JP4009918B2 - Polyimide film, method for producing the same, and metal laminate using the same - Google Patents

Polyimide film, method for producing the same, and metal laminate using the same Download PDF

Info

Publication number
JP4009918B2
JP4009918B2 JP20865898A JP20865898A JP4009918B2 JP 4009918 B2 JP4009918 B2 JP 4009918B2 JP 20865898 A JP20865898 A JP 20865898A JP 20865898 A JP20865898 A JP 20865898A JP 4009918 B2 JP4009918 B2 JP 4009918B2
Authority
JP
Japan
Prior art keywords
dianhydride
polyimide film
polyimide
component
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20865898A
Other languages
Japanese (ja)
Other versions
JPH1180390A (en
Inventor
孔一 沢崎
賢治 鵜原
道弘 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP20865898A priority Critical patent/JP4009918B2/en
Publication of JPH1180390A publication Critical patent/JPH1180390A/en
Application granted granted Critical
Publication of JP4009918B2 publication Critical patent/JP4009918B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、高弾性、金属並の低熱膨張性、低吸水性であるポリイミドフィルム、その製造方法およびそれを基材とした反りの改善された金属積層板に関する。
【0002】
【従来の技術】
無水ピロメリット酸と4,4’−ジアミノジフェニルエーテルとの縮重合によって得られるポリイミドは、耐熱性、電気絶縁性に優れ、主にフレキシブルプリント基板等の用途に利用されている。最近では半導体パッケージ用途にも展開しており、高加工性、高精度化が要求され、ポリイミドの特性としても高弾性率、金属並の低熱膨張性、低吸水性が求められ、種々検討が行われている。例えば特開昭60−210629、特開昭64−16832、特開昭64−16833、特開昭64−16834、特開平1−131241、特開平1−131242各号公報では、弾性率を高めるためにジアミン成分としてパラフェニレンジアミンを併用し、無水ピロメリット酸、4,4’−ジアミノジフェニルエーテル、パラフェニレンジアミンによる3成分系ポリイミドの例が記載されている。さらに弾性率を高めるため上記3成分系に3,3’−4,4’−ビフェニルテトラカルボン酸二無水物を加えた4成分系ポリイミドへの展開も行われている。例えば特開昭59−164328号公報、特開昭61−111359号公報に4成分系ポリイミドの例が記載されている。他では4成分系ポリイミドで重合時にモノマーの添加手順をコントロールすることによって物性を改良する試みが例えば特開平5−25273号公報で示されている。また製膜時に延伸を行うことで物性を改良する試みが例えば特開平1−20238号公報で示されている。
【0003】
【発明が解決しようとする課題】
上記で述べたように半導体パッケージ用途に使用するには、その特性として高弾性率、金属並の低熱膨張性、低吸水性が必要である。しかしながら特開昭60−210629、特開昭64−16832、特開昭64−16833、特開昭64−16834、特開平1−131241、特開平1−131242で得られる3成分系ポリイミドは、無水ピロメリット酸と4,4’−ジアミノジフェニルエーテルから得られるポリイミドに比べて弾性率は高くなるがそれでも尚半導体パッケージ用途として充分な弾性率は得られない。また特開昭59−164328、特開昭61−111359で得られる4成分系ポリイミドでは、充分な弾性率を得るためには、パラフェニレンジアミンの使用量を多くする必要があり、その結果熱膨張率が金属より低くなりすぎるという問題がある。他に特開平5−25273で得られる4成分系ポリイミドでは、弾性率、熱膨張性はその用途を充分満たしたものとなっているが、吸水率が大きいという問題がある。また特開平1−20238で得られる3成分系ポリイミドでは延伸により弾性率が著しく高くフレキシビリティを失い、熱膨張係数もかなり低下しフィルムと貼り合わせた時金属との熱挙動の差異が大きくなるという問題がある。
【0004】
したがって本発明は、高弾性、金属並の低熱膨張性、低吸水性であるポリイミドフィルム、その製造方法およびそれを基材とした反りを改善した金属積層板を提供することを課題とする。
【0005】
【課題を解決するための手段】
前記課題を解決する本発明のポリイミドフィルムは、パラフェニレンジアミンとピロメリット酸二無水物とからなるポリイミドのブロック成分と、4,4’−ジアミノジフェニルエーテルとピロメリット酸二無水物および3,3’,4,4’−ビフェニルテトラカルボン酸二無水物または3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物とからなる共重合ポリイミドのランダム成分とが、分子結合してなる共重合ポリイミドを2軸延伸することによって成形した複屈折0.01以下、熱膨張係数10〜22ppm/℃、弾性率520〜680kg/mm 、吸水率1.5〜2.1%のポリイミドフィルム。
(ただし、全芳香族ジアミン成分中パラフェニレンジアミンが12〜30モル%、4,4’−ジアミノジフェニルエーテルが70〜88モル%であり、かつ全芳香族テトラカルボン酸成分中ピロメリット酸二無水物が50〜80モル%、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物または3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物が20〜50モル%である。)
また、本発明のポリイミドフィルムの製造方法は、 (1)パラフェニレンジアミンとピロメリット酸二無水物とを、反応成分に対して非反応性の有機溶媒中で、パラフェニレンジアミンに対してピロメリット酸二無水物が95〜105モル%となる比率で、反応に必要な時間混合した後、(2)4,4’−ジアミノジフェニルエーテルを添加し、続いてピロメリット酸二無水物を添加、さらに3,3’,4,4’−ビフェニルテトラカルボン酸二無水物または3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物を全芳香族テトラカルボン酸類成分と全芳香族ジアミン成分とがほぼ等モルとなる量添加して、反応に必要な時間混合し、(3)得られる共重合ポリアミド酸溶液を環化後、2軸延伸・脱溶媒して成形されることを特徴とするポリイミドフィルムの製造方法である。
また、本発明の金属積層板は、上記のポリイミドフィルムあるいは、上記の方法で得られたポリイミドフィルムを基材とし、これと金属とを積層することを特徴とする金属積層板である。
【0006】
本発明の共重合ポリイミドを構成するポリイミドのブロック成分とは、パラフェニレンジアミン(以下、剛構造の芳香族ジアミン化合物と称することがある)とピロメリット酸二無水物とから得られる繰り返しポリイミド分子鎖であり、重合の第1段階で形成させることにより得る。また共重合ポリイミドのランダム成分は、重合の2段階目に4,4’−ジアミノジフェニルエーテル(以下、柔構造のジアミン化合物と称することがある)とピロメリット酸二無水物および3,3’,4,4’−ビフェニルテトラカルボン酸二無水物または3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物を反応させることによって形成する。こうして得られるポリイミドのブロック成分と共重合ポリイミドのランダム成分とを分子結合によって構成せしめる共重合ポリイミドを延伸することによって成形したポリイミドフィルムは高弾性、金属並の低熱膨張性、低吸水性といった優れた物性を有することができる。
【0007】
延伸によって得られるポリイミドフィルムの複屈折は0.01以下にコントロールする必要がある。複屈折が0.01以上であるとフィルムの異方性が大きくなり金属と貼り合わせた時反りが生じやすくなるので好ましくない。
【0008】
また延伸によって得られるポリイミドフィルムの熱膨張係数を10〜22ppm/℃の範囲にコントロールすることが望ましい。この範囲から外れると金属、ICチップ、エポキシ基材等との熱的挙動に差異が生じ、寸法変化が大きくなるので好ましくない場合がある。
【0015】
使用する芳香族ジアミン化合物の割合としては、全芳香族ジアミン成分に対して剛構造の芳香族ジアミン化合物を12モル%以上30モル%以下、柔構造の芳香族ジアミン化合物を70モル%以上88モル%以下使用するのが好ましい。剛構造の芳香族ジアミン化合物の使用割合が前記の割合より少なくなり、柔構造の芳香族ジアミン化合物の使用割合が多くなりすぎると、得られるポリイミドフィルムの弾性率が低下したり、熱膨張係数が増大するので好ましくなく、また剛構造の芳香族ジアミン化合物の使用割合が前記の割合より多くなり、柔構造の芳香族ジアミン化合物の使用割合が少なくなると、ポリイミドフィルムの吸水率が増大したり、熱膨張係数が低下しすぎたり、弾性率が高くなりすぎて成形性を損なうので好ましくない。
【0016】
使用する芳香族テトラカルボン酸類化合物としてはピロメリット酸類、3,3’,4,4’−ビフェニルテトラカルボン酸類および3,3’,4,4’−ベンゾフェノンテトラカルボン酸類から1種以上を選ぶのが好ましい。
【0017】
使用する芳香族テトラカルボン酸類化合物で、ピロメリット酸類としてはピロメリット酸またはその二無水物を、3,3’−4,4’−ビフェニルテトラカルボン酸類としては3,3’−4,4’−ビフェニルテトラカルボン酸またはその二無水物を、3,3’−4,4’−ベンゾフェノンテトラカルボン酸類としては3,3’−4,4’−ベンゾフェノンテトラカルボン酸またはその二無水物をそれぞれ挙げることができる。
【0018】
使用する芳香族テトラカルボン酸類化合物の割合としては、全芳香族テトラカルボン酸類成分に対してピロメリット酸類を50モル%以上80モル%以下、3,3’−4,4’−ビフェニルテトラカルボン酸類および/または、3,3’−4,4’−ベンゾフェノンテトラカルボン酸類を20モル%以上50モル%以下使用するのが好ましい。3,3’−4,4’−ビフェニルテトラカルボン酸類および/または、3,3’−4,4’−ベンゾフェノンテトラカルボン酸類の使用割合が前記の割合より少なくなると、得られるポリイミドフィルムの弾性率が低下したり、吸水率が増大するので好ましくなく、また3,3’−4,4’−ビフェニルテトラカルボン酸類および/または、3,3’−4,4’−ベンゾフェノンテトラカルボン酸類の使用割合が前記の割合より多くなると、得られるポリイミドフィルムの気体透過率が悪化し、フィルムの表面に気泡が発生したり、フィルムの接着力が低下するので好ましくない。尚3,3’−4,4’−ビフェニルテトラカルボン酸類、3,3’−4,4’−ベンゾフェノンテトラカルボン酸類はそれぞれ単独で使用してもよいが、混合して使用してもよい。
【0019】
次に、本発明のポリイミドフィルムの製造方法について説明する。まずポリイミドのブロック成分を形成させるために重合の第1段階で1種の剛構造の芳香族ジアミン化合物と1種の芳香族テトラカルボン酸類を反応成分に対して非反応性の有機溶媒中で、1時間以上混合する。ここで用いる芳香族ジアミン化合物に対する芳香族テトラカルボン酸類の比率は95〜105モル%が好ましいが、効率良くブロック成分を形成させ第2段階で形成されるランダム成分と分子結合させるには、97〜100モル%がより好ましい。
【0020】
続いて共重合ポリイミドのランダム成分を形成させるため重合の第2段階として柔構造の芳香族ジアミン化合物を添加した後、芳香族テトラカルボン酸類(A)を添加して1時間以上撹拌、さらに芳香族テトラカルボン酸類(B;A≠B)を全芳香族テトラカルボン酸類成分と全芳香族ジアミン成分とがほぼ等モルとなる量添加して、1時間以上撹拌する。このような一連の重合中、第1段階と第2段階でそれぞれ形成されるブロック重合ポリアミド酸成分とランダム共重合ポリアミド酸成分とが分子結合した共重合ポリアミド酸溶液を得ることができ、このポリアミド酸溶液を環化後、延伸・脱溶媒することにより、所望のポリイミドフィルムを得ることができる。
【0021】
該製造方法における延伸について説明する。まず一連の反応で得られたポリアミド酸を環化触媒および脱水剤を用いて化学環化するか加熱処理による熱的環化によりポリイミドのゲルフィルムを得る。次にこのゲルフィルムの端部を固定し、縦方向に1.05〜1.5、横方向に1.05〜2.0の倍率で延伸するのが好ましい。このような2軸延伸を行うと、得られるポリイミドフィルムの機械特性向上、さらには等方性が改良されるので好ましい。
【0022】
該製造方法における第1段階の重合では芳香族テトラカルボン酸類としてピロメリット酸類、3,3’−4,4’−ビフェニルテトラカルボン酸類、3,3’−4,4’−ベンゾフェノンテトラカルボン酸類いずれでも単独で使用してよいが、ピロメリット酸類を使用すると、最終的に得られるポリイミドフィルムの弾性率を高めるので好ましい。また芳香族ジアミン成分としては剛構造の芳香族ジアミン化合物を使用する。
【0023】
第2段階の重合では、芳香族テトラカルボン酸類としてピロメリット酸類、3,3’−4,4’−ビフェニルテトラカルボン酸類および3,3’−4,4’−ベンゾフェノンテトラカルボン酸類から選ばれる1種以上の化合物を使用するのが好ましく、最終的に得られるポリイミドフィルムの弾性率を高めるためにはピロメリット酸類と3,3’−4,4’−ビフェニルテトラカルボン酸類の組み合わせで使用するのが好ましい。また芳香族ジアミン成分としては柔構造の芳香族ジアミン化合物を使用する。
【0024】
該製造方法で使用する溶媒としては、ジメチルスルホキシド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N−メチル−2−ピロリドンおよびジメチルスルホン等が挙げられ、これらを単独あるいは混合して使用するのが好ましい。
【0025】
該製造方法で得られる共重合ポリアミド酸は前記溶媒中に10〜30重量%の割合で調製する。
【0026】
該製造方法で得られる共重合ポリアミド酸を環化させて共重合ポリイミドにする際、脱水剤と触媒を用いて脱水する化学閉環法、熱的に脱水する熱閉環法のいずれで行ってもよいが、化学閉環法で行った方が得られるポリイミドフィルムの弾性率が高く、熱膨張係数が低くなり、さらにTAB用途で必要なケミカルエッチング性が付与できるので好ましい。化学閉環法で使用する脱水剤としては、無水酢酸等の脂肪族酸無水物、フタル酸無水物等の芳香族酸無水物等が挙げられ、これらを単独あるいは混合して使用するのが好ましい。また触媒としては、ピリジン、ピコリン、キノリン等の複素環式第3級アミン類、トリエチルアミン等の脂肪族第3級アミン類、N,N−ジメチルアニリン等の芳香族第3級アミン類等が挙げられ、これらを単独あるいは混合して使用するのが好ましい。
【0027】
本発明の金属積層板は、基材であるポリイミドフイルムの表面に、ポリエステルベース、アクリルベース、エポキシベース或いはポリイミドベース等の接着剤を介して導電性の金属箔を積層する三層構造のものと、ポリイミドフィルムの表面に、接着剤を介することなく、直接導電性の金属層を積層する二層構造のものの何れでも良い。
【0028】
【実施例】
以下実施例により本発明を具体例に説明する。実施例中PPDはパラフェニレンジアミン、ODAは4,4’−ジアミノジフェニルエーテル、PMDAはピロメリット酸二無水物、BPDAは3,3’−4,4’−ジフェニルテトラカルボン酸二無水物、BTDAは、3,3’−4,4’−ベンゾフェノンテトラカルボン酸二無水物、DMAcはN,N−ジメチルアセトアミドを表す。
【0029】
実施例1
500mlのセパラブルフラスコにDMAc239.1gを入れ、ここにPPD1.870g(0.0173モル)とPMDA3.659g(0.0168モル)を投入し、常温常圧中で1時間反応させた。次にここにODA25.398g(0.1268モル)を投入し均一になるまで撹拌した後、BPDA8.481g(0.0288モル)を添加し、1時間反応させた。続いてここにPMDA21.491g(0.0985モル)を添加してさらに1時間反応させポリアミド酸溶液を得た。尚この重合で各原料の添加モル比は、表1に示す割合で行い、固形分合計重量は、60.9gに調製した。このポリアミド酸溶液から15gを取り、厚み125μmのポリエステルフィルム上に乗せた後、ミカサ製1H−360Sスピンコーターで2500rpmの回転速度で1分間回転させた。続いてこれを無水酢酸、β−ピコリンの混合溶液に10分間浸してイミド化反応させた後、ポリイミドゲルフィルムをポリエステルフィルムから剥がし、そのゲルフィルム端部をピン止めし、縦方向1.15倍、横方向1.30倍に延伸した。その後300℃で20分間、続いて400℃で5分間加熱乾燥した後、ピン止めを外し、厚さ約25μmのポリイミドフィルムを得た。このフィルムの各特性の評価を行い、表1にその結果を示した。
【0030】
尚、各特性は次の方法で評価した。
【0031】
(評価方法)
(1) 弾性率
機器:RTM−250
引張速度:100mm/min
荷重:10kg
(2) 熱膨張係数
機器:TMA−50
測定温度範囲:50〜200℃
昇温速度:10℃/min
(3) 吸水率
98%RH雰囲気下のデシケーター内に2日間静置し、元の重量に対しての 増加重量%で評価した。
【0032】
(4) 複屈折
機器:KOBRA−21ADH
光源:ナトリウム光
入射角:0゜
測定式:ΔNxy=(レターデーション)/膜厚
(5) 金属積層板の反り量評価
ポリイミドフィルムにエポキシベースの接着剤を塗布し、この上に銅箔を130℃の温度で貼り合わせた。その後最高温度160℃まで昇温し接着剤を硬化させ、得られた金属積層板を35mm*120mmのサンプルサイズにカットし、25℃、60RH%下で24時間放置した後、それぞれのサンプルの反りを測定した。反りはサンプルを平地に置き、4角の高さを測定平均化して評価した。反り量が3mmを超えると金属積層板として用いる場合、後工程での取り扱いが著しく困難となることが多い。
【0033】
実施例2〜10
実施例1と同様の手順で、芳香族ジアミン成分および芳香族テトラカルボン酸成分を表1に示す割合でそれぞれポリアミド酸溶液を得た後、横方向・縦方向の延伸倍率を表1のよう行い実施例1と同じ操作で得られたポリイミドフィルムの各特性評価を行い、表1にその結果を示した。尚実施例3で得られたポリイミドフィルム(熱膨張係数:17.5ppm/℃,複屈折0.0094)についての金属積層板の反り量結果を表3に示した。
【0034】
実施例11
BPDAをBTDAに置きかえ、原料の添加量を表1に示す割合で行った他は、実施例1と同様に操作を行いポリアミド酸溶液を得た後、実施例1と同じ操作で得られたポリイミドフィルムの各物性評価を行い、表1にその結果を示した。
【0035】
実施例12
500mlのセパラブルフラスコにDMAc239.1gを入れ、ここにPPDとBPDAを投入し、常温常圧中で1時間反応させた。次にここにODAを投入し均一になるまで撹拌した後、BPDAを添加し、1時間反応させた。続いてここにPMDAを添加してさらに1時間反応させポリアミド酸溶液を得た。尚この重合で各原料の添加量は、表1に示す割合で行い、固形分合計重量は、60.9gに調製した。この後ポリアミド酸溶液からポリイミドフィルムを得る操作については、実施例1と同様にして行い、ポリイミドフィルムの各物性評価結果を表1に示した。
【0036】
比較例1
実施例1と同様の割合および手順で芳香族ジアミン成分および芳香族テトラカルボン酸成分を反応・イミド化させた後、これを延伸せずに端部をピン止めし300℃で20分間、続いて400℃で5分間加熱乾燥した後、ピン止めを外し、厚さ約25μmのポリイミドフィルムを得た。このフィルムについて各物性評価結果を表2に示した。
【0037】
比較例2
500mlのセパラブルフラスコにDMAc239.1gを入れ、ここにODAとPMDAを投入し、常温常圧中で1時間反応させポリアミド酸溶液を得た。尚ODAとPMDAのモル比は、ほぼ1:1とし、固形分合計重量は、60.9gに調製した。この後ポリアミド酸溶液からポリイミドフィルムを得る操作については、横方向・縦方向の延伸倍率を表2のよう行い、その他は実施例1と同様にして行い、得られたポリイミドフィルムの各物性評価結果を表2に示した。
【0038】
比較例3
500mlのセパラブルフラスコにDMAc239.1gを入れ、ここにPPDとPMDAを投入し、常温常圧中で1時間反応させた。次にここにODAを投入し均一になるまで撹拌した後、PMDAを添加して1時間反応させポリアミド酸溶液を得た。尚この重合で各原料の添加量は、表2に示す割合で行い、固形分合計重量は、60.9gに調製した。この後ポリアミド酸溶液からポリイミドフィルムを得る操作については、横方向・縦方向の延伸倍率を表2のよう行い、その他は実施例1と同様にして行い、得られたポリイミドフィルムの各物性評価結果を表2に示した。また得られたポリイミドフィルムの金属積層板の反り量結果を表3に示した。
【0039】
比較例4
500mlのセパラブルフラスコにDMAc239.1gを入れ、ここにPPD、ODA、BPDA、PMDAを順次添加して常温常圧で2時間反応させポリアミド酸溶液を得た。尚この重合で各原料の添加量は、表2に示す割合で行い、固形分合計重量は、60.9gに調製した。この後ポリアミド酸溶液からポリイミドフィルムを得る操作については、横方向・縦方向の延伸倍率を表2のよう行い、その他は実施例1と同様にして行い、得られたポリイミドフィルムの各物性評価結果を表2に示した。
【0040】
【表1】

Figure 0004009918
【表2】
Figure 0004009918
【表3】
Figure 0004009918
【0041】
【発明の効果】
本発明で得られるポリイミドフィルムはブロック重合ポリイミド成分とランダム共重合ポリイミド成分とが分子結合によって構成された共重合ポリイミドを延伸して複屈折を0.01以下、熱膨張係数を10〜22ppm/℃にすることにより、機械特性が向上し、低熱膨張性、低吸水性を併せ持つことができ、さらに得られた金属積層板の反り量を低減できるので高い寸法安定性および高加工性を必要とする半導体パッケージ用途として充分機能を果たすことができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyimide film having high elasticity, low thermal expansion comparable to that of metals and low water absorption, a method for producing the same, and a metal laminate having improved warpage based thereon.
[0002]
[Prior art]
Polyimide obtained by polycondensation of pyromellitic anhydride and 4,4′-diaminodiphenyl ether is excellent in heat resistance and electrical insulation and is mainly used for applications such as flexible printed boards. Recently, it has also been developed for semiconductor package applications, and high workability and high precision are required. Polyimide properties are required to have high elastic modulus, low thermal expansion comparable to metal, and low water absorption, and various studies have been conducted. It has been broken. For example, in Japanese Patent Laid-Open Nos. 60-210629, 64-16832, 64-16883, 64-16834, 1-13-11241, and 1-113142, the elastic modulus is increased. Describes an example of a three-component polyimide using pyromellitic anhydride, 4,4′-diaminodiphenyl ether, and paraphenylenediamine in combination with paraphenylenediamine as a diamine component. In order to further increase the elastic modulus, development into a four-component polyimide in which 3,3′-4,4′-biphenyltetracarboxylic dianhydride is added to the above three-component system has also been performed. For example, JP-A 59-164328 and JP-A 61-111359 describe examples of quaternary polyimides. Another attempt to improve physical properties by controlling the monomer addition procedure during polymerization using a 4-component polyimide is disclosed in, for example, Japanese Patent Application Laid-Open No. 5-25273. An attempt to improve the physical properties by stretching at the time of film formation is disclosed in, for example, JP-A-1-20238.
[0003]
[Problems to be solved by the invention]
As described above, in order to be used in semiconductor package applications, its properties require high elastic modulus, low thermal expansion comparable to metal, and low water absorption. However, the ternary polyimides obtained in JP-A-60-210629, JP-A-64-1683, JP-A-64-16833, JP-A-64-16834, JP-A-1-1311241, and JP-A-1-131242 are not anhydrous. Although the elastic modulus is higher than that of polyimide obtained from pyromellitic acid and 4,4′-diaminodiphenyl ether, it still cannot provide a sufficient elastic modulus for semiconductor package applications. In addition, in the four-component polyimides obtained in JP-A-59-164328 and JP-A-61-111359, in order to obtain a sufficient elastic modulus, it is necessary to increase the amount of paraphenylenediamine, and as a result, thermal expansion. There is a problem that the rate is too low than metal. In addition, the 4-component polyimide obtained in Japanese Patent Laid-Open No. 5-25273 has sufficient elasticity and thermal expansibility, but has a problem of high water absorption. In addition, the ternary polyimide obtained in JP-A-1-20238 has a remarkably high elastic modulus due to stretching, loses flexibility, significantly reduces the coefficient of thermal expansion, and increases the difference in thermal behavior with metal when bonded to a film. There's a problem.
[0004]
Accordingly, it is an object of the present invention to provide a polyimide film having high elasticity, low thermal expansion comparable to metals, and low water absorption, a method for producing the polyimide film, and a metal laminate having improved warpage using the polyimide film.
[0005]
[Means for Solving the Problems]
The polyimide film of the present invention that solves the above problems includes a polyimide block component comprising paraphenylenediamine and pyromellitic dianhydride, 4,4′-diaminodiphenyl ether, pyromellitic dianhydride, and 3,3 ′. , 4,4′-biphenyltetracarboxylic dianhydride or 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride copolymerized polyimide random component and a copolymer formed by molecular bonding A polyimide film formed by biaxially stretching polyimide with a birefringence of 0.01 or less, a thermal expansion coefficient of 10 to 22 ppm / ° C., an elastic modulus of 520 to 680 kg / mm 2 , and a water absorption of 1.5 to 2.1%.
(However, in the wholly aromatic diamine component, paraphenylenediamine is 12 to 30 mol%, 4,4′-diaminodiphenyl ether is 70 to 88 mol%, and pyromellitic dianhydride in the wholly aromatic tetracarboxylic acid component. Is 50 to 80 mol%, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride or 3,3', 4,4'-benzophenonetetracarboxylic dianhydride is 20 to 50 mol% .)
Moreover, the manufacturing method of the polyimide film of the present invention is as follows: (1) In a non-reactive organic solvent with respect to the reaction component, pyrophenylene diamine and pyromellitic dianhydride with respect to paraphenylene diamine. After mixing for the time required for the reaction at a ratio of 95 to 105 mol% of acid dianhydride, (2) 4,4′-diaminodiphenyl ether is added, followed by addition of pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride or 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride is converted into a wholly aromatic tetracarboxylic acid component and a wholly aromatic diamine component. Is added in an amount of approximately equimolar, and mixed for the time required for the reaction. (3) The resulting copolymerized polyamic acid solution is cyclized, and then biaxially stretched and desolvated to form. A method for producing Li imide film.
Moreover, the metal laminated board of this invention is a metal laminated board characterized by laminating | stacking this and a metal on the basis of said polyimide film or the polyimide film obtained by said method.
[0006]
The polyimide block component constituting the copolymerized polyimide of the present invention is a repeating polyimide molecular chain obtained from paraphenylenediamine (hereinafter sometimes referred to as a rigid aromatic diamine compound) and pyromellitic dianhydride. And obtained by forming in the first stage of polymerization. The random component of the copolymerized polyimide comprises 4,4′-diaminodiphenyl ether (hereinafter sometimes referred to as a flexible diamine compound), pyromellitic dianhydride, and 3,3 ′, 4 in the second stage of polymerization. , 4′-biphenyltetracarboxylic dianhydride or 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride . The polyimide film formed by stretching the copolymerized polyimide, which comprises the polyimide block component and the random component of the copolymerized polyimide by molecular bonding, is excellent in high elasticity, low thermal expansion comparable to metals, and low water absorption. It can have physical properties.
[0007]
The birefringence of the polyimide film obtained by stretching needs to be controlled to 0.01 or less. A birefringence of 0.01 or more is not preferable because the anisotropy of the film increases and warpage is likely to occur when bonded to a metal.
[0008]
Further, it is desirable to control the thermal expansion coefficient of the polyimide film obtained by stretching in the range of 10 to 22 ppm / ° C. Outside this range, there may be differences in the thermal behavior of metals, IC chips, epoxy substrates, etc., and the dimensional change becomes large, which may be undesirable.
[0015]
The ratio of the aromatic diamine compound used is 12 mol% to 30 mol% of the rigid aromatic diamine compound and 70 mol% to 88 mol of the flexible aromatic diamine compound with respect to the total aromatic diamine component. % Or less is preferably used. If the use ratio of the rigid structure aromatic diamine compound is less than the above ratio and the use ratio of the flexible structure aromatic diamine compound is too large, the elastic modulus of the resulting polyimide film is decreased, or the thermal expansion coefficient is It is not preferable because it increases, and if the use ratio of the aromatic diamine compound having a rigid structure is larger than the above ratio and the use ratio of the aromatic diamine compound having a flexible structure is decreased, the water absorption rate of the polyimide film increases, This is not preferable because the expansion coefficient is too low or the elastic modulus is too high and the moldability is impaired.
[0016]
As the aromatic tetracarboxylic acid compound to be used, one or more selected from pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid and 3,3 ′, 4,4′-benzophenonetetracarboxylic acid are selected. Is preferred.
[0017]
The aromatic tetracarboxylic acid compound used is pyromellitic acid or its dianhydride as pyromellitic acid, and 3,3'-4,4 'as 3,3'-4,4'-biphenyltetracarboxylic acid. -Biphenyltetracarboxylic acid or its dianhydride, and 3,3'-4,4'-benzophenonetetracarboxylic acid as 3,3'-4,4'-benzophenonetetracarboxylic acid or its dianhydride, respectively. be able to.
[0018]
As a ratio of the aromatic tetracarboxylic acid compound to be used, pyromellitic acid is 50 mol% or more and 80 mol% or less, 3,3′-4,4′-biphenyl tetracarboxylic acid, based on the total aromatic tetracarboxylic acid component. And / or 3,3′-4,4′-benzophenonetetracarboxylic acid is preferably used in an amount of 20 mol% to 50 mol%. When the usage ratio of 3,3′-4,4′-biphenyltetracarboxylic acid and / or 3,3′-4,4′-benzophenonetetracarboxylic acid is less than the above ratio, the elastic modulus of the resulting polyimide film Is not preferable because of a decrease in water content and an increase in water absorption, and the proportion of 3,3′-4,4′-biphenyltetracarboxylic acid and / or 3,3′-4,4′-benzophenonetetracarboxylic acid used If the ratio is larger than the above-mentioned ratio, the gas permeability of the resulting polyimide film is deteriorated, and bubbles are generated on the surface of the film or the adhesive strength of the film is lowered. Incidentally, 3,3′-4,4′-biphenyltetracarboxylic acids and 3,3′-4,4′-benzophenonetetracarboxylic acids may be used alone or in combination.
[0019]
Next, the manufacturing method of the polyimide film of this invention is demonstrated. First, in order to form a polyimide block component, a rigid aromatic diamine compound and one aromatic tetracarboxylic acid in a first stage of polymerization are reacted in a non-reactive organic solvent with a reactive component. Mix for at least 1 hour. The ratio of the aromatic tetracarboxylic acid to the aromatic diamine compound used here is preferably 95 to 105 mol%. However, in order to efficiently form a block component and molecularly bond with the random component formed in the second stage, 97 to 100 mol% is more preferable.
[0020]
Subsequently, in order to form a random component of the copolymerized polyimide, a flexible aromatic diamine compound is added as the second stage of polymerization, then the aromatic tetracarboxylic acid (A) is added and stirred for 1 hour or more, and further aromatic Tetracarboxylic acids (B; A ≠ B) are added in an amount such that the wholly aromatic tetracarboxylic acid component and the wholly aromatic diamine component are approximately equimolar, and stirred for 1 hour or longer. During such a series of polymerizations, it is possible to obtain a copolymerized polyamic acid solution in which the block polymerized polyamic acid component and the random copolymerized polyamic acid component formed in the first stage and the second stage, respectively, are molecularly bonded. A desired polyimide film can be obtained by stretching and removing the solvent after cyclization of the acid solution.
[0021]
The stretching in the production method will be described. First, the polyamic acid obtained by a series of reactions is chemically cyclized using a cyclization catalyst and a dehydrating agent, or thermally cyclized by heat treatment to obtain a polyimide gel film. Next, it is preferable to fix the edge part of this gel film, and to extend | stretch by the magnification of 1.05-1.5 in the vertical direction, and 1.05-2.0 in the horizontal direction. It is preferable to perform such biaxial stretching because the resulting polyimide film has improved mechanical properties and isotropic properties.
[0022]
In the first stage polymerization in the production method, any of pyromellitic acids, 3,3′-4,4′-biphenyltetracarboxylic acids, 3,3′-4,4′-benzophenonetetracarboxylic acids as aromatic tetracarboxylic acids However, although it may be used alone, it is preferable to use pyromellitic acids because the elastic modulus of the finally obtained polyimide film is increased. A rigid aromatic diamine compound is used as the aromatic diamine component.
[0023]
In the second stage polymerization, the aromatic tetracarboxylic acids are selected from pyromellitic acids, 3,3′-4,4′-biphenyltetracarboxylic acids and 3,3′-4,4′-benzophenonetetracarboxylic acids 1 It is preferable to use more than one kind of compound, and in order to increase the elastic modulus of the finally obtained polyimide film, a combination of pyromellitic acids and 3,3′-4,4′-biphenyltetracarboxylic acids is used. Is preferred. A flexible aromatic diamine compound is used as the aromatic diamine component.
[0024]
Solvents used in the production method include dimethyl sulfoxide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methyl-2-pyrrolidone and dimethyl Examples thereof include sulfones, and these are preferably used alone or in combination.
[0025]
The copolymerized polyamic acid obtained by the production method is prepared in a proportion of 10 to 30% by weight in the solvent.
[0026]
When the copolymerized polyamic acid obtained by the production method is cyclized to form a copolymerized polyimide, either a chemical ring closure method using a dehydrating agent and a catalyst or a thermal ring closure method in which thermal dehydration is performed may be used. However, it is preferable to use the chemical ring closure method because the polyimide film obtained has a high elastic modulus, a low thermal expansion coefficient, and chemical etching properties necessary for TAB applications. Examples of the dehydrating agent used in the chemical ring closure method include aliphatic acid anhydrides such as acetic anhydride and aromatic acid anhydrides such as phthalic anhydride, and these are preferably used alone or in combination. Examples of the catalyst include heterocyclic tertiary amines such as pyridine, picoline and quinoline, aliphatic tertiary amines such as triethylamine, and aromatic tertiary amines such as N, N-dimethylaniline. These are preferably used alone or in combination.
[0027]
The metal laminate of the present invention has a three-layer structure in which a conductive metal foil is laminated on the surface of a polyimide film as a base material via an adhesive such as a polyester base, an acrylic base, an epoxy base or a polyimide base. Any of a two-layer structure in which a conductive metal layer is directly laminated on the surface of a polyimide film without using an adhesive may be used.
[0028]
【Example】
Hereinafter, the present invention will be described by way of specific examples. In the examples, PPD is paraphenylenediamine, ODA is 4,4′-diaminodiphenyl ether, PMDA is pyromellitic dianhydride, BPDA is 3,3′-4,4′-diphenyltetracarboxylic dianhydride, BTDA is 3,3′-4,4′-benzophenonetetracarboxylic dianhydride, DMAc represents N, N-dimethylacetamide.
[0029]
Example 1
DMAc 239.1g was put into a 500 ml separable flask, PPD1.870g (0.0173mol) and PMDA3.659g (0.0168mol) were thrown in here, and it was made to react at normal temperature normal pressure for 1 hour. Next, ODA25.398g (0.1268mol) was thrown here and it stirred until it became uniform, Then, BPDA8.481g (0.0288mol) was added, and it was made to react for 1 hour. Subsequently, 21.491 g (0.0985 mol) of PMDA was added thereto, and the mixture was further reacted for 1 hour to obtain a polyamic acid solution. In this polymerization, the addition molar ratio of each raw material was carried out at the ratio shown in Table 1, and the total solid content weight was adjusted to 60.9 g. 15 g of this polyamic acid solution was taken and placed on a 125 μm-thick polyester film, and then rotated for 1 minute at a rotation speed of 2500 rpm with a 1H-360S spin coater manufactured by Mikasa. Subsequently, this was immersed in a mixed solution of acetic anhydride and β-picoline for 10 minutes to cause an imidization reaction, and then the polyimide gel film was peeled off from the polyester film, and the end of the gel film was pinned, and the longitudinal direction was 1.15 times. The film was stretched 1.30 times in the transverse direction. Then, after heat-drying at 300 ° C. for 20 minutes and then at 400 ° C. for 5 minutes, the pinning was removed to obtain a polyimide film having a thickness of about 25 μm. Each characteristic of this film was evaluated, and the results are shown in Table 1.
[0030]
Each characteristic was evaluated by the following method.
[0031]
(Evaluation methods)
(1) Elastic modulus equipment: RTM-250
Tensile speed: 100 mm / min
Load: 10kg
(2) Coefficient of thermal expansion: TMA-50
Measurement temperature range: 50-200 ° C
Temperature increase rate: 10 ° C / min
(3) Water absorption rate: 98% The sample was allowed to stand in a desiccator under an RH atmosphere for 2 days, and evaluated by an increase in weight% relative to the original weight.
[0032]
(4) Birefringence equipment: KOBRA-21ADH
Light source: Sodium light incident angle: 0 ° Measurement formula: ΔN xy = (retardation) / film thickness
(5) Evaluation of warpage amount of metal laminate plate An epoxy-based adhesive was applied to a polyimide film, and a copper foil was bonded thereto at a temperature of 130 ° C. Thereafter, the temperature is raised to a maximum temperature of 160 ° C. to cure the adhesive, and the obtained metal laminate is cut into a sample size of 35 mm * 120 mm and left at 25 ° C. and 60 RH% for 24 hours, and then the warpage of each sample is performed. Was measured. The warpage was evaluated by placing the sample on a flat ground and measuring and averaging the heights of the four corners. When the amount of warpage exceeds 3 mm, when it is used as a metal laminate, it is often difficult to handle in a subsequent process.
[0033]
Examples 2-10
In the same procedure as in Example 1, after obtaining the polyamic acid solution in the ratio shown in Table 1 for the aromatic diamine component and the aromatic tetracarboxylic acid component, the stretching ratios in the transverse and longitudinal directions are as shown in Table 1. Each characteristic evaluation of the polyimide film obtained by the same operation as Example 1 was performed, and the results are shown in Table 1. Table 3 shows the results of warpage of the metal laminate for the polyimide film obtained in Example 3 (thermal expansion coefficient: 17.5 ppm / ° C., birefringence 0.0094).
[0034]
Example 11
A polyimide obtained by the same operation as in Example 1, after replacing BPDA with BTDA and performing the same procedure as in Example 1 to obtain a polyamic acid solution, except that the addition amount of raw materials was changed as shown in Table 1. The physical properties of the film were evaluated, and the results are shown in Table 1.
[0035]
Example 12
DMAc 239.1g was put into a 500 ml separable flask, PPD and BPDA were put here, and it was made to react at normal temperature normal pressure for 1 hour. Next, ODA was added here and stirred until uniform, then BPDA was added and allowed to react for 1 hour. Subsequently, PMDA was added thereto and reacted for another hour to obtain a polyamic acid solution. In addition, the addition amount of each raw material was performed by this polymerization in the ratio shown in Table 1, and the total solid content weight was adjusted to 60.9 g. Thereafter, an operation for obtaining a polyimide film from the polyamic acid solution was carried out in the same manner as in Example 1. Table 1 shows the results of evaluation of physical properties of the polyimide film.
[0036]
Comparative Example 1
After reacting and imidizing the aromatic diamine component and aromatic tetracarboxylic acid component in the same proportions and procedure as in Example 1, the ends were pinned without stretching, and then at 300 ° C. for 20 minutes, followed by After heat drying at 400 ° C. for 5 minutes, the pinning was removed, and a polyimide film having a thickness of about 25 μm was obtained. The physical property evaluation results of this film are shown in Table 2.
[0037]
Comparative Example 2
DMAc 239.1g was put into a 500 ml separable flask, ODA and PMDA were put here, and it was made to react at normal temperature normal pressure for 1 hour, and the polyamic-acid solution was obtained. The molar ratio of ODA to PMDA was approximately 1: 1, and the total solid content weight was adjusted to 60.9 g. Thereafter, the operation for obtaining the polyimide film from the polyamic acid solution was carried out in the same manner as in Example 1 except that the transverse and longitudinal stretching ratios were as shown in Table 2, and the physical property evaluation results of the obtained polyimide film were obtained. Are shown in Table 2.
[0038]
Comparative Example 3
DMAc 239.1g was put into a 500 ml separable flask, PPD and PMDA were added here, and it was made to react at normal temperature normal pressure for 1 hour. Next, ODA was added thereto and stirred until uniform, then PMDA was added and reacted for 1 hour to obtain a polyamic acid solution. In this polymerization, the amount of each raw material was added in the ratio shown in Table 2, and the total solid content weight was adjusted to 60.9 g. Thereafter, the operation for obtaining the polyimide film from the polyamic acid solution was carried out in the same manner as in Example 1 except that the transverse and longitudinal stretching ratios were as shown in Table 2, and the physical property evaluation results of the obtained polyimide film were obtained. Are shown in Table 2. Table 3 shows the results of warpage of the metal laminate of the obtained polyimide film.
[0039]
Comparative Example 4
239.1 g of DMAc was put into a 500 ml separable flask, and PPD, ODA, BPDA and PMDA were sequentially added thereto and reacted at room temperature and normal pressure for 2 hours to obtain a polyamic acid solution. In this polymerization, the amount of each raw material was added in the ratio shown in Table 2, and the total solid content weight was adjusted to 60.9 g. Thereafter, the operation for obtaining the polyimide film from the polyamic acid solution was carried out in the same manner as in Example 1 except that the transverse and longitudinal stretching ratios were as shown in Table 2, and the physical property evaluation results of the obtained polyimide film were obtained. Are shown in Table 2.
[0040]
[Table 1]
Figure 0004009918
[Table 2]
Figure 0004009918
[Table 3]
Figure 0004009918
[0041]
【The invention's effect】
The polyimide film obtained in the present invention is obtained by stretching a copolymerized polyimide in which a block polymerized polyimide component and a random copolymerized polyimide component are formed by molecular bonding to have a birefringence of 0.01 or less and a thermal expansion coefficient of 10 to 22 ppm / ° C. By improving the mechanical properties, it is possible to have both low thermal expansibility and low water absorption, and the amount of warpage of the obtained metal laminate can be reduced, so that high dimensional stability and high workability are required. It can sufficiently function as a semiconductor package application.

Claims (4)

パラフェニレンジアミンピロメリット酸二無水物とからなるポリイミドのブロック成分と、4,4’−ジアミノジフェニルエーテルとピロメリット酸二無水物および3,3’,4,4’−ビフェニルテトラカルボン酸二無水物または3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物とからなる共重合ポリイミドのランダム成分とが、分子結合してなる共重合ポリイミドを2軸延伸することによって成形した複屈折0.01以下、熱膨張係数10〜22ppm/℃、弾性率520〜680kg/mm、吸水率1.5〜2.1%のポリイミドフィルム。
(ただし、全芳香族ジアミン成分中パラフェニレンジアミンが12〜30モル%、4,4’−ジアミノジフェニルエーテルが70〜88モル%であり、かつ全芳香族テトラカルボン酸成分中ピロメリット酸二無水物が50〜80モル%、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物または3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物が20〜50モル%である。)
Polyimide block component consisting of paraphenylenediamine and pyromellitic dianhydride , 4,4'-diaminodiphenyl ether, pyromellitic dianhydride and 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride birefringence object or 3,3 ', and a random component of the copolymerized polyimide consisting of 4,4'-benzophenonetetracarboxylic acid dianhydride was molded by biaxially stretching the copolymer polyimide obtained by molecular bonding A polyimide film having a thermal expansion coefficient of 10 to 22 ppm / ° C., an elastic modulus of 520 to 680 kg / mm 2 and a water absorption of 1.5 to 2.1%.
(However, in the wholly aromatic diamine component, paraphenylenediamine is 12 to 30 mol%, 4,4′-diaminodiphenyl ether is 70 to 88 mol%, and pyromellitic dianhydride in the wholly aromatic tetracarboxylic acid component . Is 50 to 80 mol%, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride or 3,3', 4,4'-benzophenonetetracarboxylic dianhydride is 20 to 50 mol% .)
(1)パラフェニレンジアミンピロメリット酸二無水物とを、反応成分に対して非反応性の有機溶媒中で、パラフェニレンジアミンに対してピロメリット酸二無水物が95〜105モル%となる比率で、反応に必要な時間混合した後、
(2)4,4’−ジアミノジフェニルエーテルを添加し、続いてピロメリット酸二無水物を添加、さらに3,3’,4,4’−ビフェニルテトラカルボン酸二無水物または3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物を全芳香族テトラカルボン酸類成分と全芳香族ジアミン成分とがほぼ等モルとなる量添加して、反応に必要な時間混合し、
(3)得られる共重合ポリアミド酸溶液を環化後、2軸延伸・脱溶媒して成形されることを特徴とするポリイミドフィルムの製造方法。
(1) a para-phenylenediamine and pyromellitic dianhydride, a non-reactive organic solvent to the reaction components, pyromellitic dianhydride is 95 to 105 mol% based on p-phenylenediamine After mixing for the time required for the reaction in the ratio,
(2) 4,4′-diaminodiphenyl ether is added, followed by pyromellitic dianhydride , followed by 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride or 3,3 ′, 4 , 4'-benzophenonetetracarboxylic dianhydride is added in an amount such that the wholly aromatic tetracarboxylic acid component and the wholly aromatic diamine component are approximately equimolar, and mixed for the time required for the reaction,
(3) A method for producing a polyimide film, wherein the resulting copolymerized polyamic acid solution is cyclized and then formed by biaxial stretching and desolvation.
環化を環化触媒および脱水剤を用いた化学環化法で行なうことを特徴とする請求項2記載のポリイミドフィルムの製造方法。The method for producing a polyimide film according to claim 2 , wherein the cyclization is performed by a chemical cyclization method using a cyclization catalyst and a dehydrating agent. 請求項1記載のポリイミドフィルムあるいは、請求項2または3記載の方法で得られたポリイミドフィルムを基材とし、これと金属とを積層することを特徴とする金属積層板。The polyimide film of claim 1 wherein Alternatively, a polyimide film obtained in claim 2 or 3, wherein the method as a base material, metal laminate, which comprises laminating a metal thereto.
JP20865898A 1997-07-18 1998-07-07 Polyimide film, method for producing the same, and metal laminate using the same Expired - Lifetime JP4009918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20865898A JP4009918B2 (en) 1997-07-18 1998-07-07 Polyimide film, method for producing the same, and metal laminate using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-209949 1997-07-18
JP20994997 1997-07-18
JP20865898A JP4009918B2 (en) 1997-07-18 1998-07-07 Polyimide film, method for producing the same, and metal laminate using the same

Publications (2)

Publication Number Publication Date
JPH1180390A JPH1180390A (en) 1999-03-26
JP4009918B2 true JP4009918B2 (en) 2007-11-21

Family

ID=26516971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20865898A Expired - Lifetime JP4009918B2 (en) 1997-07-18 1998-07-07 Polyimide film, method for producing the same, and metal laminate using the same

Country Status (1)

Country Link
JP (1) JP4009918B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323078A (en) * 2000-03-10 2001-11-20 Mitsubishi Plastics Ind Ltd Insulation film for metallic foil support on wiring board and the resultant wiring board
JP2003064182A (en) * 2001-08-28 2003-03-05 Hitachi Chem Co Ltd Polyimide resin for optical part and optical part using the same
US6949296B2 (en) * 2002-12-31 2005-09-27 E. I. Du Pont De Nemours And Company Polyimide substrates having enhanced flatness, isotropy and thermal dimensional stability, and methods and compositions relating thereto
US8426548B2 (en) * 2004-09-24 2013-04-23 Kaneka Corporation Polyimide film and adhesive film and flexible metal-clad laminate both obtained with the same
JP2006137868A (en) * 2004-11-12 2006-06-01 Du Pont Toray Co Ltd Polyimide film and flexible circuit board
JP5110242B2 (en) * 2004-12-03 2012-12-26 宇部興産株式会社 Polyimide, polyimide film and laminate
JP4974068B2 (en) * 2005-08-02 2012-07-11 東レ・デュポン株式会社 Polyimide film, method for producing the same, and flexible circuit board
JP5374817B2 (en) * 2005-11-16 2013-12-25 東レ・デュポン株式会社 Polyimide film and method for producing the same
CN101437984A (en) 2006-05-17 2009-05-20 株式会社Pi技术研究所 Metal compound film and method of manufacturing the same
WO2008010409A1 (en) * 2006-07-18 2008-01-24 Kaneka Corporation Polyimide film
JP5126734B2 (en) * 2006-12-11 2013-01-23 東レ・デュポン株式会社 Copper plate
JP5362752B2 (en) * 2011-01-26 2013-12-11 Jfeケミカル株式会社 Polyamic acid composition, polyimide, polyimide film and method for producing them

Also Published As

Publication number Publication date
JPH1180390A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
EP0879839B1 (en) Polyimide copolymer, polyimide copolymer resin molded products and their preparation
EP1182222B1 (en) Polyimide film, method of manufacture, and metal interconnect board with polyimide film substrate
JP4009918B2 (en) Polyimide film, method for producing the same, and metal laminate using the same
US6908685B2 (en) Polyimide film, method of manufacture, and metal interconnect board with polyimide film substrate
KR101077405B1 (en) Laminate for wiring board
KR100714952B1 (en) Polyimide Composition Having Improved Peel Strength
JP4665373B2 (en) Polyimide film
JP5270865B2 (en) Adhesive and its use
JP3687044B2 (en) Copolymerized polyimide film and method for producing the same
US6277495B1 (en) Polyimide film, a method for its manufacture and a polyimide film containing metal laminated plate
KR20020016552A (en) Polyimide Film, Method of Manufacture, and Metal Interconnect Board with Polyimide Film Substrate
JP5362752B2 (en) Polyamic acid composition, polyimide, polyimide film and method for producing them
EP1313795B1 (en) Polyimide film, method of manufacture, and metal interconnect board with polyimide film substrate
JP2000063543A (en) Polyimide film and its production
JP4401893B2 (en) Polyimide precursor resin composition
JP3143891B2 (en) Method for producing polyamic acid and polymer obtained by dehydrating and cyclizing polyamic acid
JPH0741556A (en) Polyimide resin and polyimide film
JP3676073B2 (en) Polyimide film and manufacturing method thereof
JP2910779B2 (en) Flexible printed circuit board
JP2002210903A (en) Bonding sheet
JP2007099843A (en) Novel polyimide resin
JP4361423B2 (en) Resin sheet structure and method for producing multilayer wiring board using the same
JP2002146306A (en) Heat-resistant bond ply having excellent alkali etching property
TW202237705A (en) Polyimide, metal-clad laminate plate and circuit board
JP2006104371A (en) Polyimide precursor resin composition

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140914

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term