전극과 캐소드 전극을 직렬로 연결시켜 주는 전도체의 역할을 동시에 수행한다. 따라서, 세퍼레이터에 의해 애노드 전극에는 수소 가스가 공급되는 반면, 캐소드 전극에는 공기가 공급된다. 이 과정에서 애노드 전극에서는 수소 가스의 산화 반응이 일어나고, 캐소드 전극에서는 산소의 환원반응이 일어나며 이때 생성되는 전자의 이동으로 인해 전기와 열 그리고 물을 함께 얻을 수 있다.
이러한 연료 전지 시스템은 스택을 적정한 구동 온도로 유지하여야 전해질막의 안정성을 보장하고 성능 저하를 방지하게 된다. 이를 위해 스택은 내부에 쿨링 통로를 구비하고, 이 쿨링 통로를 통하여 저온의 냉매 예컨대, 공기 또는 냉각수를 흘려 스택 내부에서 발생되는 열을 냉각시킨다.
그런데, 종래의 연료 전지 시스템의 냉각 구조에 따르면, 쿨링 통로의 단위 면적당 냉매의 접촉 면적이 한정되고 세퍼레이터의 전 영역으로 상기한 열이 고르게 분포되지 못하게 되는 바, 세퍼레이터에 대한 냉매의 열전달에 한계를 가지게 되어 스택의 전체에 대한 냉각 효율을 최상으로 이루지 못하고 있다. 따라서 이와 같은 종래의 냉각 구조에 의하여 전체적인 시스템의 성능 효율을 떨어뜨리고 있는 실정이다.
본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, 그 목적은 세퍼레이터의 전 영역으로 열을 확산시키면서 세퍼레이터에 대한 냉매의 접촉 면적을 증대시킬 수 있는 구조를 가진 연료 전지용 스택 및 연료 전지 시스템을 제공하는데 있다.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 연료 전지용 스택은, 다수의 단위 셀들을 포함하는 전기 발생 집합체; 서로 이웃하는 상기 단위 셀 사이의 쿨링 통로로 냉각 매체를 흘려 주어 상기 각각의 단위 셀에서 발생하는 열을 냉각시키는 냉각부; 및 상기 쿨링 통로 내부에 설치되어 상기한 열을 확산시키는 열 확산부를 포함한다.
본 발명에 따른 연료 전지용 스택에 있어서, 상기 열 확산부는 상기 단위 셀에 연결 설치되어 상기 단위 셀에 대한 냉각 매체의 접촉 면적을 확장시키도록 구비될 수 있다. 이 때 본 발명에 따른 연료 전지용 스택은, 상기 냉각 매체로 공기를 사용하는 것이 바람직하다.
아울러 상기와 같은 목적을 달성하기 위하여 본 발명에 따른 연료 전지용 스택은, 막-전극 어셈블리(Membrane Electrode Assembly: MEA)를 중심에 두고 그 양측에 배치되는 세퍼레이터(Separator)로 구성되는 적어도 하나의 전기 발생부를 포함하며,
상기 전기 발생부를 복수로 구비하여 이들 전기 발생부의 집합체를 형성하고, 서로 이웃하는 상기 전기 발생부 사이의 쿨링 통로 내에 열 확산부를 설치하여 상기 전기 발생부에서 발생되는 열을 확산시키도록 구성된다.
본 발명에 따른 연료 전지용 스택에 있어서, 상기 쿨링 통로는 상기 세퍼레 이터의 막-전극 어셈블리 반대측에 형성될 수 있다. 구체적으로, 상기 쿨링 통로는 세퍼레이터의 일면과 이 세퍼레이터에 대향 밀착되는 다른 세퍼레이터의 일면에 채널 형태로 형성되어 두 채널이 합쳐져 상기 냉각 매체를 통과시키는 하나의 구멍으로 이루어지는 것이 바람직하다.
또한 본 발명에 따른 연료 전지용 스택에 있어서, 상기 열 확산부는 상기 세퍼레이터의 채널 형성면 사이에 개재되는 열전도매체를 포함할 수 있다. 이 경우 상기 열전도매체는 상기 쿨링 통로를 적어도 2 이상의 유통로로 구획 형성하여 상기 냉각 매체의 접촉 면적을 증대시키도록 구비될 수 있다.
그리고 본 발명에 따른 연료 전지용 스택에 있어서, 상기 열전도매체는 상기 냉각 매체가 실질적으로 접촉되는 부분에 적어도 하나의 돌기를 형성하여 상기 냉각 매체의 접촉 면적을 증대시키도록 구비될 수도 있다.
또한 본 발명에 따른 연료 전지용 스택에 있어서, 상기 열전도매체는 상기 냉각 매체가 실질적으로 접촉되는 부분을 지그재그 상으로 밴딩하여 상기 냉각 매체의 접촉 면적을 증대시키도록 구비될 수도 있다.
그리고 본 발명에 따른 연료 전지용 스택에 있어서, 위와 같은 상기 열전도매체는 상기 세퍼레이터 보다 열전도도가 높은 금속 플레이트 형태로 이루어지는 것이 바람직하다. 이 경우 상기 열전도매체는 알루미늄이나 구리, 철 등의 금속 재질 군에서 선택되는 금속 플레이트로 형성될 수 있다.
아울러 상기와 같은 목적을 달성하기 위하여 본 발명에 따른 연료 전지 시스템은, 수소와 산소의 전기 화학적인 반응을 통해 전기 에너지를 발생시키는 적어도 하나의 전기 발생부; 수소를 함유한 연료를 상기 전기 발생부로 공급하는 연료 공급원; 산소를 상기 전기 발생부로 공급하는 산소 공급원; 상기 전기 발생부에 형성되는 적어도 하나의 쿨링 통로로 냉매를 유통시켜 상기 전기 발생부에서 발생되는 열을 방출시키는 냉각부; 및 상기 전기 발생부에 연결 설치되고 상기 쿨링 통로 내부에 배치되어 상기한 열을 확산시키는 열 확산부를 포함한다.
본 발명에 따른 연료 전지 시스템은, 상기 전기 발생부가 복수로 구비되어 이들 전기 발생부의 집합체에 의한 스택을 형성할 수 있다. 이 경우 상기 전기 발생부는 막-전극 어셈블리(Membrane Electrode Assembly: MEA)를 중심에 두고 그 양측에 배치되는 세퍼레이터(Separator)로 구성된다.
또한 본 발명에 따른 연료 전지 시스템에 있어서, 상기 쿨링 통로는 서로 이웃하는 전기 발생부 사이에 형성되고, 상기 세퍼레이터의 일면과 이 세퍼레이터에 대향 밀착되는 다른 세퍼레이터의 일면에 채널 형태로 형성되어 두 채널이 합쳐져 하나의 구멍으로 이루어지는 것이 바람직하다.
그리고 본 발명에 따른 연료 전지 시스템에 있어서, 상기 냉각부는 상기 쿨링 통로로 상기 냉매를 공급하는 냉매 공급원을 포함하며, 상기 냉매 공급원은 상기 쿨링 통로로 냉각 공기를 분출시키는 팬을 구비하고, 상기 팬이 스택의 외형을 이루는 하우징에 설치될 수 있다.
또한 본 발명에 따른 연료 전지 시스템에 있어서, 상기 열 확산부는 상기 세퍼레이터의 채널 형성면 사이에 개재되는 열전도매체를 포함하고 있다. 이 경우 상기 열전도매체는 상기 쿨링 통로를 적어도 2 이상의 유통로로 구획 형성하여 상기 냉매의 접촉 면적을 증대시키도록 구비될 수 있다.
그리고 본 발명에 따른 연료 전지 시스템에 있어서, 상기 열전도매체는 상기 냉매가 실질적으로 접촉되는 부분에 적어도 하나의 돌기를 형성하여 상기 냉매의 접촉 면적을 증대시키도록 구비될 수도 있다.
또한 본 발명에 따른 연료 전지 시스템에 있어서, 상기 열전도매체는 상기 냉매가 실질적으로 접촉되는 부분을 지그재그 상으로 밴딩하여 상기 냉매의 접촉 면적을 증대시키도록 구비될 수도 있다.
그리고 본 발명에 따른 연료 전지 시스템에 있어서, 위와 같은 상기 열전도매체는 상기 세퍼레이터 보다 열전도도가 높은 알루미늄이나 구리, 철 등의 금속 재질 군에서 선택되는 금속 플레이트로 이루어진다.
또한 본 발명에 따른 연료 전지 시스템에 있어서, 상기 연료 공급원은 상기 연료로부터 수소 가스를 발생시키고, 이 수소 가스를 상기 전기 발생부로 공급하는 개질기를 포함할 수 있다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1은 본 발명의 실시예에 따른 연료 전지 시스템의 전체적인 구성을 도시한 개략도이다.
도 1을 참고하면, 본 시스템(100)은 수소를 함유한 연료로부터 수소 가스를 발생시키고, 이 수소 가스 중에 함유된 수소와 별도로 공급되는 산소의 전기 화학적인 반응을 통해 전기 에너지를 발생시키는 고분자 전해질형 연료 전지(Polymer Electrode Membrane Fuel Cell; PEMFC) 방식을 채용한다.
본 발명에 따른 연료 전지 시스템(100)에 있어 전기를 발생시키기 위한 연료라 함은 메탄올, 에탄올 또는 천연 가스와 같이 수소를 함유한 협의(狹義)의 연료 이 외에, 광의(廣義)의 연료로서 물이 더욱 포함된다. 그러나 이하에서 설명하는 연료는 상기 광의의 연료로서 편의상 액상으로 이루어진 연료라 정의한다.
그리고 본 시스템(100)은 상기 연료에 함유된 수소와 반응하는 산소로서 별도의 저장유니트에 저장된 순수한 산소 가스를 사용할 수 있으며, 산소를 함유하고 있는 공기를 그대로 사용할 수도 있다. 그러나 이하에서는 후자의 예를 설명한다.
본 발명의 실시예에 따른 연료 전지 시스템(100)은 기본적으로, 수소와 산소의 전기 화학적인 반응을 통해 전기 에너지를 발생시키는 스택(16)과, 전술한 바 있는 연료로부터 수소 가스를 발생시키고 이 수소 가스를 스택(16)으로 공급하는 연료 공급원(10)과, 공기를 스택(16)으로 공급하는 산소 공급원(12)을 포함한다.
스택(16)은 연료 공급원(10)과 산소 공급원(12)에 연결 설치되어 이 연료 공급원(10)으로부터 상기 수소 가스를 공급받고, 산소 공급원(12)으로부터 공기를 공급받아 상기 수소 가스와 공기 중의 산소를 전기 화학적으로 반응시켜 전기 에너지를 발생시키는 연료 전지로 구성된다.
연료 공급원(10)은 전술한 바 있는 연료를 저장하는 연료 탱크(22)와, 이 연료 탱크(22)에 연결 설치되어 소정의 펌핑력으로 상기한 연료를 배출시키는 연료 펌프(24)와, 연료 탱크(22)로부터 연료를 공급받아 이 연료로부터 수소 가스를 발생시키고 상기 수소 가스를 스택(16)으로 공급하는 개질기(18)를 포함한다.
상기 연료 공급원(10)에 있어 개질기(18)는 연료 탱크(22)와 스택(16) 사이에 배치되어 상기 연료 탱크(22)와 스택(16)에 각각 연결 설치된다. 이러한 개질기(18)는 열 에너지에 의한 화학 촉매 반응을 통해 상기 연료로부터 수소 가스를 발생시키고, 상기 수소 가스에 함유된 일산화탄소의 농도를 저감시키는 통상적인 개질기 구조를 갖는다. 부연 설명하면, 상기 개질기(18)는 일 례로서, 수증기 개질, 부분 산화 또는 자열 반응 등의 촉매 반응을 통해 상기한 연료로부터 수소 가스를 발생시킨다. 그리고 상기 개질기(18)는 일 례로서, 수성가스 전환 방법, 선택적 산화 방법 등과 같은 촉매 반응 또는 분리막을 이용한 수소의 정제 등과 같은 방법으로 상기 수소 가스에 함유된 일산화탄소의 농도를 저감시킨다.
그리고 산소 공급원(12)은 소정 펌핑력으로 공기를 흡입하여 이 공기를 스택(16)으로 공급하는 공기 펌프(26)를 포함하고 있다.
대안으로서, 본 발명에 따른 연료 전지 시스템(100)은 상기 연료를 직접 스택(16)으로 공급하여 전기를 생산해 낼 수 있는 직접 메탄올형 연료 전지(Direct Methanol Fuel Cell: DMFC) 방식을 채용할 수도 있다. 이러한 직접 메탄올형 연료 방식의 연료 전지는 위와 같은 고분자 전해질형 연료 전지와 달리, 도 1에 도시한 개질기(18)가 배제된 구조를 갖는다. 그러나, 이하에서는 고분자 전해질형 연료 전지 방식을 채용한 연료 전지 시스템(100)을 예로 들어 설명할 뿐, 본 발명이 반드시 이에 한정되는 것은 아니다.
본 발명에 있어 상기한 스택(16)을 구성하는 실시예를 첨부한 도면을 참조하여 상세하게 설명한다.
도 2는 본 발명의 제1 실시예에 따른 연료 전지 시스템의 스택 부위를 도시한 분해 사시도이고, 도 3은 도 2의 결합 정면 구성도이다.
도 1 내지 도 3을 참고하여 스택(16)을 설명하면, 본 시스템(100)에 적용되는 스택(16)은 막-전극 어셈블리(Membrane-Electrode assembly: MEA)(이하, 'MEA'라고 한다.)(32)를 중심에 두고 이의 양면에 세퍼레이터(Separator)(당업계에서는 '바이폴라 플레이트'라고도 한다.)(34)를 배치하여 전기를 발생시키는 최소 단위의 전기 발생부(30)를 포함하여 이루어진다. 따라서 위와 같은 전기 발생부(30)를 복수로 구비하고 이들을 연속적으로 적층 배치함으로써 본 실시예에서와 같은 집합체 구조의 스택(16)을 형성할 수 있다.
상기 MEA(32)는 일면에 애노드 전극이 위치하고 다른 일면에 캐소드 전극(도시하지 않음)이 위치하며, 상기 두 전극 사이에 전해질막(도시하지 않음)을 구비하는 구조로 이루어져 있다. 여기서 상기 애노드 전극은 세퍼레이터(34)를 통해 공급되는 수소 가스를 산화 반응시켜 수소를 수소 이온(프로톤)과 전자로 변환시키는 기능을 하게 된다. 캐소드 전극은 세퍼레이터(34)를 통해 공급되는 공기 중의 산소와 상기 애노드 전극으로부터 이동된 수소 이온 및 전자를 환원 반응시켜, 소정 온도의 열과 수분을 발생시키는 기능을 하게 된다. 그리고 전해질막은 두께가 50~200㎛인 고체 폴리머 전해질로 형성되어, 애노드 전극에서 생성된 수소 이온을 캐소드 전극으로 이동시키는 이온 교환의 기능을 하게 된다.
그리고 세퍼레이터(34)는 MEA(32)를 사이에 두고 서로 밀착 배치되어, 개질기(18)에서 발생되는 수소 가스와 공기 펌프(26)에 의해 흡입되는 공기를 MEA(32)의 애노드 전극 및 캐소드 전극으로 공급하는 기능 외에, 상기 애노드 전극과 캐소드 전극을 직렬로 연결시켜 주는 전도체의 기능을 하게 된다.
상기와 같이 구성된 연료 전지 시스템(100)의 작용시 상기 전기 발생부(30)에서는 전술한 바 있는 환원 반응에 의해 열이 발생하게 된다. 이 열은 MEA(32)를 건조시켜 스택(16)의 성능을 저하시키는 요인으로 작용한다.
이에 본 발명의 연료 전지 시스템(100)은 냉각 매체(이하에서는 "냉매" 라고 한다.)를 스택(16) 내부로 유통시켜 각각의 전기 발생부(30)에서 발생되는 열을 냉각시키는 구조로 이루어진다.
이를 위하여 본 시스템(100)은 스택(16)에 구비되어 상기 냉매를 그 스택(16)의 내부로 유통시킬 수 있는 냉각부(50)를 구비하고 있다.
상기 냉각부(50)는 스택(16) 전체를 감싸는 하우징(17)에 설치되어 각각의 전기 발생부(30)로 냉매를 공급하는 냉매 공급원(51)과, 상기 냉매를 각각의 전기 발생부(30)로 흘려 줄 수 있도록 서로 이웃하는 전기 발생부(30) 사이에 형성되는 쿨링 통로(53)를 포함한다.
이 냉매 공급원(51)은 도 3에 가상선으로 도시한 바와 같이, 냉매를 흡입하여 이 냉매를 쿨링 통로(53)로 공급하는 구조로 이루어진 바, 본 발명에서 상기한 냉매는 냉각수 일수도 있으나 자연 상태에서 쉽게 취할 수 있는 공기를 사용하는 것이 바람직하다. 이러한 냉매 공급원(51)은 소정의 회전력으로 공기를 흡입하여 이 공기를 전기 발생부(30)로 분출시키는 공지 기술의 팬(52)을 구비한다.
상기 냉매 공급원(51)으로부터 공급되는 냉매를 스택(16) 내부로 유통시키기 위한 상기 쿨링 통로(53)는, 전기 발생부(30)의 세퍼레이터(34)에 있어 막-전극 어셈블리(32)와 마주하는 면의 반대쪽 면에 형성되는 복수의 채널(53a,53b)로 구성되며, 본 실시예에서는 어느 한 전기 발생부(30)의 일측 세퍼레이터(34)에 형성되는 채널들(53a)과 서로 이웃하는 다른 하나의 전기 발생부(30)의 다른 일측 세퍼레이터(34)에 형성되는 채널들(53b)이 서로 마주보는 형태로 배치되어 합체됨으로써 구성되고 있다.
따라서 상기 냉매 공급원(51)으로부터 공급되는 냉각 공기를 상기한 쿨링 통로(53)로 유통시킴에 따라, 전기 발생부(30)에서 발생되는 열을 외부로 방열시켜 온도를 낮출 수 있게 된다.
이와 같이 쿨링 통로(53)로 냉매를 공급하여 전기 발생부(30)에서 발생되는 열을 냉각시키는 연료 전지 시스템(100)에, 본 발명에 따른 열 확산부(60)가 제공되는 바, 이 열 확산부(60)는 전기 발생부(30)에서 발생되는 열을 세퍼레이터(34)의 전 영역에 고르게 확산시키는 기능을 하게 된다. 이 외에, 상기 열 확산부(60)는 세퍼레이터(34)에 대하여 쿨링 통로(53)를 통과하는 냉매의 접촉 면적을 확장시키는 기능도 하게 된다.
구체적으로, 상기 열 확산부(60)는 서로 이웃하는 전기 발생부(30)의 세퍼레이터(34)에 실질적으로 연결 설치되는 열전도매체(61)를 구비하는 바, 이 열전도매체(61)는 서로 마주하는 세퍼레이터(34)의 채널 형성면 사이에 개재된다.
상기 열전도매체(61)는 상기 세퍼레이터(34) 보다 상대적으로 열전도도가 높은 금속 플레이트를 구비하며, 상기 세퍼레이터(34)의 채널 형성면 사이에서 이 채널 형성면에 밀착 배치된다. 본 실시예에서 상기 열전도매체(61)는 박판 형태로 이루어지며, 그 두께에 대해서는 특정한 값으로 특별하게 한정되지 않는다. 그리고 상기 세퍼레이터(34)가 통상 흑연 재질로 이루어지는 것을 감안할 때, 상기 열전도매체(61)는 흑연보다 상대적으로 열전도도가 높은 알루미늄이나 구리, 철 등의 재질에서 선택됨이 바람직하나, 이 또한 이것으로 한정되는 것은 아니다.
따라서 상기 열전도매체(61)는 쿨링 통로(53)를 형성하는 세퍼레이터(34)의 채널 형성면 사이에 밀착 배치됨에 따라, 전기 발생부(30)에서 발생되는 열을 세퍼레이터(34)의 전 영역으로 고르게 확산시킬 수 있게 된다.
이에 더하여 상기 열전도매체(61)는 상술한 바와 같이, 쿨링 통로(53)를 형성하도록 서로 마주하면서 합체되는 세퍼레이터(34)의 채널 형성면에 밀착 배치됨에 따라, 상기한 쿨링 통로(53)를 2의 공간으로 분할 형성할 수 있다. 즉, 상기 열전도매체(61)는 쿨링 통로(53)의 길이 방향에 대해 이 통로(53)를 2의 유통로(53c, 53d)로 구획 형성할 수 있다.
따라서 상기 열전도매체(61)는 상기 쿨링 통로(53)를 2의 유통로(53c, 53d)로 구획 형성함에 따라, 이 열전도매체(61)에 대한 냉매의 접촉 면적, 실질적으로는 상기 세퍼레이터(34)에 대한 냉매의 접촉 면적을 더욱 증대시킬 수 있게 된다.
본 발명에 의하면, 언급한 바와 같이 쿨링 통로(53)를 형성하는 세퍼레이터(34)의 채널 형성면 사이에 열전도매체(61)를 설치함에 따라, 전기 발생부(30)에서 발생되는 열은 이 열전도매체(61)를 통해 빠르게 흡수되어 세퍼레이터(34)의 전 영역으로 고르게 확산될 수 있다. 뿐만 아니라, 상기 열전도매체(61)가 쿨링 통로(53)의 내부에 배치되면서 이 쿨링 통로(53)를 2의 유통로(53c, 53d)로 구획 형성함에 따라, 상기 세퍼레이터(34)에 대한 냉매의 접촉 면적을 증대시킬 수 있다.
이로써 상기 열전도매체(61)에 의하여 세퍼레이터(34)에 대한 열 확산 능력을 향상시키고 냉매의 접촉 면적을 극대화시킬 수 있으므로, 스택(16) 전체의 방열 효율을 더욱 향상시킬 수 있게 된다.
도 4는 본 발명의 제2 실시예에 따른 연료 전지 시스템의 스택 부위를 도시한 평면 구성도이다.
도 4를 참고하면, 본 실시예에 따른 스택(16A)은 전기 실시예의 구조를 기본으로 하면서, 세퍼레이터(34)의 쿨링 통로(53) 내에 위치하는 열전도매체(61A)의 일부분에 적어도 하나의 돌기(63)를 형성하고 있다.
상기 돌기(63)는 열전도매체(61A)를 통한 세퍼레이터(34)의 열 확산 능력을 더욱 향상시킴은 물론, 열전도매체(61A)에 대한 냉매의 접촉 면적, 실질적으로는 세퍼레이터(34)에 대한 냉매의 접촉 면적을 더욱 증대시키기 위한 것이다.
본 실시예에서 상기 돌기(63)는 상기 열전도매체(61A)의 일부분에 핀 형태로 돌출 형성되며, 쿨링 통로(53)의 길이 방향으로 길게 배치된다. 이러한 돌기(63)는 도면에 도시한 바와 같이, 상기 일부분에 2 개소로 형성되고 있으나, 이에 국한되지 않고 1 또는 2 이상으로 형성될 수도 있다.
도 5는 본 발명의 제3 실시예에 따른 연료 전지 시스템의 스택 부위를 도시 한 평면 구성도이다.
도 5를 참고하면, 본 실시예에 따른 스택(16B)은 세퍼레이터(34)의 쿨링 통로(53) 내에 위치하는 열전도매체(61B)의 일부분을 지그재그 상으로 밴딩하여 이루어지는 주름부(65)를 형성하고 있다.
본 발명에 의하면, 상기 열전도매체(61B)를 절곡 성형하여 주름부(65)를 형성함에 따라, 열전도매체(61B)를 통한 세퍼레이터(34)의 열 확산 능력을 더욱 향상시킴은 물론, 열전도매체(61B)에 대한 냉매의 접촉 면적, 실질적으로는 세퍼레이터(34)에 대한 냉매의 접촉 면적을 더욱더 극대화시킬 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
이상 설명한 바와 같이 본 발명의 연료 전지 시스템에 따르면, 세퍼레이터의 전 영역으로 열을 확산시키면서 세퍼레이터에 대한 냉매의 접촉 면적을 증대시킬 수 있는 열 확산부를 구비하므로, 스택의 전체에 대한 냉각 효율, 더 나아가 전체적인 시스템의 성능 효율을 더욱 향상시킬 수 있는 효과가 있다.

Claims (23)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 막-전극 어셈블리(Membrane Electrode Assembly: MEA)를 중심에 두고 그 양측에 배치되는 세퍼레이터(Separator)로 구성되는 적어도 하나의 전기 발생부
    를 포함하며,
    상기 전기 발생부를 복수로 구비하여 이들 전기 발생부의 집합체를 형성하고, 서로 이웃하는 상기 전기 발생부 사이의 쿨링 통로 내에 열 확산부를 설치하여 상기 전기 발생부에서 발생되는 열을 확산시키도록 구성되며,
    상기 쿨링 통로는 세퍼레이터의 일면과 이 세퍼레이터에 대향 밀착되는 다른 세퍼레이터의 일면에 채널 형태로 형성되어 두 채널이 합쳐져 냉각 매체를 통과시키는 하나의 구멍으로 이루어지고,
    상기 열 확산부는 대향 밀착된 상기 세퍼레이터들의 채널 형성면 사이에 개재되는 플레이트 형태로 이루어진 연료 전지용 스택.
  5. 제 4 항에 있어서,
    상기 쿨링 통로는 상기 세퍼레이터의 막-전극 어셈블리 반대측에 형성되는 연료 전지용 스택.
  6. 삭제
  7. 제 4 항에 있어서,
    상기 열 확산부는 상기 세퍼레이터의 채널 형성면 사이에 개재되는 열전도매체를 포함하는 연료 전지용 스택.
  8. 제 7 항에 있어서,
    상기 열전도매체는 상기 쿨링 통로를 적어도 2 이상의 유통로로 구획 형성하여 상기 냉각 매체의 접촉 면적을 증대시키도록 구비되는 연료 전지용 스택.
  9. 제 8 항에 있어서,
    상기 열전도매체는 상기 냉각 매체가 접촉되는 부분에 적어도 하나의 돌기를 형성하여 상기 냉각 매체의 접촉 면적을 증대시키도록 구비되는 연료 전지용 스택.
  10. 제 8 항에 있어서,
    상기 열전도매체는 상기 냉각 매체가 접촉되는 부분을 지그재그 상으로 밴딩하여 상기 냉각 매체의 접촉 면적을 증대시키도록 구비되는 연료 전지용 스택.
  11. 제 7 항 내지 제 10 항 중 선택된 어느 한 항에 있어서,
    상기 열전도매체는 상기 세퍼레이터 보다 열전도도가 높은 금속 플레이트 형태로 이루어지는 연료 전지용 스택.
  12. 제 11 항에 있어서,
    상기 열전도매체는 알루미늄이나 구리, 철 등의 금속 재질 군에서 선택되는 금속 플레이트인 연료 전지용 스택.
  13. 수소와 산소의 전기 화학적인 반응을 통해 전기 에너지를 발생시키는 적어도 하나의 전기 발생부;
    수소를 함유한 연료를 상기 전기 발생부로 공급하는 연료 공급원;
    산소를 상기 전기 발생부로 공급하는 산소 공급원;
    상기 전기 발생부에 형성되는 적어도 하나의 쿨링 통로로 냉매를 유통시켜 상기 전기 발생부에서 발생되는 열을 방출시키는 냉각부; 및
    상기 전기 발생부에 연결 설치되고 상기 쿨링 통로 내부에 배치되어 상기한 열을 확산시키는 열 확산부
    를 포함하고,
    상기 전기 발생부는 막-전극 어셈블리(Membrane Electrode Assembly: MEA)를 중심에 두고 그 양측에 배치되는 세퍼레이터(Separator)로 구성되며,
    상기 쿨링 통로는 서로 이웃하는 전기 발생부 사이에 형성되고, 상기 세퍼레이터의 일면과 이 세퍼레이터에 대향 밀착되는 다른 세퍼레이터의 일면에 채널 형태로 형성되어 두 채널이 합쳐져 하나의 구멍으로 이루어지고,
    상기 열 확산부는 대향 밀착된 상기 세퍼레이터들의 채널 형성면 사이에 개재되는 플레이트 형태로 이루어진 연료 전지 시스템.
  14. 제 13 항에 있어서,
    상기 전기 발생부가 복수로 구비되어 이들 전기 발생부의 집합체에 의한 스택을 형성하는 연료 전지 시스템.
  15. 삭제
  16. 삭제
  17. 제 14 항에 있어서,
    상기 냉각부는, 상기 쿨링 통로로 상기 냉매를 공급하는 냉매 공급원을 포함하며,
    상기 냉매 공급원은 상기 쿨링 통로로 냉각 공기를 분출시키는 팬을 구비하며, 상기 팬이 스택의 외형을 이루는 하우징에 설치되는 연료 전지 시스템.
  18. 제 13 항에 있어서,
    상기 열 확산부는 상기 세퍼레이터의 채널 형성면 사이에 개재되는 열전도매체를 포함하는 연료 전지 시스템.
  19. 제 18 항에 있어서,
    상기 열전도매체는 상기 쿨링 통로를 적어도 2 이상의 유통로로 구획 형성하여 상기 냉매의 접촉 면적을 증대시키도록 구비되는 연료 전지 시스템.
  20. 제 19 항에 있어서,
    상기 열전도매체는 상기 냉매가 접촉되는 부분에 적어도 하나의 돌기를 형성하여 상기 냉매의 접촉 면적을 증대시키도록 구비되는 연료 전지 시스템.
  21. 제 19 항에 있어서,
    상기 열전도매체는 상기 냉매가 접촉되는 부분을 지그재그 상으로 밴딩하여 상기 냉매의 접촉 면적을 증대시키도록 구비되는 연료 전지 시스템.
  22. 제 18 항 내지 제 21 항 중 선택된 어느 한 항에 있어서,
    상기 열전도매체는 상기 세퍼레이터 보다 열전도도가 높은 알루미늄이나 구리, 철 등의 금속 재질 군에서 선택되는 금속 플레이트인 연료 전지 시스템.
  23. 제 13 항에 있어서,
    상기 연료 공급원은 상기 연료로부터 수소 가스를 발생시키고, 이 수소 가스를 상기 전기 발생부로 공급하는 개질기를 포함하는 연료 전지 시스템.
KR1020040078645A 2004-10-04 2004-10-04 연료 전지용 스택과 이를 갖는 연료 전지 시스템 KR101181838B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040078645A KR101181838B1 (ko) 2004-10-04 2004-10-04 연료 전지용 스택과 이를 갖는 연료 전지 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040078645A KR101181838B1 (ko) 2004-10-04 2004-10-04 연료 전지용 스택과 이를 갖는 연료 전지 시스템

Publications (2)

Publication Number Publication Date
KR20060029801A KR20060029801A (ko) 2006-04-07
KR101181838B1 true KR101181838B1 (ko) 2012-09-13

Family

ID=37140007

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040078645A KR101181838B1 (ko) 2004-10-04 2004-10-04 연료 전지용 스택과 이를 갖는 연료 전지 시스템

Country Status (1)

Country Link
KR (1) KR101181838B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681176A (zh) * 2017-11-09 2018-02-09 北京重理能源科技有限公司 一种增强散热效果的风冷燃料电池双极板及方法
CN117117251A (zh) * 2023-09-21 2023-11-24 北京理工大学 一种燃料电池加热技术和温度控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081367A2 (en) 2001-04-05 2002-10-17 Utc Fuel Cells, Llc Method an apparatus for the operation of a cell stack assembly during subfreezing temperatures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081367A2 (en) 2001-04-05 2002-10-17 Utc Fuel Cells, Llc Method an apparatus for the operation of a cell stack assembly during subfreezing temperatures

Also Published As

Publication number Publication date
KR20060029801A (ko) 2006-04-07

Similar Documents

Publication Publication Date Title
US7537851B2 (en) Fuel cell system including separator having cooling water flow channels
US20060172163A1 (en) Fuel cell stack and fuel cell system having the same
US7879504B2 (en) Fuel cell stack having improved cooling structure
JP2005340207A (ja) 燃料電池システムおよび燃料電池用スタック
KR100696681B1 (ko) 스택 및 이를 포함하는 연료 전지 장치
US20060154125A1 (en) Stack for fuel cell and fuel cell system with the same
JP2006073518A (ja) 燃料電池用スタック
EP1995814A2 (en) Fuel cell stack
KR101181838B1 (ko) 연료 전지용 스택과 이를 갖는 연료 전지 시스템
KR101147235B1 (ko) 연료 전지 시스템
KR101542970B1 (ko) 연료 전지 스택
KR101181821B1 (ko) 연료 전지 시스템 및 그 스택
JP2010061986A (ja) 燃料電池スタック
KR101147233B1 (ko) 연료 전지 시스템 및 그 스택
KR101107081B1 (ko) 연료 전지용 스택과 이를 갖는 연료 전지 시스템
KR100627389B1 (ko) 연료 전지 시스템 및 그 스택
KR101181850B1 (ko) 연료 전지 시스템
KR101135481B1 (ko) 연료 전지용 스택과 이를 갖는 연료 전지 시스템
KR20050108431A (ko) 연료 전지용 스택 및 연료 전지 시스템
KR20060082303A (ko) 연료 전지 시스템

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150820

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee