JP2005349682A - Resin sheet structure and multi-layer wiring board using it - Google Patents

Resin sheet structure and multi-layer wiring board using it Download PDF

Info

Publication number
JP2005349682A
JP2005349682A JP2004172413A JP2004172413A JP2005349682A JP 2005349682 A JP2005349682 A JP 2005349682A JP 2004172413 A JP2004172413 A JP 2004172413A JP 2004172413 A JP2004172413 A JP 2004172413A JP 2005349682 A JP2005349682 A JP 2005349682A
Authority
JP
Japan
Prior art keywords
resin composition
mass
resin
polyamic acid
sheet structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004172413A
Other languages
Japanese (ja)
Other versions
JP4361423B2 (en
Inventor
Hiroaki Adachi
弘明 足立
Satoshi Ogiya
聡 扇谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2004172413A priority Critical patent/JP4361423B2/en
Publication of JP2005349682A publication Critical patent/JP2005349682A/en
Application granted granted Critical
Publication of JP4361423B2 publication Critical patent/JP4361423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin sheet structure which indicates fluidity when heated/pressurized, is excellent in mechanical properties, can be used as a heat resistant material, and is easy in handling and a multi-layer wiring board produced by using the structure. <P>SOLUTION: In the resin sheet structure, a resin composition layer which contains a polyamic acid (a) of the reaction product of a dicarboxylic acid anhydride (MA), a tetracarboxylic acid dianhydride (DA), and a diamine having a mole ratio MA/DA of 0.001-0.15, a mole ratio A/B of the total acid anhydride groups (A) of MA and DA to the amino groups (B) of the diamine of 0.9-1.1, an imidation ratio of 10% or below, and a reduced viscosity of 0.5-2.0 dl/g measured at 30°C as a N-methyl-2-pyrolidone solution of 0.5 g/dl concentration and a low molecular weight compound (b) 100-250°C in boiling point and in which 60-90 pts. mass of the component (a) and 10-40 pts. mass of the component (b) are contained per 100 pts. mass of the sum of the components (a) and (b) is formed on a film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、加熱加圧時に流動性を示し、耐熱性材料として使用でき、積層の際に取扱い容易な樹脂シート構造物および前記樹脂シート構造物を用いた多層配線板の製造方法に関する。   The present invention relates to a resin sheet structure that exhibits fluidity when heated and pressurized, can be used as a heat-resistant material, and is easy to handle during lamination, and a method for producing a multilayer wiring board using the resin sheet structure.

近年、電子機器の小型化軽量化が著しく進み、その一方で一段と高機能化が図られている。こうした要求に応えるため、半導体素子を搭載する電子回路基板には電気配線の一層の高密度化が求められ配線の引き回しは複雑の一途を辿っている。また、より高速の電気信号を通すため電気配線の線路長には一層の短線化が求められ、それに応じて熱膨張係数の小さな半導体素子がこれまでよりも近接して電子回路基板に搭載されることが必要となってきた。このような状況により、電子回路基板の層間絶縁層として用いられている樹脂にはかつてない複雑で大きな応力が加わることになり、樹脂内のクラック発生が大きな問題となっている。   In recent years, electronic devices have been remarkably reduced in size and weight, and on the other hand, higher functionality has been achieved. In order to meet such demands, electronic circuit boards on which semiconductor elements are mounted are required to have a higher density of electrical wiring, and the routing of wiring continues to be complicated. In addition, in order to pass higher-speed electrical signals, the wiring length of electrical wiring is required to be further shortened, and accordingly, a semiconductor element having a small thermal expansion coefficient is mounted closer to the electronic circuit board than before. It has become necessary. In such a situation, unprecedented and large stress is applied to the resin used as the interlayer insulating layer of the electronic circuit board, and the occurrence of cracks in the resin is a big problem.

従来そうした回路基板の層間絶縁樹脂としてはエポキシ樹脂が使用されている。エポキシ樹脂は流動性が高く取扱いが容易なため広く電子材料用途に使用されているが、熱膨張係数は小さくはなく、また、熱硬化性樹脂のため引張強伸度などの機械特性は十分ではない。熱膨張係数を下げる方法としては、シリカなど低熱膨張係数を持ったフィラー成分の混合などが常套手段として用いられるが、こうした方法では逆に引張強伸度特性を損ない脆い材料となってしまうため、クラック問題の解決には十分ではなかった。   Conventionally, an epoxy resin is used as an interlayer insulating resin for such a circuit board. Epoxy resins are widely used for electronic materials due to their high fluidity and easy handling, but their thermal expansion coefficient is not small, and because of thermosetting resins, mechanical properties such as tensile strength and elongation are not sufficient. Absent. As a method of lowering the thermal expansion coefficient, mixing of filler components having a low thermal expansion coefficient such as silica is used as a conventional means, but in such a method, the tensile strength and elongation properties are adversely affected and the material becomes brittle. It was not enough to solve the crack problem.

一方、ポリエーテルエーテルケトンや液晶ポリマーなどの熱可塑性樹脂を電子回路基板の層間絶縁膜に使用という試みがここ数年行なわれている。これらは概して良好な機械特性を有する。こうした樹脂の一つとして熱可塑性ポリイミドシートが提案されている。ポリイミドは、一般に、高いガラス転移温度/高い耐薬品性/優れた機械物性/優れた電気特性などを有する材料として電子回路用の基材や層間絶縁樹脂層として広く使用されてきた。しかしながら電子回路用基板に適した温度で圧着するための熱可塑性をポリイミドに付与しようとするとポリイミドのガラス転移温度を著しく下げざるを得ず、また、ポリイミドの他の特徴である低線熱膨張係数が損なわれることとなる。さらに、溶剤可溶なポリイミドをコーティングして絶縁層を成膜する方法もあるが、溶剤可溶性をポリイミドに付与しようとすると、例えば、屈曲性の高い構造を持った化合物や溶剤に親和性の高い構造を持った化合物を分子鎖に導入することになり、その結果、耐熱性や耐薬品性や機械物性が低下するなどポリイミドの本来の性能を損なうことが多かった。   On the other hand, attempts have been made in recent years to use a thermoplastic resin such as polyetheretherketone or liquid crystal polymer for an interlayer insulating film of an electronic circuit board. These generally have good mechanical properties. As one of such resins, a thermoplastic polyimide sheet has been proposed. In general, polyimide has been widely used as a substrate for an electronic circuit or an interlayer insulating resin layer as a material having a high glass transition temperature / high chemical resistance / excellent mechanical properties / excellent electrical characteristics. However, if polyimide is to be given thermoplasticity for bonding at a temperature suitable for electronic circuit boards, the glass transition temperature of polyimide must be significantly reduced, and another characteristic of polyimide is the low linear thermal expansion coefficient. Will be damaged. Furthermore, there is a method of forming an insulating layer by coating a solvent-soluble polyimide. However, when trying to impart solvent solubility to the polyimide, for example, it has a high affinity for a compound or solvent having a highly flexible structure. A compound having a structure was introduced into the molecular chain, and as a result, the original performance of polyimide was often impaired, such as a decrease in heat resistance, chemical resistance and mechanical properties.

ポリイミドを使用する方法として、加工時にはポリイミド前駆体であるポリアミド酸を使用し、その後加熱処理によりポリイミドに転換するという方法がある。この方法を用いると、ポリアミド酸の状態では溶剤可溶であるため、加工性が容易であり、さらに耐熱性や耐薬品性の問題のない分子構造を選択することが可能である。こういった材料として、古くより、溶剤に溶解したポリアミド酸ワニスが知られているが、ワニスの状態では吸湿による粘度安定性に乏しいため、使用時以外はワニスを冷蔵や冷凍保存しなければならなかったり、コーティングの際の膜厚制御に困難を伴う上、使用者側で多量の溶剤を揮発させなければならず煩雑だった。   As a method of using polyimide, there is a method of using polyamic acid which is a polyimide precursor at the time of processing and then converting to polyimide by heat treatment. When this method is used, since it is soluble in a solvent in the state of polyamic acid, it is easy to process, and it is possible to select a molecular structure that does not have problems of heat resistance and chemical resistance. As such material, polyamic acid varnish dissolved in a solvent has been known for a long time, but in the varnish state, the viscosity stability due to moisture absorption is poor, so the varnish must be refrigerated or frozen when not in use. In addition, it was difficult to control the film thickness during coating, and a large amount of solvent had to be volatilized on the user side, which was complicated.

上記の問題を克服するため、ポリアミド酸ワニス溶液を乾燥して自立フィルムとして成膜し、使用する技術が開示されている(特許文献1参照)。しかし、ポリアミド酸は極性が高いためにシートにした状態でも吸湿性が高く、そのままでは保存安定性に欠ける問題がある。
一方、離型フィルム上に形成されたポリアミド酸フィルムを使用する技術が開示されている(特許文献2参照)。しかしながら、開示されている技術では、加圧によって層間絶縁層を形成するために十分な流動性を確保するにはポリアミド酸のイミド化率が高すぎて実用的でなく、ポリアミド酸ポリマーの還元粘度が高すぎるとさらに流動性を損なう。また、層間膜として使用する場合に必要な機械特性については何ら記載がなく、上記の流動性低下の問題を避けるために還元粘度を下げすぎると、十分な機械物性が得られない問題があるが、それらに対しては何ら解決策が示されていなかった。
特許第2672906号公報 特開平4−226544号公報
In order to overcome the above problem, a technique for drying and forming a polyamic acid varnish solution as a self-supporting film has been disclosed (see Patent Document 1). However, since polyamic acid has high polarity, it has high hygroscopicity even in a sheet state, and there is a problem that storage stability is lacking as it is.
On the other hand, a technique using a polyamic acid film formed on a release film is disclosed (see Patent Document 2). However, in the disclosed technology, the imidation ratio of the polyamic acid is too high to ensure sufficient fluidity to form an interlayer insulating layer by pressurization, and the reduced viscosity of the polyamic acid polymer is not practical. If it is too high, the fluidity is further impaired. In addition, there is no description about the mechanical properties required for use as an interlayer film, and there is a problem that sufficient mechanical properties cannot be obtained if the reduced viscosity is lowered too much in order to avoid the above-described problem of fluidity deterioration. No solution was shown for them.
Japanese Patent No. 2672906 JP-A-4-226544

本発明は、ポリイミドが本来持つ高いガラス転移温度、高い耐薬品性、優れた機械物性を損なわずに電子回路基板用に使用可能な温度での加圧時に流動性があり、従って、逐次積層工程が可能であり、製造時の粘度安定性が良好で保存時の吸湿などの安定性に優れている樹脂構成物、およびそれを用いた多層配線板の製造方法を提供することを目的とするものである。   The present invention has fluidity when pressurized at a temperature that can be used for an electronic circuit board without impairing the high glass transition temperature, high chemical resistance, and excellent mechanical properties inherent in the polyimide. An object of the present invention is to provide a resin composition having good viscosity stability during production and excellent stability such as moisture absorption during storage, and a method for producing a multilayer wiring board using the same It is.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、特定の還元粘度を持ち、特定の割合以下でイミド化されているポリアミド酸、および、前記のポリアミド酸と混合し特定の沸点を有する低分子化合物を含むことを特徴とする樹脂組成物を離型フィルム上に形成させた樹脂シート構造物が、その目的に適合しうることを見いだし、この知見に基づいて本発明をなすに至った。   As a result of intensive research in order to solve the above problems, the present inventor has a specific reduced viscosity and is imidized at a specific ratio or less, and is mixed with the polyamic acid described above to have a specific It has been found that a resin sheet structure in which a resin composition characterized by containing a low-molecular compound having a boiling point is formed on a release film can meet the purpose, and the present invention is made based on this finding. It came to.

すなわち、本発明は、以下のとおりである。
(1)a)ジカルボン酸無水物(以下MAと略称する)とテトラカルボン酸二無水物(以下DAと略称する)とジアミンとの反応生成物からなるポリアミド酸であって、DAとMAのモル比MA/DAが0.001〜0.15であり、MA及びDAが有する酸無水物基の合計(以下Aと略称する)とジアミンが有するアミノ基(以下Bと略称する)のモル比A/Bが0.9〜1.1であり、イミド化率が10%以下であり、かつ濃度0.5g/dlのN−メチル−2−ピロリドン溶液として30℃にて測定した還元粘度が0.5〜2.0dl/gの範囲にあるポリアミド酸と、b)沸点が100℃以上250℃以下の低分子化合物とを含み、a)成分とb)成分の和100質量部を基準として、a)成分が60〜90質量部でありb)成分が10〜40質量部である樹脂組成物層がフィルム上に形成されている樹脂シート構造物。
(2)(1)の樹脂シート構造物よりフィルムを剥離して基板に逐次積層し、積層後に低分子化合物を除去して、更に配線層を形成した多層配線板の製造方法。
That is, the present invention is as follows.
(1) a) a polyamic acid comprising a reaction product of a dicarboxylic acid anhydride (hereinafter abbreviated as MA), a tetracarboxylic dianhydride (hereinafter abbreviated as DA), and a diamine, the mole of DA and MA The ratio MA / DA is 0.001 to 0.15, and the molar ratio A of the sum of acid anhydride groups (hereinafter abbreviated as A) of MA and DA and the amino groups (hereinafter abbreviated as B) of diamine. / B is 0.9 to 1.1, the imidization ratio is 10% or less, and the reduced viscosity measured at 30 ° C. as an N-methyl-2-pyrrolidone solution having a concentration of 0.5 g / dl is 0. A polyamic acid in the range of 0.5 to 2.0 dl / g, and b) a low molecular compound having a boiling point of 100 ° C. or higher and 250 ° C. or lower, based on 100 parts by mass of the sum of the components a) and b), a) component is 60 to 90 parts by mass, and b) component is Resin sheet structure resin composition layer is 0 to 40 parts by weight is formed on the film.
(2) A method for producing a multilayer wiring board in which a film is peeled off from the resin sheet structure of (1) and sequentially laminated on a substrate, a low molecular compound is removed after the lamination, and a wiring layer is further formed.

本発明の樹脂シート構造物は、フィルム上に形成した構造となっているため吸湿しにくく、貯蔵時や電子回路基板製造工程での使用時の安定性に優れ、シート状であるため電子回路基板製造工程での取扱い性にも優れ、さらに、特定の還元粘度と特定割合以下のイミド化率を有し特定割合の低分子化合物を含有するため、電子回路基板製造工程へ適用するために必要な加熱加圧条件での流動性を有する一方で、積層後にイミド化を進行させた後には十分な耐熱性や耐薬品性や機械物性を持った層間絶縁樹脂層を得ることができる。さらに、樹脂の粘度安定性が高いためシート構造物製造時に安定して扱うことができる。   Since the resin sheet structure of the present invention has a structure formed on a film, it is difficult to absorb moisture, has excellent stability during storage and use in the manufacturing process of an electronic circuit board, and is an electronic circuit board because it is in the form of a sheet. It is excellent in handling in the manufacturing process, and further has a specific reduced viscosity and an imidization ratio of a specific ratio or less and contains a specific ratio of low molecular weight compounds. Therefore, it is necessary for application to the electronic circuit board manufacturing process. While having fluidity under heating and pressing conditions, an interlayer insulating resin layer having sufficient heat resistance, chemical resistance, and mechanical properties can be obtained after imidization proceeds after lamination. Furthermore, since the viscosity stability of the resin is high, it can be handled stably during the manufacture of the sheet structure.

以下、本発明について具体的に説明する。
本発明の樹脂シート構造物は樹脂組成物層とフィルムからなる。該樹脂組成物におけるa)成分であるポリアミド酸は、ジカルボン酸無水物とテトラカルボン酸二無水物とジアミンとを反応させることにより得られる。ジカルボン酸無水物としては、無水フタル酸、ベンゾフェノンジカルボン酸無水物、ナフタレンジカルボン酸無水物、アントラセンジカルボン酸無水物、無水マレイン酸、無水コハク酸などが挙げられる。テトラカルボン酸二無水物としては、ピロメリット酸二無水物、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、オキシジフタル酸二無水物などが挙げられる。ジアミンとしては、フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジアミノジフェニルエーテル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンなどが挙げられる。
Hereinafter, the present invention will be specifically described.
The resin sheet structure of the present invention comprises a resin composition layer and a film. The polyamic acid which is the component a) in the resin composition is obtained by reacting a dicarboxylic anhydride, a tetracarboxylic dianhydride and a diamine. Examples of the dicarboxylic acid anhydride include phthalic anhydride, benzophenone dicarboxylic acid anhydride, naphthalene dicarboxylic acid anhydride, anthracene dicarboxylic acid anhydride, maleic anhydride, succinic anhydride, and the like. Examples of tetracarboxylic dianhydride include pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, oxydiphthalic dianhydride, and the like. Examples of the diamine include phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiphenyl ether, and 2,2-bis [4- (4-aminophenoxy) phenyl] propane.

本発明に使用する好ましいテトラカルボン酸二無水物はピロメリット酸二無水物、ベンゾフェノン−3,4,3’,4’−テトラカルボン酸二無水物およびビフェニル−3,4,3’,4’−テトラカルボン酸二無水物であり、本発明に好ましいジアミンは4,4’−ジアミノジフェニルエーテルおよび2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンである。更に、ジカルボン酸無水物とテトラカルボン酸二無水物とジアミンは、それぞれ1種又は2種以上を適宜組み合わせて用いることができる。   Preferred tetracarboxylic dianhydrides for use in the present invention are pyromellitic dianhydride, benzophenone-3,4,3 ′, 4′-tetracarboxylic dianhydride and biphenyl-3,4,3 ′, 4 ′. -Tetracarboxylic dianhydrides, preferred diamines for this invention are 4,4'-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) phenyl] propane. Furthermore, each of dicarboxylic acid anhydride, tetracarboxylic dianhydride, and diamine can be used singly or in combination of two or more.

これらの原料を反応させて得られるポリアミド酸は、ジカルボン酸無水物及びテトラカルボン酸二無水物が有する酸無水物基の合計とジアミンが有するアミノ基のモル比A/Bが0.9〜1.1であることが好ましい。機械物性の観点からA/Bが0.9以上および1.1以下であることが好ましい。また、DAとMAのモル比MA/DAは0.001〜0.15であることが好ましい。加熱加圧時の流動性の観点からMA/DAが0.001以上が好ましく、機械物性の観点からMA/DAが0.15以下が好ましい。MA/DAは0.005〜0.10がより好ましく、最も好ましくは0.01〜0.06である。   The polyamic acid obtained by reacting these raw materials has a molar ratio A / B of the total acid anhydride groups of the dicarboxylic anhydride and tetracarboxylic dianhydride to the amino groups of the diamine of 0.9 to 1. .1 is preferable. From the viewpoint of mechanical properties, A / B is preferably 0.9 or more and 1.1 or less. The molar ratio MA / DA between DA and MA is preferably 0.001 to 0.15. MA / DA is preferably 0.001 or more from the viewpoint of fluidity during heating and pressurization, and MA / DA is preferably 0.15 or less from the viewpoint of mechanical properties. MA / DA is more preferably 0.005 to 0.10, and most preferably 0.01 to 0.06.

これらのポリアミド酸は、濃度0.5g/dlのN−メチル−2−ピロリドン溶液として30℃で測定した還元粘度が0.5〜2.0dl/gの範囲にあることが好ましい。加熱加圧時の流動性の観点からポリアミド酸の還元粘度が2.0dl/g以下が好ましく、機械物性の観点から還元粘度が0.5dl/g以下が好ましい。より好ましい還元粘度は、0.8〜2.0dl/gであり、さらに好ましくは1.1〜1.5dl/gである。   These polyamic acids preferably have a reduced viscosity in the range of 0.5 to 2.0 dl / g measured at 30 ° C. as an N-methyl-2-pyrrolidone solution having a concentration of 0.5 g / dl. The reduced viscosity of the polyamic acid is preferably 2.0 dl / g or less from the viewpoint of fluidity during heating and pressurization, and the reduced viscosity is preferably 0.5 dl / g or less from the viewpoint of mechanical properties. A more preferable reduced viscosity is 0.8 to 2.0 dl / g, and still more preferably 1.1 to 1.5 dl / g.

なお、本発明における還元粘度は、樹脂シート構造物を作成後に樹脂組成物をフィルムより剥離して、熱天秤にてポリアミド酸質量を算出した後に、ポリアミド酸の濃度が0.5g/dlのN−メチル−2−ピロリドン溶液を調整して、柴田科学株式会社製の粘度計番号1のウベローデ粘度管を使用し、温度30℃±1℃の恒温水槽中で測定する。0.5g/dlのN−メチル−2−ピロリドン溶液には低分子化合物が含まれるが、N−メチル−2−ピロリドン溶液の希薄溶液であるため還元粘度にほとんど影響はない。   The reduced viscosity in the present invention is determined by N after the resin composition is peeled off from the film after the resin sheet structure is prepared and the polyamic acid mass is calculated using a thermobalance, and then the polyamic acid concentration is 0.5 g / dl. -Methyl-2-pyrrolidone solution is prepared and measured using a Ubbelohde viscometer tube of viscometer number 1 manufactured by Shibata Kagaku Co., Ltd. in a constant temperature water bath at a temperature of 30 ° C ± 1 ° C. The 0.5 g / dl N-methyl-2-pyrrolidone solution contains a low-molecular compound, but since it is a dilute solution of the N-methyl-2-pyrrolidone solution, the reduced viscosity is hardly affected.

樹脂組成物中のポリアミド酸質量は、熱天秤法にて求める。作成した樹脂シートから樹脂組成物を剥離し、樹脂組成物10mgを窒素気流下・昇温速度10℃/分で700℃まで熱天秤で測定し、400℃での残質量をポリイミド質量とする。イミド環形成時に生成する水分量を、加熱前のポリアミド酸のイミド化率をもとに樹脂組成物中のアミド基1モルから水1モルが生成するとして算出し、先のポリイミド質量に水分量を加えてポリアミド酸の質量とする。   The mass of polyamic acid in the resin composition is determined by a thermobalance method. The resin composition is peeled from the prepared resin sheet, 10 mg of the resin composition is measured with a thermobalance up to 700 ° C. under a nitrogen stream at a temperature rising rate of 10 ° C./min, and the remaining mass at 400 ° C. is defined as the polyimide mass. The amount of water generated during imide ring formation was calculated based on the imidation ratio of the polyamic acid before heating, assuming that 1 mol of water was generated from 1 mol of the amide group in the resin composition, and the amount of water was calculated based on the previous polyimide mass. To the mass of the polyamic acid.

本発明のポリアミド酸は溶媒中にジアミン、ジカルボン酸無水物およびテトラカルボン酸二無水物を添加した溶液から重合することができる。この場合、溶液中のポリアミド酸濃度は10質量%から30質量%であることが好ましい。樹脂シート構造物を作成する際に多量の溶媒を揮散させる必要が生じるという観点から、溶液中のポリアミド酸濃度は10質量%以上が好ましい。成形加工性、保存安定性などの観点から溶液中のポリアミド酸濃度は30質量%以下が好ましい。   The polyamic acid of the present invention can be polymerized from a solution in which diamine, dicarboxylic acid anhydride and tetracarboxylic dianhydride are added to a solvent. In this case, the polyamic acid concentration in the solution is preferably 10% by mass to 30% by mass. From the viewpoint that it is necessary to volatilize a large amount of solvent when preparing the resin sheet structure, the polyamic acid concentration in the solution is preferably 10% by mass or more. From the viewpoint of molding processability and storage stability, the polyamic acid concentration in the solution is preferably 30% by mass or less.

これらのポリアミド酸は、アミド酸部位のイミド化率が10%以下であることが好ましい。10%を越えてイミド化されたポリアミド酸からなる樹脂組成物では、積層後に低分子化合物を除去する工程においてクラックを発生したり、積層する工程での加熱加圧時に十分に流動しないことがある。   These polyamic acids preferably have an imidization ratio of the amic acid moiety of 10% or less. In a resin composition composed of polyamic acid that has been imidized in excess of 10%, cracks may occur in the process of removing low molecular weight compounds after lamination, or it may not flow sufficiently during heating and pressurization in the lamination process. .

なお、本発明において、ポリアミド酸のイミド化率は、IR法で以下のようにして求めるものとする。使用する測定器は、Thermo Nicolet Corporation製Centaurusで、Ge結晶を使用したATR法で測定する。Journal of Polymer Science:Part A:Polymer Chemistry,Vol.27,711−724(1989)に倣い、1500cm−1近傍のベンゼン環に基づくピークを基準とし、1380cm−1近傍のイミド環生成に基づくピークの吸光度との比からイミド化率を求める。すなわち、それらのピーク前後でピークの谷と谷を結ぶように適宜ベースラインを引き、それぞれのピークからそのベースラインへ降ろした線とベースラインとの交点からピークまでの高さをそれぞれの吸光度と定義し、本発明の樹脂シート構造物に使用されている樹脂組成物の1380cm−1の吸光度をB1、1500cm−1の吸光度をB2とする。一方、本発明の樹脂シート構造物を窒素雰囲気で300℃60分間熱処理した際の該樹脂組成物の1380cm−1における吸光度をA1、1500cm−1の吸光度をA2とする。イミド化率Cは、300℃60分間処理時のそれを100として、((B1/B2)/(A1/A2))×100(%)の式で算出される。また1380cm−1の吸収が低分子化合物の吸収と重なる場合は、1720または1780cm−1の吸収が利用できる。 In the present invention, the imidization ratio of the polyamic acid is determined by the IR method as follows. The measuring instrument used is Centaurus manufactured by Thermo Nicolet Corporation, and measurement is performed by the ATR method using a Ge crystal. Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 27, 711-724 (1989), the imidation rate is determined from the ratio of the peak based on the imide ring formation in the vicinity of 1380 cm −1 to the peak based on the benzene ring in the vicinity of 1500 cm −1 . That is, draw a baseline as appropriate so as to connect the valleys of the peaks before and after those peaks, and the height from the intersection of the line drawn from each peak to the baseline to the peak to the peak is the absorbance. As defined, the absorbance of 1380 cm −1 of the resin composition used in the resin sheet structure of the present invention is B1, and the absorbance of 1500 cm −1 is B2. On the other hand, when the resin sheet structure of the present invention is heat-treated at 300 ° C. for 60 minutes in a nitrogen atmosphere, the absorbance at 1380 cm −1 of the resin composition is A1, and the absorbance at 1500 cm −1 is A2. The imidization ratio C is calculated by an equation of ((B1 / B2) / (A1 / A2)) × 100 (%), with 100 at 60 ° C. for 60 minutes. When the absorption at 1380 cm −1 overlaps with the absorption of the low molecular compound, the absorption at 1720 or 1780 cm −1 can be used.

本発明の樹脂シート構造物におけるb)成分である、沸点が100℃以上250℃以下の低分子化合物としては、前記のポリアミド酸と混合する有機溶媒が好ましい。例として、γ−ブチロラクトン、γ−バレロラクトン、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、1,3−ジオキサン、1,4−ジオキサン、シクロペンタノン、シクロヘキサノン、ジエチレングリコールジメチルエーテル、テトラメチル尿素等が挙げられる。本発明に使用する好ましい低分子化合物は、γ−ブチロラクトン、N,N−ジメチルホルムアミドおよびN−メチル−2−ピロリドンである。これらは単独、または2種以上を混合して用いることができる。また、シート成形性を改良する目的で、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、アニソール、スルホラン、キシレン、トルエン、メシチレン等を加えても良い。   The low molecular compound having a boiling point of 100 ° C. or higher and 250 ° C. or lower, which is the component b) in the resin sheet structure of the present invention, is preferably an organic solvent mixed with the polyamic acid. Examples include γ-butyrolactone, γ-valerolactone, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dioxane, 1,4-dioxane, cyclo Examples include pentanone, cyclohexanone, diethylene glycol dimethyl ether, and tetramethylurea. Preferred low molecular compounds used in the present invention are γ-butyrolactone, N, N-dimethylformamide and N-methyl-2-pyrrolidone. These can be used alone or in admixture of two or more. In addition, for the purpose of improving sheet formability, propylene glycol monomethyl ether acetate, ethyl lactate, anisole, sulfolane, xylene, toluene, mesitylene and the like may be added.

本発明で用いられる樹脂組成物においては、ポリアミド酸と低分子化合物の和100質量部を基準として、ポリアミド酸が60〜90質量部であり低分子化合物が10〜40質量部であることが好ましい。加熱加圧時の流動性の観点から低分子化合物は10質量部以上が好ましく、シート強度およびシートがべた付くことによる取扱い性の観点から低分子化合物は40質量部以下が好ましい。なお、本発明で用いられる樹脂組成物中の低分子化合物の割合は、熱天秤法による測定で求めるものとする。作成した樹脂シートから樹脂組成物を剥離し、該樹脂組成物10mgを窒素気流下、室温から昇温速度10℃/分で700℃までの質量の変化を熱天秤で測定し、400℃での残質量をポリイミド質量とし、加熱により飛散した残り分を400℃までの揮発分とする。イミド環形成時に生成する水分量を、加熱前のポリアミド酸のイミド化率をもとに樹脂組成物中のアミド基1モルから水1モルが生成するとして算出し、先の揮発分から水分量を除いて低分子化合物の質量とする。   In the resin composition used in the present invention, it is preferable that the polyamic acid is 60 to 90 parts by mass and the low molecular compound is 10 to 40 parts by mass, based on 100 parts by mass of the polyamic acid and the low molecular compound. . The low molecular compound is preferably 10 parts by mass or more from the viewpoint of fluidity during heating and pressurization, and the low molecular compound is preferably 40 parts by mass or less from the viewpoint of sheet strength and handleability due to stickiness of the sheet. In addition, the ratio of the low molecular compound in the resin composition used by this invention shall be calculated | required by the measurement by a thermobalance method. The resin composition was peeled from the prepared resin sheet, and 10 mg of the resin composition was measured with a thermobalance in a nitrogen stream from room temperature to 700 ° C. at a heating rate of 10 ° C./min. The remaining mass is the polyimide mass, and the remaining amount scattered by heating is the volatile content up to 400 ° C. The amount of water generated during imide ring formation is calculated on the basis of the imidization ratio of the polyamic acid before heating, assuming that 1 mol of water is generated from 1 mol of amide groups in the resin composition, and the amount of water is calculated from the previous volatile matter. Except for the mass of the low molecular weight compound.

本発明で用いられる樹脂組成物には、用途に応じて添加剤を加えることも可能である。この添加剤としては、脱水剤、イミド化触媒、シリカなどのフィラー、エポキシ樹脂などの熱硬化性樹脂、ポリアミドなどの熱可塑性樹脂、単官能または多官能単量体、有機過酸化物などの各種反応触媒、シランカップリング剤などの表面改質剤などが挙げられる。   Additives may be added to the resin composition used in the present invention depending on the application. Examples of the additive include a dehydrating agent, an imidization catalyst, a filler such as silica, a thermosetting resin such as an epoxy resin, a thermoplastic resin such as polyamide, a monofunctional or polyfunctional monomer, and an organic peroxide. Examples thereof include surface modifiers such as reaction catalysts and silane coupling agents.

本発明の樹脂シート構造物は、樹脂組成物層がフィルム上に形成されることにより、保管や使用時の樹脂組成物層間の融着や圧着、樹脂組成物層の吸湿、樹脂組成物層へのゴミの付着、などを防ぎ、また積層時の樹脂組成物層の取扱いを容易にする。該フィルムは、その上への樹脂組成物層の形成時に問題がなく、かつ、剥離可能なものであれば特に限定されるものではなく、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリカーボネート、ポリイミド、などといったポリマーフィルム、さらには金属箔などが挙げられる。これらの厚みは特に限定されるものではない。   In the resin sheet structure of the present invention, the resin composition layer is formed on the film, so that the resin composition layer can be fused and pressure-bonded during storage or use, moisture absorption of the resin composition layer, and the resin composition layer. It is possible to prevent adhesion of dust and the like, and to facilitate handling of the resin composition layer during lamination. The film is not particularly limited as long as it has no problem when the resin composition layer is formed thereon and can be peeled off. Polyolefin such as polyethylene and polypropylene, polyester such as polyethylene terephthalate, polycarbonate , Polymer films such as polyimide, and metal foil. These thicknesses are not particularly limited.

また、本発明で用いられるフィルムとしては、用途に応じて離型層付きの支持ベースフィルムを使用することができる。支持ベースフィルムとしては、前述のポリマーフィルムなどが挙げられる。離型層としては、樹脂ワニスの特性に合わせて 公知慣用のシリコーン系、又は非シリコーン系の離型剤が使用でき、その厚みは0.1〜3μmが一般的である。   Moreover, as a film used by this invention, a support base film with a release layer can be used according to a use. Examples of the supporting base film include the polymer films described above. As the release layer, a known and commonly used silicone-based or non-silicone-based release agent can be used in accordance with the characteristics of the resin varnish, and the thickness is generally 0.1 to 3 μm.

本発明において、フィルム上に樹脂組成物層を形成する方法は、フィルム上に該樹脂組成物を溶媒に溶解させたワニス(以下、樹脂ワニスともいう。)をロータリーコーター、ナイフコーター、ドクターブレード、フローコーター等の公知の塗布手段を用いてフィルム上面から1〜600μmの均一な厚さに流延塗布した後、後述のように加熱することにより得ることが出来る。また、フィルム上に樹脂組成物層を形成させ、さらに、他のフィルム上に形成された同一組成または異なる組成の樹脂組成物層を、樹脂面を合せ、必要に応じて、この間にフィルムを剥離した樹脂組成物層を所定枚数挿入し、同時に加熱・圧着し、厚みの厚い樹脂組成物シートを得ることも出来る。   In the present invention, a method of forming a resin composition layer on a film includes a varnish obtained by dissolving the resin composition in a solvent on a film (hereinafter also referred to as a resin varnish), a rotary coater, a knife coater, a doctor blade, It can be obtained by applying the film by a known coating means such as a flow coater to a uniform thickness of 1 to 600 μm from the upper surface of the film and then heating as described later. In addition, a resin composition layer is formed on the film, and the resin composition layers of the same composition or different compositions formed on other films are aligned with the resin surface, and the film is peeled between them as necessary. A thick resin composition sheet can be obtained by inserting a predetermined number of the resin composition layers and simultaneously heating and pressure bonding.

本発明において、樹脂ワニスを加熱してフィルム上に樹脂組成物層を形成させる条件としては、60〜130℃、5〜30分が通常使用されるが、その結果得られた樹脂組成物層のa)成分とb)成分の量比、及びイミド化率が前記範囲にある限り特に限定されない。
樹脂組成物層の加熱形成後の厚みとしては、5〜80μmが好ましい。熱処理に伴う収縮による応力がフィルムの支持力を上回り、乾燥中にカールを生じさせる観点から80μm以下が好ましい。また樹脂組成物層が厚いため樹脂ワニス中の溶剤の蒸発速度が遅く、生産性が低下することを考慮し、80μm以下が好ましい。一方、機械物性の観点から5μm以上が好ましい。
In the present invention, the conditions for heating the resin varnish to form the resin composition layer on the film are usually 60 to 130 ° C. and 5 to 30 minutes. There is no particular limitation as long as the ratio of component a) to component b) and the imidization ratio are in the above ranges.
As thickness after heat forming of a resin composition layer, 5-80 micrometers is preferable. 80 μm or less is preferable from the viewpoint of causing stress due to shrinkage accompanying the heat treatment to exceed the supporting force of the film and causing curling during drying. Moreover, since the resin composition layer is thick, the evaporation rate of the solvent in the resin varnish is slow and the productivity is reduced. On the other hand, 5 μm or more is preferable from the viewpoint of mechanical properties.

樹脂組成物層とフィルムとからなる本発明の樹脂シート構造物は、そのまま、または、樹脂組成物層の他の面に保護フィルムをさらに重ね、ロール状に巻きとって貯蔵される。
本発明の多層配線板の製造方法は、本発明の樹脂シート構造物を樹脂組成物層側を導体形成基板に貼合せ加工後に、更に、樹脂組成物層中のb)成分の低分子化合物を除去し、それと同時に、または、それに引き続いてイミド化を進行させることで行う。
導体形成基板は、エポキシ樹脂、熱硬化性ポリフェニレンエーテル樹脂、ビスマレイミドトリアジン樹脂などの樹脂基板、更に前記樹脂とガラスクロス、不織布などで補強された樹脂複合基板およびポリイミド、液晶ポリマーなどのフレキシブル基板に金属箔や鍍金にて導体を形成したものが挙げられる。
The resin sheet structure of the present invention consisting of a resin composition layer and a film is stored as it is, or a protective film is further layered on the other surface of the resin composition layer and wound into a roll.
The method for producing a multilayer wiring board of the present invention comprises the step of bonding the resin sheet structure of the present invention to the conductor-forming substrate on the resin composition layer side, and further adding a low molecular compound of component b) in the resin composition layer. It is carried out by removing and simultaneously with or subsequently proceeding with imidization.
Conductor-forming substrates include resin substrates such as epoxy resins, thermosetting polyphenylene ether resins, and bismaleimide triazine resins, resin composite substrates reinforced with the resin and glass cloth, nonwoven fabric, and flexible substrates such as polyimide and liquid crystal polymers. The thing which formed the conductor with metal foil or plating is mentioned.

貼合せ加工には、通常利用可能なプレス機やロールラミネーターが使用でき、その加工条件としては、樹脂シート構造物を樹脂層が導体形成基板に向くように重ね合わせ、プレス形式の場合は80〜180℃、0.5〜9.8MPa、0.1〜30分、ロールラミネーターの場合は80〜180℃、0.1〜4.9MPa、0.1〜10m/分、といった条件で加熱圧着する。特に温度としては、樹脂組成物層形成時の加熱温度よりも+50℃を超えない程度の温度で実施することが、揮発物の発生を抑制するので好ましい。
b)成分の低分子化合物の除去方法としては乾式処理と湿式処理が挙げられる。乾式処理としては、フィルムを剥離して熱処理で行うことができる。熱処理温度としては基材の耐熱性に応じて選択できる。また熱処理時間としては用途に応じて選択できる。
For the laminating process, a press machine and a roll laminator that can be normally used can be used. As the processing conditions, the resin sheet structure is superposed so that the resin layer faces the conductor forming substrate. 180 ° C., 0.5 to 9.8 MPa, 0.1 to 30 minutes, and in the case of a roll laminator, thermocompression bonding is performed under conditions such as 80 to 180 ° C., 0.1 to 4.9 MPa, 0.1 to 10 m / min. . In particular, as the temperature, it is preferable to carry out at a temperature that does not exceed + 50 ° C. than the heating temperature at the time of forming the resin composition layer because generation of volatiles is suppressed.
As a method for removing the low-molecular compound as component b), there are dry treatment and wet treatment. As the dry treatment, the film can be peeled and heat treatment can be performed. The heat treatment temperature can be selected according to the heat resistance of the substrate. The heat treatment time can be selected according to the application.

例えばガラスクロス補強エポキシ樹脂硬化基板に積層した場合は、熱処理温度は100〜260℃、時間は10〜500分である。熱処理温度として十分高温が選ばれた場合には、該熱処理によって低分子化合物の除去とイミド化進行の両方が達成される。また湿式処理としては、用いた低分子化合物に応じて水、アルコールなどで低分子化合物を抽出した後、低温で乾燥することができる。この場合には、それに引き続いて加熱処理を行うことによりイミド化を進行させることが出来る。   For example, when laminated on a glass cloth reinforced epoxy resin cured substrate, the heat treatment temperature is 100 to 260 ° C., and the time is 10 to 500 minutes. When a sufficiently high temperature is selected as the heat treatment temperature, both the removal of low molecular weight compounds and the progress of imidization are achieved by the heat treatment. Moreover, as a wet process, after extracting a low molecular compound with water, alcohol, etc. according to the used low molecular compound, it can dry at low temperature. In this case, imidization can be advanced by performing a heat treatment subsequently.

本発明の樹脂シートを積層した本発明の多層配線板は、レーザー加工などの乾式処理またはアルカリエッチングなどの湿式処理を実施して導体形成基板とのビアを形成した後、鍍金、スパッタリングなどの方法で更なる導体形成も可能である。
次に、実施例および参考例によって本発明を説明する。
The multilayer wiring board of the present invention in which the resin sheet of the present invention is laminated is subjected to a dry process such as laser processing or a wet process such as alkali etching to form a via with a conductor formation substrate, and then a method such as plating or sputtering. Further conductor formation is possible.
Next, the present invention will be described with reference to examples and reference examples.

樹脂組成物をイミド化反応させて得たフィルム(以下、ポリイミドフィルムという。)の機械物性は、引張強伸度曲線の破断点伸度で評価した。窒素下300℃60分間熱処理して作成した厚さ10μmのフィルムを用意し、サンプル幅3mm、引張り速度40mm/分の条件で測定した。
樹脂組成物層の流動性は、ポリエステルフィルム上に形成した樹脂組成物層を10cm角のシートに切断し、圧力2.9MPa、170℃で10分間プレスした後に、シート外に流れ出した樹脂組成物の質量%で評価した。樹脂組成物が十分な流動性を示す観点から、流動性が5.0質量%以上であることが好ましい。
The mechanical properties of a film obtained by imidizing the resin composition (hereinafter referred to as polyimide film) were evaluated by the elongation at break of the tensile strength / elongation curve. A film having a thickness of 10 μm prepared by heat treatment at 300 ° C. for 60 minutes under nitrogen was prepared and measured under the conditions of a sample width of 3 mm and a pulling speed of 40 mm / min.
The fluidity of the resin composition layer was determined by cutting the resin composition layer formed on the polyester film into a 10 cm square sheet and pressing it at a pressure of 2.9 MPa and 170 ° C. for 10 minutes, and then flowing out of the sheet. Was evaluated in terms of mass%. From the viewpoint of the resin composition exhibiting sufficient fluidity, the fluidity is preferably 5.0% by mass or more.

[実施例1]
ステンレススチール製の碇型撹拌器を取り付けた容量500mlのガラス製のセパラブル3つ口フラスコに、水分吸収用シリカゲル乾燥管を取り付けた。このフラスコに和光純薬工業株式会社製N−メチル−2−ピロリドン(脱水)(以下NMPと略す)347.9g、和歌山精化工業株式会社製4,4’−ジアミノジフェニルエーテル(以下ODAと略す)27.5gを室温にて加え、撹拌・溶解した後に、氷水にてフラスコを冷却した。フラスコ内の液体の温度が5℃になった際に、和光純薬工業株式会社製無水フタル酸(以下PAと略す)0.5gを加え5分間撹拌後にダイセル化学工業株式会社製3,3’,4,4’−ベンゾフェノンテトラカルボン酸ニ無水物(以下BTDAと略す)43.7gをフラスコに除々に加え、氷水で冷却しながら8時間撹拌した(A/B=1.0、MA/DA=0.026)。反応終了後のポリアミド酸の還元粘度は、1.27dl/gであった。
[Example 1]
A silica gel drying tube for absorbing water was attached to a 500 ml glass separable three-necked flask equipped with a stainless steel vertical stirrer. In this flask, 347.9 g of N-methyl-2-pyrrolidone (dehydrated) (hereinafter abbreviated as NMP) manufactured by Wako Pure Chemical Industries, Ltd., 4,4′-diaminodiphenyl ether (hereinafter abbreviated as ODA) manufactured by Wakayama Seika Kogyo Co., Ltd. After adding 27.5 g at room temperature, stirring and dissolving, the flask was cooled with ice water. When the temperature of the liquid in the flask reached 5 ° C., 0.5 g of phthalic anhydride (hereinafter abbreviated as PA) manufactured by Wako Pure Chemical Industries, Ltd. was added and stirred for 5 minutes. 4,4′-benzophenonetetracarboxylic dianhydride (hereinafter abbreviated as BTDA) was gradually added to the flask and stirred for 8 hours while cooling with ice water (A / B = 1.0, MA / DA). = 0.026). The reduced viscosity of the polyamic acid after completion of the reaction was 1.27 dl / g.

この樹脂ワニスを用いて得たポリイミドフィルムの破断点伸度は49%であった。
この樹脂ワニスを80℃に保温された平滑なプレートに保持されたポリエステルフィルム上に塗布して30分放置後、空気循環式の乾燥炉で100℃30分乾燥して樹脂シート構造物を得た。乾燥後の樹脂組成物層の厚さは40μmであった。この樹脂組成物層の組成を分析した結果、イミド化率3%で還元粘度1.08dl/gのポリアミド酸75.5質量部、NMP24.5質量部であった。
この樹脂組成物層の流動性は8.5質量%であり、良好な流動性であった。
ポリエステルフィルムから剥離した樹脂組成物の昇温速度10℃/分、窒素下で熱天秤を用いた400℃での質量を基準とした5%減量温度は571℃であり、生成したポリイミド樹脂の耐熱性は良好であった。
The elongation at break of the polyimide film obtained using this resin varnish was 49%.
The resin varnish was applied on a polyester film held on a smooth plate kept at 80 ° C., allowed to stand for 30 minutes, and then dried at 100 ° C. for 30 minutes in an air circulation type drying furnace to obtain a resin sheet structure. . The thickness of the resin composition layer after drying was 40 μm. As a result of analyzing the composition of this resin composition layer, it was 75.5 parts by mass of polyamic acid and 24.5 parts by mass of NMP having an imidization rate of 3% and a reduced viscosity of 1.08 dl / g.
The fluidity of this resin composition layer was 8.5% by mass, which was good fluidity.
The temperature rise rate of the resin composition peeled from the polyester film was 10 ° C./min, the 5% weight loss temperature based on the mass at 400 ° C. using a thermobalance under nitrogen was 571 ° C., and the heat resistance of the produced polyimide resin The property was good.

この樹脂シート構造物を樹脂組成物層側を基板に向けてパターニング加工した5cm角のFR−4基板に、90℃、10分、4.9MPaで真空プレスした後、ポリエステルフィルムを剥離して、空気循環式の乾燥炉で200℃90分の熱処理を実施したが、樹脂組成物は基板表面の凹凸に追従して充填されており、基板表面には微細クラックおよびボイドなどの欠陥は見られなかった。
この樹脂ワニスを室温にて5日間保管した後のポリアミド酸の還元粘度は、1.27dl/gであった。
This resin sheet structure was vacuum-pressed at 90 ° C., 10 minutes, 4.9 MPa on a 5 cm square FR-4 substrate patterned with the resin composition layer side facing the substrate, and then the polyester film was peeled off, Although heat treatment was performed at 200 ° C. for 90 minutes in an air circulation type drying furnace, the resin composition was filled following the irregularities on the substrate surface, and defects such as fine cracks and voids were not seen on the substrate surface. It was.
The reduced viscosity of the polyamic acid after storing this resin varnish at room temperature for 5 days was 1.27 dl / g.

[実施例2]
ステンレススチール製の碇型撹拌器を取り付けた容量300mlのガラス製のセパラブル3つ口フラスコに、水分吸収用シリカゲル乾燥管を取り付けた。このフラスコにNMP256.3g、ODA13.5gを室温にて加え、撹拌・溶解した後に、氷水にてフラスコを冷却した。フラスコ内の液体の温度が5℃になった際に、PA0.3gを加え5分間撹拌後にBTDA21.4gをフラスコに除々に加え、氷水で冷却しながら8時間撹拌した(A/B=1.0、MA/DA=0.026)。反応終了後のポリアミド酸の還元粘度は、0.85dl/gであった。
[Example 2]
A silica gel drying tube for absorbing water was attached to a 300-ml glass separable three-necked flask equipped with a stainless steel vertical stirrer. NMP256.3g and ODA13.5g were added to this flask at room temperature, and after stirring and dissolving, the flask was cooled with ice water. When the temperature of the liquid in the flask reached 5 ° C., 0.3 g of PA was added and after stirring for 5 minutes, 21.4 g of BTDA was gradually added to the flask and stirred for 8 hours while cooling with ice water (A / B = 1. 0, MA / DA = 0.026). The reduced viscosity of the polyamic acid after completion of the reaction was 0.85 dl / g.

この樹脂ワニスを用いて得たポリイミドフィルムの破断点伸度は35%であった。
この樹脂ワニスを80℃に保温された平滑なプレートに保持されたポリエステルフィルム上に展開して30分放置後、空気循環式の乾燥炉で100℃30分乾燥して樹脂シート構造物を得た。乾燥後の樹脂組成物層の厚さは40μmであった。この樹脂組成物層の組成を分析した結果、イミド化率4%で還元粘度0.73dl/gのポリアミド酸74.0質量部、NMP26.0質量部であった。
この樹脂組成物層の流動性は10.0質量%であり、良好な流動性であった。
ポリエステルフィルムから剥離した樹脂組成物の昇温速度10℃/分、窒素下で熱天秤を用いた400℃での質量を基準とした5%減量温度は571℃であり、生成したポリイミド樹脂の耐熱性は良好であった。
The elongation at break of the polyimide film obtained using this resin varnish was 35%.
This resin varnish was spread on a polyester film held on a smooth plate kept at 80 ° C., allowed to stand for 30 minutes, and then dried at 100 ° C. for 30 minutes in an air circulation type drying furnace to obtain a resin sheet structure. . The thickness of the resin composition layer after drying was 40 μm. As a result of analyzing the composition of this resin composition layer, they were 74.0 parts by mass of polyamic acid and 26.0 parts by mass of NMP having an imidization rate of 4% and a reduced viscosity of 0.73 dl / g.
The fluidity of this resin composition layer was 10.0% by mass, which was good fluidity.
The temperature rise rate of the resin composition peeled from the polyester film was 10 ° C./min, the 5% weight loss temperature based on the mass at 400 ° C. using a thermobalance under nitrogen was 571 ° C., and the heat resistance of the produced polyimide resin The property was good.

この樹脂シート構造物を樹脂組成物層側を基板に向けて、パターニング加工した5cm角のFR−4基板に、130℃、2分、4.9MPaでプレスした後、ポリエステルフィルムを剥離して、空気循環式の乾燥炉で200℃90分の熱処理を実施したが、樹脂組成物は基板表面の凹凸に追従して充填されており、基板表面には微細クラックおよびボイドなどの欠陥は見られなかった。
この樹脂ワニスを室温にて5日間保管した後のポリアミド酸の還元粘度は、0.85dl/gであった。
This resin sheet structure was pressed at 130 ° C. for 2 minutes and 4.9 MPa on a patterned 5 cm square FR-4 substrate with the resin composition layer side facing the substrate, and then the polyester film was peeled off. Although heat treatment was performed at 200 ° C. for 90 minutes in an air circulation type drying furnace, the resin composition was filled following the irregularities on the substrate surface, and defects such as fine cracks and voids were not seen on the substrate surface. It was.
The reduced viscosity of the polyamic acid after storing this resin varnish at room temperature for 5 days was 0.85 dl / g.

[実施例3]
ステンレススチール製の碇型撹拌器を取り付けた容量300mlのガラス製のセパラブル3つ口フラスコに、水分吸収用シリカゲル乾燥管を取り付けた。このフラスコにNMP208.8g、和歌山精化工業株式会社製2、2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(以下BAPPと略す)33.8gを室温にて加え、撹拌・溶解した後に、氷水にてフラスコを冷却した。フラスコ内の液体の温度が5℃になった際に、PA0.3gを加え、更に5分後にBTDA26.2gをフラスコに除々に加え、氷水で冷却しながら7時間撹拌した後、更に室温にて1時間撹拌した(A/B=1.0、MA/DA=0.026)。反応終了後のポリアミド酸の還元粘度は、1.59dl/gであった。
[Example 3]
A silica gel drying tube for absorbing water was attached to a 300-ml glass separable three-necked flask equipped with a stainless steel vertical stirrer. NMP208.8g, Wakayama Seika Kogyo Co., Ltd. 2,2-bis [4- (4-aminophenoxy) phenyl] propane (hereinafter abbreviated as BAPP) 33.8g was added to this flask at room temperature and stirred and dissolved. Later, the flask was cooled with ice water. When the temperature of the liquid in the flask reached 5 ° C., 0.3 g of PA was added, and after 5 minutes, 26.2 g of BTDA was gradually added to the flask, stirred for 7 hours while cooling with ice water, and further at room temperature. The mixture was stirred for 1 hour (A / B = 1.0, MA / DA = 0.026). The reduced viscosity of the polyamic acid after completion of the reaction was 1.59 dl / g.

この樹脂ワニスを用いて得たポリイミドフィルムの破断点伸度は29%であった。
この樹脂ワニスを80℃に保温された平滑なプレートに保持されたポリエステルフィルム上に展開して30分放置後、空気循環式の乾燥炉で100℃30分乾燥して樹脂シート構造物を得た。乾燥後の樹脂組成物層の厚さは40μmであった。この樹脂組成物層の組成を分析した結果、イミド化率5%で還元粘度1.34dl/gのポリアミド酸30.5質量部、NMP29.5質量部であった。
この樹脂組成物層の流動性は14.6質量%であり、良好な流動性であった。
この樹脂シート構造物を樹脂組成物層側を基板に向けて、0.8mm厚の10cm角のFR−5基板に、130℃、2分、2.9MPaでプレスした後、ポリエステルフィルムを剥離して、空気循環式の乾燥炉で200℃90分の熱処理を実施したが、基板表面には微細クラックおよびボイドなどの欠陥は見られなかった。
The elongation at break of the polyimide film obtained using this resin varnish was 29%.
This resin varnish was spread on a polyester film held on a smooth plate kept at 80 ° C., allowed to stand for 30 minutes, and then dried at 100 ° C. for 30 minutes in an air circulation type drying furnace to obtain a resin sheet structure. . The thickness of the resin composition layer after drying was 40 μm. As a result of analyzing the composition of this resin composition layer, it was 30.5 parts by mass of polyamic acid and 29.5 parts by mass of NMP having an imidization rate of 5% and a reduced viscosity of 1.34 dl / g.
The fluidity of this resin composition layer was 14.6% by mass, which was good fluidity.
The resin sheet structure was pressed on a 0.8 cm thick 10 cm square FR-5 substrate with the resin composition layer side facing the substrate at 130 ° C. for 2 minutes at 2.9 MPa, and then the polyester film was peeled off. Although heat treatment was performed at 200 ° C. for 90 minutes in an air circulation type drying furnace, no defects such as fine cracks and voids were found on the substrate surface.

この樹脂ワニスを室温にて5日間保管した後のポリアミド酸の還元粘度は、1.59dl/gであった。   The reduced viscosity of the polyamic acid after storing this resin varnish at room temperature for 5 days was 1.59 dl / g.

[実施例4]
ステンレススチール製の碇型撹拌器を取り付けた容量300mlのガラス製のセパラブル3つ口フラスコに、水分吸収用シリカゲル乾燥管を取り付けた。このフラスコにNMP208.8g、BAPP33.8gを室温にて加え、撹拌・溶解した後に、氷水にてフラスコを冷却した。フラスコ内の液体の温度が5℃になった際に、PA0.3gを加え、更に5分後にダイセル化学工業株式会社製ピロメリット酸ニ無水物(以下PMDAと略す)17.7gをフラスコに除々に加え、氷水で冷却しながら7時間撹拌した後、更に室温にて1時間撹拌した(A/B=1.0、MA/DA=0.026)。反応終了後のポリアミド酸の還元粘度は、1.71dl/gであった。
[Example 4]
A silica gel drying tube for absorbing water was attached to a 300-ml glass separable three-necked flask equipped with a stainless steel vertical stirrer. NMP208.8g and BAPP33.8g were added to this flask at room temperature, and after stirring and dissolving, the flask was cooled with ice water. When the temperature of the liquid in the flask reached 5 ° C., 0.3 g of PA was added. After 5 minutes, 17.7 g of pyromellitic dianhydride (hereinafter abbreviated as PMDA) manufactured by Daicel Chemical Industries, Ltd. was gradually added to the flask. The mixture was stirred for 7 hours while cooling with ice water, and further stirred at room temperature for 1 hour (A / B = 1.0, MA / DA = 0.026). The reduced viscosity of the polyamic acid after the completion of the reaction was 1.71 dl / g.

この樹脂ワニスを用いて得たポリイミドフィルムの破断点伸度は69%であった。
この樹脂ワニスを80℃に保温された平滑なプレートに保持されたポリエステルフィルム上に展開して30分放置後、空気循環式の乾燥炉で100℃30分乾燥して樹脂シート構造物を得た。乾燥後の樹脂組成物層の厚さは40μmであった。この樹脂組成物層の組成を分析した結果、イミド化率5%で還元粘度1.46dl/gのポリアミド酸71.5質量部、NMP28.5質量部であった。
この樹脂組成物層の流動性は7.6質量%であり、良好な流動性であった。
The elongation at break of the polyimide film obtained using this resin varnish was 69%.
The resin varnish was spread on a polyester film held on a smooth plate kept at 80 ° C., allowed to stand for 30 minutes, and then dried at 100 ° C. for 30 minutes in an air circulation type drying furnace to obtain a resin sheet structure. . The thickness of the resin composition layer after drying was 40 μm. As a result of analyzing the composition of this resin composition layer, they were 71.5 parts by mass of polyamic acid and 28.5 parts by mass of NMP having an imidization rate of 5% and a reduced viscosity of 1.46 dl / g.
The fluidity of this resin composition layer was 7.6% by mass, which was good fluidity.

この樹脂シート構造物を樹脂組成物層側を基板に向けて、0.8mm厚の10cm角のFR−5基板に、130℃、2分、2.9MPaでプレスした後、ポリエステルフィルムを剥離して、空気循環式の乾燥炉で200℃90分の熱処理を実施したが、基板表面には微細クラックおよびボイドなどの欠陥は見られなかった。
この樹脂ワニスを室温にて5日間保管した後のポリアミド酸の還元粘度は、1.71dl/gであった。
The resin sheet structure was pressed on a 0.8 cm thick 10 cm square FR-5 substrate with the resin composition layer side facing the substrate at 130 ° C. for 2 minutes at 2.9 MPa, and then the polyester film was peeled off. Although heat treatment was performed at 200 ° C. for 90 minutes in an air circulation type drying furnace, no defects such as fine cracks and voids were found on the substrate surface.
The reduced viscosity of the polyamic acid after storing this resin varnish at room temperature for 5 days was 1.71 dl / g.

[実施例5]
ステンレススチール製の碇型撹拌器を取り付けた容量500mlのガラス製のセパラブル3つ口フラスコに、水分吸収用シリカゲル乾燥管を取り付けた。このフラスコにNMP347.9g、ODA27.5gを室温にて加え、撹拌・溶解した後に、氷水にてフラスコを冷却した。フラスコ内の液体の温度が5℃になった際に、PA0.5gを加え、更に5分後にビフェニル−3,4,3’,4’−テトラカルボン酸二無水物(以下BPDAと略す)39.9gをフラスコに除々に加え、氷水で冷却しながら7時間撹拌した後、更に室温にて1時間撹拌した(A/B=1.0、MA/DA=0.026)。反応終了後の樹脂の還元粘度は、1.23dl/gであった。
この樹脂ワニスを用いて得たポリイミドフィルムの破断点伸度は103%であった。
[Example 5]
A silica gel drying tube for absorbing water was attached to a 500 ml glass separable three-necked flask equipped with a stainless steel vertical stirrer. After adding NMP347.9g and ODA27.5g to this flask at room temperature, stirring and melt | dissolving, the flask was cooled with ice water. When the temperature of the liquid in the flask reached 5 ° C., 0.5 g of PA was added, and after another 5 minutes, biphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride (hereinafter abbreviated as BPDA) 39 .9 g was gradually added to the flask, stirred for 7 hours while cooling with ice water, and further stirred for 1 hour at room temperature (A / B = 1.0, MA / DA = 0.026). The reduced viscosity of the resin after completion of the reaction was 1.23 dl / g.
The elongation at break of the polyimide film obtained using this resin varnish was 103%.

この樹脂ワニスを80℃に保温された平滑なプレート上に保持されたポリエステルフィルム上に展開して30分放置後、空気循環式の乾燥炉で100℃30分乾燥して樹脂シート構造物を得た。乾燥後の樹脂組成物層の厚さは40μmであった。この樹脂組成物層の組成を分析した結果、イミド化率5%で還元粘度1.05dl/gのポリアミド酸73.5質量部、NMP26.5質量部であった。
この樹脂組成物層の流動性は8.5質量%であり、良好な流動性であった。
This resin varnish is spread on a polyester film held on a smooth plate kept at 80 ° C., left for 30 minutes, and then dried at 100 ° C. for 30 minutes in an air circulation type drying furnace to obtain a resin sheet structure. It was. The thickness of the resin composition layer after drying was 40 μm. As a result of analyzing the composition of this resin composition layer, they were 73.5 parts by mass of polyamic acid and 26.5 parts by mass of NMP having an imidization ratio of 5% and a reduced viscosity of 1.05 dl / g.
The fluidity of this resin composition layer was 8.5% by mass, which was good fluidity.

この樹脂シート構造物を樹脂組成物層側を基板に向けて、0.8mm厚の10cm角のFR−5基板に、130℃、2分、2.9MPaでプレスした後、ポリエステルフィルムを剥離して、空気循環式の乾燥炉で200℃90分の熱処理を実施したが、基板表面には微細クラックおよびボイドなどの欠陥は見られなかった。
この樹脂ワニスを室温にて5日間保管した後のポリアミド酸の還元粘度は、1.23dl/gであった。
The resin sheet structure was pressed on a 0.8 cm thick 10 cm square FR-5 substrate with the resin composition layer side facing the substrate at 130 ° C. for 2 minutes at 2.9 MPa, and then the polyester film was peeled off. Although heat treatment was performed at 200 ° C. for 90 minutes in an air circulation type drying furnace, no defects such as fine cracks and voids were found on the substrate surface.
The reduced viscosity of the polyamic acid after storing this resin varnish at room temperature for 5 days was 1.23 dl / g.

[実施例6]
ステンレススチール製の碇型撹拌器を取り付けた容量300mlのガラス製のセパラブル3つ口フラスコに、水分吸収用シリカゲル乾燥管を取り付けた。このフラスコにNMP93.2g、ODA16.5gを室温にて加え、撹拌・溶解した後に、氷水にてフラスコを冷却した。フラスコ内の液体の温度が5℃になった際に、PA0.16gを加え5分間撹拌後にBTDA26.3gをフラスコに除々に加え、氷水で冷却しながら8時間撹拌した。反応途中に増粘した際にNMP153.4gを追加した(A/B=1.0、MA/DA=0.013)。反応終了後のポリアミド酸の還元粘度は、1.83dl/gであった。
[Example 6]
A silica gel drying tube for absorbing water was attached to a 300-ml glass separable three-necked flask equipped with a stainless steel vertical stirrer. NMP93.2g and ODA16.5g were added to this flask at room temperature, and after stirring and dissolving, the flask was cooled with ice water. When the temperature of the liquid in the flask reached 5 ° C., 0.16 g of PA was added, and after stirring for 5 minutes, 26.3 g of BTDA was gradually added to the flask and stirred for 8 hours while cooling with ice water. When the viscosity increased during the reaction, 153.4 g of NMP was added (A / B = 1.0, MA / DA = 0.013). The reduced viscosity of the polyamic acid after completion of the reaction was 1.83 dl / g.

この樹脂ワニスを用いて得たポリイミドフィルムの破断点伸度は63%であった。
この樹脂ワニスを80℃に保温された平滑なプレートに保持されたポリエステルフィルム上に塗布して30分放置後、空気循環式の乾燥炉で100℃30分乾燥して樹脂シート構造物を得た。乾燥後の樹脂組成物層の厚さは40μmであった。この樹脂組成物層の組成を分析した結果、イミド化率3%で還元粘度1.60dl/gのポリアミド酸74.5質量部、NMP25.5質量部であった。
この樹脂組成物層の流動性は7.5質量%であり、良好な流動性であった。
ポリエステルフィルムから剥離した樹脂組成物の昇温速度10℃/分、窒素下で熱天秤を用いた400℃での質量を基準とした5%減量温度は570℃であり、生成したポリイミド樹脂の耐熱性は良好であった。
The elongation at break of the polyimide film obtained using this resin varnish was 63%.
The resin varnish was applied on a polyester film held on a smooth plate kept at 80 ° C., allowed to stand for 30 minutes, and then dried at 100 ° C. for 30 minutes in an air circulation type drying furnace to obtain a resin sheet structure. . The thickness of the resin composition layer after drying was 40 μm. As a result of analyzing the composition of this resin composition layer, they were 74.5 parts by mass of polyamic acid and 25.5 parts by mass of NMP having an imidization rate of 3% and a reduced viscosity of 1.60 dl / g.
The fluidity of this resin composition layer was 7.5% by mass, which was good fluidity.
The temperature rise rate of the resin composition peeled from the polyester film was 10 ° C./min, the 5% weight loss temperature based on the mass at 400 ° C. using a thermobalance under nitrogen was 570 ° C., and the heat resistance of the produced polyimide resin The property was good.

この樹脂シート構造物を樹脂組成物層側を基板に向けて、パターニング加工した5cm角のFR−4基板に、90℃、10分、4.9MPaで真空プレスした後、ポリエステルフィルムを剥離して、空気循環式の乾燥炉で200℃90分の熱処理を実施したが、樹脂組成物は基板表面の凹凸に追従して充填されており、基板表面には微細クラックおよびボイドなどの欠陥は見られなかった。
この樹脂ワニスを室温にて5日間保管した後のポリアミド酸の還元粘度は、1.83dl/gであった。
This resin sheet structure was vacuum-pressed at 90 ° C. for 10 minutes and 4.9 MPa on a patterned 5 cm square FR-4 substrate with the resin composition layer side facing the substrate, and then the polyester film was peeled off. Although the heat treatment was performed at 200 ° C. for 90 minutes in an air circulation type drying furnace, the resin composition was filled following the unevenness of the substrate surface, and defects such as fine cracks and voids were found on the substrate surface. There wasn't.
The reduced viscosity of the polyamic acid after storing this resin varnish at room temperature for 5 days was 1.83 dl / g.

[実施例7]
ステンレススチール製の碇型撹拌器を取り付けた容量300mlのガラス製のセパラブル3つ口フラスコに、水分吸収用シリカゲル乾燥管を取り付けた。このフラスコにNMP208.4g、ODA16.5gを室温にて加え、撹拌・溶解した後に、氷水にてフラスコを冷却した。フラスコ内の液体の温度が5℃になった際に、PA0.64gを加え5分間撹拌後にBTDA25.8gをフラスコに除々に加え、氷水で冷却しながら8時間撹拌した(A/B=1.0、MA/DA=0.054)。反応終了後のポリアミド酸の還元粘度は、0.94dl/gであった。
[Example 7]
A silica gel drying tube for absorbing water was attached to a 300-ml glass separable three-necked flask equipped with a stainless steel vertical stirrer. NMP208.4g and ODA16.5g were added to this flask at room temperature, and after stirring and dissolving, the flask was cooled with ice water. When the temperature of the liquid in the flask reached 5 ° C., 0.64 g of PA was added, and after stirring for 5 minutes, 25.8 g of BTDA was gradually added to the flask and stirred for 8 hours while cooling with ice water (A / B = 1. 0, MA / DA = 0.054). The reduced viscosity of the polyamic acid after completion of the reaction was 0.94 dl / g.

この樹脂ワニスを用いて得たポリイミドフィルムの破断点伸度は58%であった。
この樹脂ワニスを80℃に保温された平滑なプレートに保持されたポリエステルフィルム上に塗布して30分放置後、空気循環式の乾燥炉で100℃30分乾燥して樹脂シート構造物を得た。乾燥後の樹脂組成物層の厚さは40μmであった。この樹脂組成物層の組成を分析した結果、イミド化率4%で還元粘度0.77dl/gのポリアミド酸73.5質量部、NMP26.5質量部であった。
この樹脂組成物層の流動性は9.0質量%であり、良好な流動性であった。
ポリエステルフィルムから剥離した樹脂組成物の昇温速度10℃/分、窒素下で熱天秤を用いた400℃での質量を基準とした5%減量温度は571℃であり、生成したポリイミド樹脂の耐熱性は良好であった。
The elongation at break of the polyimide film obtained using this resin varnish was 58%.
The resin varnish was applied on a polyester film held on a smooth plate kept at 80 ° C., allowed to stand for 30 minutes, and then dried at 100 ° C. for 30 minutes in an air circulation type drying furnace to obtain a resin sheet structure. . The thickness of the resin composition layer after drying was 40 μm. As a result of analyzing the composition of this resin composition layer, they were 73.5 parts by mass of polyamic acid and 26.5 parts by mass of NMP having an imidization rate of 4% and a reduced viscosity of 0.77 dl / g.
The fluidity of this resin composition layer was 9.0% by mass, which was good fluidity.
The temperature rise rate of the resin composition peeled from the polyester film was 10 ° C./min, the 5% weight loss temperature based on the mass at 400 ° C. using a thermobalance under nitrogen was 571 ° C., and the heat resistance of the produced polyimide resin The property was good.

この樹脂シート構造物を樹脂組成物層側を基板に向けて、パターニング加工した5cm角のFR−4基板に、90℃、10分、4.9MPaで真空プレスした後、ポリエステルフィルムを剥離して、空気循環式の乾燥炉で200℃90分の熱処理を実施したが、樹脂組成物は基板表面の凹凸に追従して充填されており、基板表面には微細クラックおよびボイドなどの欠陥は見られなかった。
この樹脂ワニスを室温にて5日間保管した後のポリアミド酸の還元粘度は、0.94dl/gであった。
This resin sheet structure was vacuum-pressed at 90 ° C. for 10 minutes and 4.9 MPa on a patterned 5 cm square FR-4 substrate with the resin composition layer side facing the substrate, and then the polyester film was peeled off. Although the heat treatment was performed at 200 ° C. for 90 minutes in an air circulation type drying furnace, the resin composition was filled following the unevenness of the substrate surface, and defects such as fine cracks and voids were found on the substrate surface. There wasn't.
The reduced viscosity of the polyamic acid after storing this resin varnish at room temperature for 5 days was 0.94 dl / g.

[比較例1]
実施例1の樹脂シート構造物の表面をフッ素樹脂フィルムで覆い、130℃10分加熱処理した後、フッ素樹脂フィルムを剥離して樹脂組成物層の組成を分析した結果、イミド化率72%のポリアミド酸76.5質量部、水分を含むNMP23.5質量部であった。
この樹脂シート構造物を樹脂組成物層側を基板に向けて、0.8mm厚10cm角のFR−5基板に90℃、10分、4.9MPaでプレスした後、ポリエステルフィルムを剥離して、空気循環式の乾燥炉で200℃90分熱処理した基板の表面には微細なクラックが見られた。
[Comparative Example 1]
The surface of the resin sheet structure of Example 1 was covered with a fluororesin film, and after heat treatment at 130 ° C. for 10 minutes, the fluororesin film was peeled off and the composition of the resin composition layer was analyzed. It was 76.5 parts by mass of polyamic acid and 23.5 parts by mass of NMP containing water.
This resin sheet structure was pressed at 90 ° C. for 10 minutes at 4.9 MPa on a FR-5 substrate having a thickness of 10 mm square with the resin composition layer side facing the substrate, and then the polyester film was peeled off. Fine cracks were found on the surface of the substrate heat-treated at 200 ° C. for 90 minutes in an air circulation type drying furnace.

[比較例2]
実施例1の樹脂シート構造物の表面をフッ素樹脂フィルムで覆い、110℃10分加熱処理した後、フッ素樹脂フィルムを剥離して樹脂組成物層の組成を分析した結果、イミド化率43%のポリアミド酸75.5質量部、水分を含むNMP24.5質量部であった。
この樹脂シート構造物を樹脂組成物層側を基板に向けて、0.8mm厚10cm角のFR−5基板に90℃、10分、4.9MPaでプレスした後、ポリエステルフィルムを剥離して、空気循環式の乾燥炉で200℃90分熱処理した基板の表面には微細なクラックが見られた。
[Comparative Example 2]
The surface of the resin sheet structure of Example 1 was covered with a fluororesin film, and after heat treatment at 110 ° C. for 10 minutes, the fluororesin film was peeled off and the composition of the resin composition layer was analyzed. It was 75.5 parts by mass of polyamic acid and 24.5 parts by mass of NMP containing water.
The resin sheet structure was pressed at 90 ° C. for 10 minutes at 4.9 MPa on a FR-5 substrate having a thickness of 10 mm and a resin composition layer side facing the substrate, and then the polyester film was peeled off. Fine cracks were found on the surface of the substrate heat-treated at 200 ° C. for 90 minutes in an air circulation type drying furnace.

[比較例3]
ステンレススチール製の碇型撹拌器を取り付けた容量300mlのガラス製のセパラブル3つ口フラスコに、水分吸収用シリカゲル乾燥管を取り付けた。このフラスコにNMP180.6g、ODA20.1gを室温にて加え、撹拌・溶解した後に、氷水にてフラスコを冷却した。フラスコ内の液体の温度が5℃になった際に、PA2.4gを加え5分間撹拌した後にBTDA29.7gをフラスコに除々に加え、氷水で冷却しながら8時間撹拌した(A/B=1.0、MA/DA=0.17)。反応終了後のポリアミド酸の還元粘度(30℃、ポリマー濃度0.5g/dl、NMP)は、0.42dl/gであった。
この樹脂ワニスを用いて得たポリイミドフィルムの破断点伸度は8.8%であった。
[Comparative Example 3]
A silica gel drying tube for absorbing water was attached to a 300-ml glass separable three-necked flask equipped with a stainless steel vertical stirrer. NMP180.6g and ODA20.1g were added to this flask at room temperature, and after stirring and dissolving, the flask was cooled with ice water. When the temperature of the liquid in the flask reached 5 ° C., 2.4 g of PA was added and stirred for 5 minutes, and then 29.7 g of BTDA was gradually added to the flask and stirred for 8 hours while cooling with ice water (A / B = 1). 0.0, MA / DA = 0.17). The reduced viscosity (30 ° C., polymer concentration 0.5 g / dl, NMP) of the polyamic acid after the reaction was 0.42 dl / g.
The elongation at break of the polyimide film obtained using this resin varnish was 8.8%.

[比較例4]
ステンレススチール製の碇型撹拌器を取り付けた容量500mlのガラス製のセパラブル3つ口フラスコに、乾燥窒素を流した。このフラスコにNMP400.0g、和光純薬工業株式会社製p−フェニレンジアミン20.94gを室温にて加え、20℃で撹拌・溶解した。フラスコ内の液体の温度が20℃の状態で、BPDA28.5gをフラスコに除々に加え、更にPMDA21.1gを除々に加えた。PMDAを添加して20分後に30℃に昇温して3時間撹拌した。更に室温にて5時間撹拌した(A/B=1.0、MA/DA=0)。反応終了後のポリアミド酸の還元粘度(30℃、ポリマー濃度0.5g/dl、NMP)は、3.10dl/gであった。
この樹脂ワニスを室温にて5日間保管した後のポリアミド酸の還元粘度(30℃、ポリマー濃度0.5g/dl、NMP)は、1.97dl/gとなり、粘度が低下した。
[Comparative Example 4]
Dry nitrogen was passed through a 500 ml glass separable three-necked flask equipped with a stainless steel vertical stirrer. NMP400.0g and Wako Pure Chemical Industries p-phenylenediamine 20.94g were added to this flask at room temperature, and it stirred and melt | dissolved at 20 degreeC. While the temperature of the liquid in the flask was 20 ° C., 28.5 g of BPDA was gradually added to the flask, and 21.1 g of PMDA was gradually added. 20 minutes after adding PMDA, the temperature was raised to 30 ° C. and the mixture was stirred for 3 hours. Furthermore, it stirred at room temperature for 5 hours (A / B = 1.0, MA / DA = 0). The reduced viscosity (30 ° C., polymer concentration 0.5 g / dl, NMP) of the polyamic acid after the reaction was 3.10 dl / g.
After the resin varnish was stored at room temperature for 5 days, the reduced viscosity (30 ° C., polymer concentration 0.5 g / dl, NMP) of the polyamic acid was 1.97 dl / g, and the viscosity decreased.

〔比較例5〕
実施例1の樹脂ワニスに対して9.5質量%の2−エチル−4−メチルイミダゾールを加えて、室温30分間撹拌した後、実施例1と同様の方法で樹脂シート構造物を得た。
この樹脂シート構造物のポリアミド酸のイミド化率は14%であった。
この樹脂組成物層の流動性は0.4質量%であり、流動性は不良であった。
[Comparative Example 5]
After adding 9.5 mass% 2-ethyl-4-methylimidazole with respect to the resin varnish of Example 1, and stirring for 30 minutes at room temperature, the resin sheet structure was obtained by the method similar to Example 1. FIG.
The imidation ratio of the polyamic acid of this resin sheet structure was 14%.
The fluidity of this resin composition layer was 0.4% by mass, and the fluidity was poor.

本発明は、成型性、機械物性、耐熱性に優れ、取扱いが容易で、電子回路基板の絶縁材料として好適である。   The present invention has excellent moldability, mechanical properties, and heat resistance, is easy to handle, and is suitable as an insulating material for electronic circuit boards.

Claims (2)

a)ジカルボン酸無水物(以下MAと略称する)とテトラカルボン酸二無水物(以下DAと略称する)とジアミンとの反応生成物からなるポリアミド酸であって、DAとMAのモル比MA/DAが0.001〜0.15であり、MA及びDAが有する酸無水物基の合計(以下Aと略称する)とジアミンが有するアミノ基(以下Bと略称する)のモル比A/Bが0.9〜1.1であり、イミド化率が10%以下であり、かつ濃度0.5g/dlのN−メチル−2−ピロリドン溶液として30℃にて測定した還元粘度が0.5〜2.0dl/gの範囲にあるポリアミド酸と、b)沸点が100℃以上250℃以下の低分子化合物とを含み、a)成分とb)成分の和100質量部を基準として、a)成分が60〜90質量部でありb)成分が10〜40質量部である樹脂組成物層がフィルム上に形成されている樹脂シート構造物。   a) a polyamic acid comprising a reaction product of a dicarboxylic anhydride (hereinafter abbreviated as MA), a tetracarboxylic dianhydride (hereinafter abbreviated as DA) and a diamine, wherein the molar ratio of DA and MA is MA / DA is 0.001 to 0.15, and the molar ratio A / B of the total of acid anhydride groups (hereinafter abbreviated as A) possessed by MA and DA and the amino group (hereinafter abbreviated as B) possessed by diamine is 0.9 to 1.1, the imidization ratio is 10% or less, and the reduced viscosity measured at 30 ° C. as an N-methyl-2-pyrrolidone solution having a concentration of 0.5 g / dl is 0.5 to A) component containing polyamic acid in the range of 2.0 dl / g and b) a low molecular compound having a boiling point of 100 ° C. or higher and 250 ° C. or lower, based on 100 parts by mass of the sum of a) component and b) component Is 60 to 90 parts by mass and b) the component is 10 to 0 resin sheet structure resin composition layer is formed on the film is a parts by weight. 請求項1の樹脂シート構造物よりフィルムを剥離して配線層が形成された基板に積層する工程、積層後に低分子化合物を除去する工程、更に基板を積層し配線層を形成する工程を含むことを特徴とする多層配線板の製造方法。   The method includes the steps of peeling the film from the resin sheet structure of claim 1 and laminating the substrate on which the wiring layer is formed, removing the low molecular weight compound after laminating, and further laminating the substrate to form the wiring layer. A method of manufacturing a multilayer wiring board characterized by the above.
JP2004172413A 2004-06-10 2004-06-10 Resin sheet structure and method for producing multilayer wiring board using the same Expired - Fee Related JP4361423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172413A JP4361423B2 (en) 2004-06-10 2004-06-10 Resin sheet structure and method for producing multilayer wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172413A JP4361423B2 (en) 2004-06-10 2004-06-10 Resin sheet structure and method for producing multilayer wiring board using the same

Publications (2)

Publication Number Publication Date
JP2005349682A true JP2005349682A (en) 2005-12-22
JP4361423B2 JP4361423B2 (en) 2009-11-11

Family

ID=35584537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172413A Expired - Fee Related JP4361423B2 (en) 2004-06-10 2004-06-10 Resin sheet structure and method for producing multilayer wiring board using the same

Country Status (1)

Country Link
JP (1) JP4361423B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291099A (en) * 2007-05-24 2008-12-04 Du Pont Toray Co Ltd Polyimide film and molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291099A (en) * 2007-05-24 2008-12-04 Du Pont Toray Co Ltd Polyimide film and molding

Also Published As

Publication number Publication date
JP4361423B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
KR100963376B1 (en) Method for preparing polyimide and polyimide prepared by the same method
JP5251508B2 (en) Heat-resistant film metal foil laminate and method for producing the same
JP2024040228A (en) Method for manufacturing metal-clad laminated sheet
JPWO2005115752A1 (en) Polyimide laminate and method for producing the same
TW202140622A (en) Resin film, metal-clad laminate and circuit board wherein the resin film includes a liquid crystal polymer layer, a first adhesive layer, and a second adhesive layer
JP2002316386A (en) Copper-clad laminate and its production method
KR101077405B1 (en) Laminate for wiring board
KR100714952B1 (en) Polyimide Composition Having Improved Peel Strength
JP4009918B2 (en) Polyimide film, method for producing the same, and metal laminate using the same
JP4901509B2 (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film
JP2008188843A (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single sided metal-clad laminated sheet and manufacturing method of multilayer polyimide film
CN113043690A (en) Metal-clad laminate and circuit board
JP3635384B2 (en) Heat resistant bonding sheet
KR20230117670A (en) Metal clad laminate and circuit board
JP2006218767A (en) Method for producing multilayer polyimide film and its utilization
JPH08244168A (en) Manufacture of metal foil laminate polyimide film
JP4361423B2 (en) Resin sheet structure and method for producing multilayer wiring board using the same
WO2008047591A1 (en) Polyimide resin, polyimide varnish, and polyimide film
JP2007230019A (en) Manufacturing method of metal clad laminated sheet
JP2001139807A (en) Method of manufacturing heat-resistant bonding sheet
JPH08199124A (en) Bonding sheet
JP7413489B2 (en) Method for manufacturing circuit board with adhesive layer and method for manufacturing multilayer circuit board
KR102630417B1 (en) Multilayer films for electronic circuit applications
JP2006316232A (en) Adhesive film and its preparation process
JP5069844B2 (en) Method for producing insulating film for printed wiring board, polyimide / copper laminate and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090812

R150 Certificate of patent or registration of utility model

Ref document number: 4361423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees