JP4665373B2 - Polyimide film - Google Patents

Polyimide film Download PDF

Info

Publication number
JP4665373B2
JP4665373B2 JP2002143319A JP2002143319A JP4665373B2 JP 4665373 B2 JP4665373 B2 JP 4665373B2 JP 2002143319 A JP2002143319 A JP 2002143319A JP 2002143319 A JP2002143319 A JP 2002143319A JP 4665373 B2 JP4665373 B2 JP 4665373B2
Authority
JP
Japan
Prior art keywords
polyimide film
film
aromatic
polyamic acid
aromatic diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002143319A
Other languages
Japanese (ja)
Other versions
JP2003335874A (en
Inventor
孔一 沢崎
博一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP2002143319A priority Critical patent/JP4665373B2/en
Publication of JP2003335874A publication Critical patent/JP2003335874A/en
Application granted granted Critical
Publication of JP4665373B2 publication Critical patent/JP4665373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は常温、高温共に寸法変化が小さく、ファインピッチ回路用基板に好適なポリイミドフィルムに関する。
【0002】
【従来の技術】
フレキシブルプリント基板や半導体パッケージの高繊細化に伴い、それらに用いられるポリイミドフィルムへの要求事項も多くなっており、例えば金属との張り合わせによる寸法変化やカールを小さくすること、およびハンドリング性の高いことなどが挙げられ、ポリイミドフィルムの物性として金属並の熱膨張係数を有すること及び高弾性率であること、さらには吸水による寸法変化の小さいフィルムが要求され、それに応じたポリイミドフィルムが開発されてきた。
【0003】
例えば特開昭60−210629、特開昭64−16832、特開平1−131241号公報では、弾性率を高めるためパラフェニレンジアミンを使用したポリイミドフィルムの例が記載されている。また特開昭59−164328号公報、特開昭61−111359号公報では高弾性を保持しつつ吸水による寸法変化を低減させるためパラフェニレンジアミンに加えビフェニルテトラカルボン酸二無水物を使用したポリイミドフィルムの例が記載されている。
【0004】
ところでTAB(Tape Automated Bonding)など高寸法精度を要する用途において、これらのポリイミドフィルムが使用されてきたが、近年は例えばCOF(Chip on Film)用途で配線とチップとの接合に350〜400℃の高温がポリイミドフィルムに直接かかり、それらの温度による熱収縮が大きいため寸法変化の悪化を招くといった課題を抱えていた。また接着剤の信頼性が向上しそれに伴って接着温度も上がってきているがそれに対しポリイミドフィルムを350〜400℃で加工すると寸法変化が大きくなりファインピッチ化要求への対応が困難であった。
【0005】
【発明が解決しようとする課題】
本発明は、上述した従来技術における問題点の解決を課題として検討した結果なされたものであり、350〜400℃加工時での寸法変化を低減させることができるファインピッチ回路用基板に好適なポリイミドフィルムの提供を目的とするものである。
【0006】
上記の目的を達成するために、本発明のポリイミドフィルムは、パラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテルからなる芳香族ジアミン成分と、ピロメリット酸二無水物85〜75モル%及びビフェニルテトラカルボン酸二無水物15〜25モル%からなる芳香族酸無水物成分とによって構成された分子1単位当たりの分子量が420以下であるポリアミック酸からイミド化して得られたポリイミドフィルムを延伸した後、350〜400℃の温度でアニール処理することにより得られたポリイミドフィルムであって、ヤング率4GPa以上、350℃での加熱収縮率が0.15%以下、400℃での加熱収縮率が0.20%以下、吸水率が2.5%以下であることを特徴とする。
【0007】
さらに、350〜400℃での熱膨張係数が20〜30ppm/℃であることが好ましい。
【0008】
【発明の実施の形態】
本発明ポリイミドフィルムを得るに際しての前駆体であるポリアミック酸溶液について説明する。
【0009】
本発明に用いられるポリアミック酸溶液は、芳香族ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテルから構成され、芳香族酸無水物成分としてピロメリット酸二無水物及びビフェニルテトラカルボン酸二無水物から構成される。また、ポリアミック酸分子1単位当たりの分子量が420以下であることが好ましい。420を超えると高温350〜400℃での寸法変化並びに熱収縮が大きくなり好ましくない。ここでポリアミック酸分子1単位当たりの分子量とは、芳香族ジアミン成分:芳香族酸無水物成分1:1とした時の分子量のことをいい、下記式により計算される。
【0010】
ポリアミック酸分子1単位当たりの分子量
=A(芳香族ジアミン成分)の分子量×全芳香族ジアミン成分の中でのAのモル比率
+B(芳香族ジアミン成分)の分子量×全芳香族ジアミン成分の中でのBのモル比率
+・・・+・・・
+Z(芳香族酸無水物成分)の分子量×全芳香族酸無水物成分の中でのZのモル比率
+Y(芳香族酸無水物成分)の分子量×全芳香族酸無水物成分の中でのYのモル比率
+・・・+・・・
用いられる芳香族ジアミン成分としては、剛構造の芳香族ジアミン成分と柔構造の芳香族ジアミン成分の組み合わせで用いると、適度な柔軟性が得られかつ寸法変化の小さいフィルムが得られるので好ましい。剛構造の芳香族ジアミン成分の例としては下記に示したような化合物を挙げることができる。
【0011】
【化1】

Figure 0004665373
【0012】
(ただし、式中のX,Yは、水素、ハロゲン基、カルボキシル基、低級アルキル基、低級アルコキシル基(炭素数1〜3)から選ばれる1価の置換基を表し、X,Yは同じ置換基でも異なった置換基でも良い。)
上記に示した剛構造の芳香族ジアミン化合物のなかでも、得られるポリイミドフィルムの弾性率を高める点や取り扱い面、コスト面の点で、特にパラフェニレンジアミンを使用するのが好ましい。
【0013】
また、柔構造の芳香族ジアミン化合物の例としては、下記に示したような化合物を挙げることができる。
【0014】
【化2】
Figure 0004665373
【0015】
(ただし、式中のX、Yは水素、ハロゲン基、カルボキシル基低級アルキル基、低級アルコキシル基(炭素数1〜3)から選ばれる1価の置換基を表し、X、Yは同じ置換基でも異なった置換基でも良い。またAは−O−,−S−,−CO−,−SO−,−SO2 −,−CH2 −などの2価の連結基を表す。)
上記に示した柔構造の芳香族ジアミンのうちでも、得られるポリイミドフィルムの成形性を高める点で、特にジアミノジフェニルエーテル類を使用するのが好ましい。
【0016】
用いられる芳香族酸無水物成分としては、ピロメリット酸類と2個以上のベンゼン環を有する芳香族テトラカルボン酸類化合物の組み合わせで用いると、低吸水性が得られかつ高温での寸法安定性の良好なフィルムが得られるので好ましい。
【0017】
本発明で使用する芳香族テトラカルボン酸類化合物の内で、ピロメリット酸類の例としては、ピロメリット酸またはその二無水物を挙げることができる。また、2個以上のベンゼン環を有する芳香族テトラカルボン酸類化合物の例としては3,3’,4,4’−ビフェニルテトラカルボン酸またはその二無水物や3,3’,4,4’−ベンゾフェノンテトラカルボン酸またはその二無水物を挙げることができるが前者の方が得られるポリイミドフィルムの弾性率を高める点や低吸水性を高める点で好ましい。
【0018】
本発明ポリイミドフィルムを得るに際しての前駆体であるポリアミド酸溶液について説明する。
【0019】
重合方法は公知のいずれの方法で行ってもよく、例えば
(1).先に芳香族ジアミン成分全量を溶媒中に入れ、その後芳香族テトラカルボン酸類成分を芳香族ジアミン成分全量と当量になるよう加えて重合する方法。
【0020】
(2).先に芳香族テトラカルボン酸類成分全量を溶媒中に入れ、その後芳香族ジアミン成分を芳香族テトラカルボン酸類成分と等量になるよう加えて重合する方法。
【0021】
(3).剛構造の芳香族ジアミン化合物を溶媒中に入れた後、反応成分に対して芳香族テトラカルボン酸類化合物が95〜105モル%となる比率で反応に必要な時間混合した後、柔構造の芳香族ジアミン化合物を添加し、続いて芳香族テトラカルボン酸類化合物を全芳香族ジアミン成分と全芳香族テトラカルボン酸類成分とがほぼ等量になるよう添加して重合する方法。
【0022】
(4).芳香族テトラカルボン酸類化合物を溶媒中に入れた後、反応成分に対して剛構造の芳香族ジアミン化合物が95〜105モル%となる比率で反応に必要な時間混合した後、芳香族テトラカルボン酸類化合物を添加し、続いて柔構造の芳香族ジアミン化合物を全芳香族ジアミン成分と全芳香族テトラカルボン酸類成分とがほぼ等量になるよう添加して重合する方法。
【0023】
(5).溶媒中で剛構造の芳香族ジアミン成分と芳香族テトラカルボン酸類をどちらかが過剰になるよう反応させてポリアミド酸溶液(A)を調整し、別の溶媒中で柔構造の芳香族ジアミン成分と芳香族テトラカルボン酸類をどちらかが過剰になるよう反応させポリアミド酸溶液(B)を調整する。こうして得られた各ポリアミド酸溶液(A)と(B)を混合し、重合を完結する方法。この時ポリアミド酸溶液(A)を調整するに際し芳香族ジアミン成分が過剰の場合、ポリアミド酸溶液(B)では芳香族テトラカルボン酸成分を過剰に、またポリアミド酸溶液(A)で芳香族テトラカルボン酸成分が過剰の場合、ポリアミド酸溶液(B)では芳香族ジアミン成分を過剰にし、ポリアミド酸溶液(A)と(B)を混ぜ合わせこれら反応に使用される全芳香族ジアミン成分と全芳香族テトラカルボン酸類成分とがほぼ等量になるよう調整する。
【0024】
なお、重合方法はこれらに限定されることはなく、その他公知の方法を用いてもよい。
【0025】
次に、得られたポリアミド酸溶液からポリイミドフィルムを得る方法を説明する。
【0026】
まず、ポリアミド酸溶液を環化触媒および脱水剤を用いて化学環化するか加熱処理による熱的環化によりポリイミドのゲルフィルムを得る。
【0027】
次に、このゲルフィルムの端部を固定し、縦方向に1.05〜1.5、横方向に1.05〜2.0の倍率で延伸するのが好ましい。このような2軸延伸を行うと、得られるポリイミドフィルムの機械特性向上、さらには等方性が改良されるので好ましい。
【0028】
また走行速度を調整しポリイミドフィルムの厚みを調整するが、ポリイミドフィルムの厚みとしては3〜250μmが好ましい。これより薄くても厚くてもフィルムの製膜性が著しく悪化するので好ましくない。
【0029】
上記の重合で使用する溶媒としては、ジメチルスルホキシド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N−メチル−2−ピロリドンおよびジメチルスルホンなどが挙げられ、これらを単独あるいは混合して使用するのが好ましい。
【0030】
上記の重合で得られるポリアミド酸は、前記溶媒中に10〜30重量%の割合となるように調整する。
【0031】
得られたポリアミド酸を環化させてポリイミドフィルムにする際には、脱水剤と触媒を用いて脱水する化学閉環法、熱的に脱水する熱閉環法のいずれで行ってもよいが、化学閉環法で行った方が、得られるポリイミドフィルムの弾性率が高く、熱膨張係数が低くなり、さらにケミカルエッチング性が付与できるため好ましい。
【0032】
化学閉環法で使用する脱水剤としては、無水酢酸などの脂肪族酸無水物、フタル酸無水物などの芳香族酸無水物などが挙げられ、これらを単独あるいは混合して使用するのが好ましい。また触媒としては、ピリジン、ピコリン、キノリンなどの複素環式第3級アミン類、トリエチルアミンなどの脂肪族第3級アミン類、N,N−ジメチルアニリンなどの芳香族第3級アミン類などが挙げられ、これらを単独あるいは混合して使用するのが好ましい。
【0033】
また、化学閉環法を行う場合は、ポリアミド酸溶液中に触媒・脱水剤を混合させイミド化した後にこの溶液をコーティングしてポリイミドフィルムを得る方法と、ポリアミド酸溶液をコーティングして薄膜化させた後に触媒・脱水剤の混合中に浸漬してイミド化させることによってポリイミドフィルムを得る方法がある。前者の方が厚み方向に均一なポリイミドフィルムが得られるので好ましい。
【0034】
このようにして得られたポリイミドフィルムをさらに350〜400℃の温度でアニール処理を行うことが好ましい。そうすることによってフィルムの熱リラックスが起こり同温度での工程で使用された時にポリイミドフィルムの寸法変化を小さく抑えることができる。具体的には350〜400℃の炉の中を、低張力下にてフィルムを走行させ、アニール処理を行う。炉の中でフィルムが滞留する時間が処理時間となるが、走行速度を変えることでコントロールすることになり、30秒〜5分の処理時間であることが好ましい。これより短いとフィルムに充分熱が伝わらず、また長いと過熱気味になり平面性を損なうので好ましくない。また走行時のフィルム張力は10〜50N/mが好ましく、さらには20〜30N/mが好ましい。この範囲よりも張力が低いとフィルムの走行性が悪くなり、また張力が高いと得られたフィルムの走行方向の熱収縮率が高くなるので好ましくない。
【0035】
なお、得られるポリイミドフィルムの表面を粗化させてフィルムに滑り性を与え工程安定性を良くするために、有機フィラーまたは無機フィラーをポリアミド酸溶液に混合してもよい。
【0036】
また、得られたポリイミドフィルムに接着性を持たせるため、フィルム表面にコロナ処理やプラズマ処理のような電気処理あるいはブラスト処理のような物理的処理を行ってもよい。
【0037】
このようにして得られるポリイミドフィルムは、ヤング率4GPa以上、吸水率2.5%以下、350℃での加熱収縮率が0.20%以下、400℃での加熱収縮率が0.15%以下となり、さらに350〜400℃での熱膨張係数が20〜30ppm/℃になるような特性が得られるので、加工性に優れ寸法安定性が高く、なおかつ高温工程でも寸法変化を低減することができ、ファインピッチ回路用基板に好適である。
【0038】
【実施例】
以下、実施例により本発明を具体的に説明する。
【0039】
なお、実施例中PPDはパラフェニレンジアミン、4,4’−ODAは4,4’−ジアミノジフェニルエーテル、PMDAはピロメリット酸二無水物、BPDAは3,3’−4,4’−ジフェニルテトラカルボン酸二無水物、DMAcはN,N−ジメチルアセトアミドをそれぞれ表す。
【0040】
また、実施例中の各特性は次の方法で評価した。
(1)吸水率
98%RH雰囲気下のデシケーター内に2日間静置し、乾燥時重量に対しての増加重量%で評価した。
(2)弾性率
機器:RTM−250を使用し、引張速度:100mm/minの条件で測定した。
(3)加熱収縮率
(a)350℃
25℃、60%RHに調整された部屋に2日間放置した後のフィルム寸法(L1)を測定し、続いて350℃30分間加熱した後再び25℃、60%RHに調整された部屋に2日間放置した後フィルム寸法(L2)を測定し、下記式計算により評価した。
【0041】
加熱収縮率 = −(L2−L1)/L1×100
(b)400℃
25℃、60%RHに調整された部屋に2日間放置した後のフィルム寸法(L1)を測定し、続いて400℃30分間加熱した後再び25℃、60%RHに調整された部屋に2日間放置した後フィルム寸法(L2)を測定し、下記式計算により評価した。
【0042】
加熱収縮率 = −(L2−L1)/L1×100
(4)熱膨張係数
機器:TMA−50を使用し、測定温度範囲:350〜400℃、昇温速度:10℃/minの条件で測定した。
【0043】
[実施例1]
500mlのセパルブルフラスコにDMAc239.1gを入れ、ここにPPD2.71g(0.025モル)、4,4’−ODA24.44g(0.122モル)、BPDA6.49g(0.022モル)、PMDA27.27g(0.125モル)を投入し、常温常圧中で1時間反応、均一になるまで撹拌しポリアミック酸溶液を得た。
【0044】
なお、この重合で各原料の添加モル比は、表1に示す割合で行い、固形分合計重量は60.9gに調整した。このポリアミック酸溶液から15gを採ってマイナス5℃で冷却後、無水酢酸1.5gとβ−ピコリン1.6gを混合することにより、ポリアミック酸のイミド化を行った。
【0045】
こうして得られたポリイミドポリマーをガラス板にコーティングして100℃で5分間加熱してゲルフィルムを得た後、このゲルフィルムをガラス板から剥がして、そのゲルフィルムの端部をピン止めし、縦方向1.1倍、横方向1.3倍に延伸した。その後300℃で20分間、続いて400℃で5分間加熱乾燥し、厚さ25μmのポリイミドフィルムを得た。このポリイミドフィルムを370℃に設定された炉の中で20N/mの張力をかけて1分間アニール処理を行った後、各物性を評価した。
【0046】
ヤング率 : 5.3GPa
吸水率 : 2.4%
350℃加熱収縮率 : 0.06%
400℃加熱収縮率 : 0.09%
350〜400℃熱膨張係数: 28.3ppm/℃
[実施例2〜4]
実施例1と同様の手順で、芳香族ジアミン成分および芳香族テトラカルボン酸成分を表1に示す割合に変更し、それぞれポリアミック酸溶液を得た後、ポリアミック酸溶液からポリイミドフィルムを得る操作については実施例1と同様にして行い、アニール処理も実施例1と同様にして実施した。
【0047】
得られた各ポリイミドフィルムの各物性評価結果を表1に示した。
【0048】
【表1】
Figure 0004665373
【0049】
[比較例1]
各原料実施例1と同一にて調整、同様の手順でポリアミック酸溶液を得た後、ポリアミック酸溶液からポリイミドフィルムを得る操作についても実施例1と同様にして行い、アニール処理は行わず、各物性を評価した結果を表2に示した。
【0050】
[比較例2、3]
実施例1と同様の手順で、芳香族ジアミン成分および芳香族テトラカルボン酸成分を表2に示す割合に変更し、それぞれポリアミック酸溶液を得た後、ポリアミック酸溶液からポリイミドフィルムを得る操作については実施例1と同様にして行い、アニール処理も実施例1と同様にして実施した。
【0051】
得られた各ポリイミドフィルムの各物性評価結果を表2に併記した。
【0052】
【表2】
Figure 0004665373
【0053】
【発明の効果】
本発明のポリイミドフィルムは、ヤング率4GPa以上、吸水率2.5%以下、350℃での加熱収縮率が0.20%以下、400℃での加熱収縮率が0.15%以下となり、さらに350〜400℃での熱膨張係数が20〜30ppm/℃になるような特性が得られるので、加工性に優れ寸法安定性が高く、なおかつ高温工程でも寸法変化を低減することができ、ファインピッチ回路用基板に好適に用いることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyimide film that has a small dimensional change at both room temperature and high temperature and is suitable for a fine pitch circuit substrate.
[0002]
[Prior art]
As flexible printed circuit boards and semiconductor packages become highly fine, the requirements for polyimide films used in them have increased. For example, dimensional changes and curling due to bonding with metal are reduced, and handling is high. As a physical property of a polyimide film, a film having a thermal expansion coefficient comparable to that of a metal and a high elastic modulus and a film with small dimensional change due to water absorption are required, and a polyimide film corresponding to the film has been developed. .
[0003]
For example, JP-A-60-210629, JP-A-64-16832 and JP-A-1-131241 describe examples of polyimide films using paraphenylenediamine for increasing the elastic modulus. JP-A-59-164328 and JP-A-61-111359 disclose a polyimide film using biphenyltetracarboxylic dianhydride in addition to paraphenylenediamine in order to reduce dimensional change due to water absorption while maintaining high elasticity. Examples are described.
[0004]
By the way, these polyimide films have been used in applications requiring high dimensional accuracy such as TAB (Tape Automated Bonding). In recent years, for example, in a COF (Chip on Film) application, bonding between wiring and a chip is performed at 350 to 400 ° C. The high temperature is directly applied to the polyimide film, and the heat shrinkage due to the temperature is large, so that the dimensional change is deteriorated. In addition, the reliability of the adhesive has been improved and the bonding temperature has been raised accordingly. On the other hand, when the polyimide film is processed at 350 to 400 ° C., the dimensional change becomes large and it is difficult to meet the demand for fine pitch.
[0005]
[Problems to be solved by the invention]
The present invention has been made as a result of studying the solution of the above-described problems in the prior art, and is a polyimide suitable for a fine pitch circuit substrate that can reduce dimensional changes during processing at 350 to 400 ° C. The purpose is to provide a film.
[0006]
In order to achieve the above object, the polyimide film of the present invention comprises an aromatic diamine component composed of paraphenylenediamine and 4,4′-diaminodiphenyl ether, 85 to 75 mol% of pyromellitic dianhydride, and biphenyltetracarboxylic acid. After stretching a polyimide film obtained by imidizing from a polyamic acid having a molecular weight of 420 or less per molecule composed of 15 to 25 mol% of an acid dianhydride component, 350 A polyimide film obtained by annealing at a temperature of ˜400 ° C., having a Young's modulus of 4 GPa or more, a heat shrinkage at 350 ° C. of 0.15% or less, and a heat shrinkage at 400 ° C. of 0.20. % Or less and water absorption is 2.5% or less.
[0007]
Furthermore, the thermal expansion coefficient of preferably a Dearuko 20 to 30 ppm / ° C. at 350 to 400 ° C..
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The polyamic acid solution that is a precursor for obtaining the polyimide film of the present invention will be described.
[0009]
Polyamic acid solution used in the present invention include para-phenylenediamine and consists 4,4'-pin Romeritto dianhydride as an aromatic acid anhydride component, and biphenyl tetracarboxylic acid as the aromatic diamine component Ru consists dianhydrides. Moreover, it is preferable that the molecular weight per unit of polyamic acid molecule is 420 or less. If it exceeds 420, the dimensional change and thermal shrinkage at a high temperature of 350 to 400 ° C. increase, which is not preferable. Here, the molecular weight per unit of the polyamic acid molecule means a molecular weight when the aromatic diamine component: the aromatic acid anhydride component is 1: 1, and is calculated by the following formula.
[0010]
Molecular weight per unit of polyamic acid molecule = molecular weight of A (aromatic diamine component) × molar ratio of A in total aromatic diamine component + molecular weight of B (aromatic diamine component) × total aromatic diamine component B molar ratio of + ... + ...
+ Molecular weight of Z (aromatic acid anhydride component) × Mole ratio of Z in the total aromatic acid anhydride component + Molecular weight of Y (aromatic acid anhydride component) × Total aromatic acid anhydride component Y molar ratio + ... + ...
The aromatic diamine component used is preferably a combination of a rigid structure aromatic diamine component and a soft structure aromatic diamine component, since a suitable flexibility can be obtained and a film with little dimensional change can be obtained. Examples of the rigid structure aromatic diamine component include the following compounds.
[0011]
[Chemical 1]
Figure 0004665373
[0012]
(However, X and Y in the formula represent a monovalent substituent selected from hydrogen, a halogen group, a carboxyl group, a lower alkyl group, and a lower alkoxyl group (1 to 3 carbon atoms), and X and Y are the same substituents. Or a different substituent.
Among the rigid-structure aromatic diamine compounds shown above, it is particularly preferable to use paraphenylene diamine in terms of increasing the modulus of elasticity of the resulting polyimide film, handling, and cost.
[0013]
Examples of the flexible structure aromatic diamine compound include the following compounds.
[0014]
[Chemical 2]
Figure 0004665373
[0015]
(However, X and Y in the formula represent a monovalent substituent selected from hydrogen, a halogen group, a carboxyl group, a lower alkyl group, and a lower alkoxyl group (1 to 3 carbon atoms), and X and Y may be the same substituents. Different substituents may be used, and A represents a divalent linking group such as —O—, —S—, —CO—, —SO—, —SO 2 —, —CH 2 —, etc.)
Of the aromatic diamines having a flexible structure shown above, it is particularly preferable to use diaminodiphenyl ethers in terms of improving the moldability of the polyimide film obtained.
[0016]
The aromatic acid anhydride component used is a combination of pyromellitic acids and an aromatic tetracarboxylic acid compound having two or more benzene rings, resulting in low water absorption and good dimensional stability at high temperatures. A preferable film is preferable.
[0017]
Among the aromatic tetracarboxylic acid compounds used in the present invention, examples of pyromellitic acids include pyromellitic acid or its dianhydride. Examples of aromatic tetracarboxylic acid compounds having two or more benzene rings include 3,3 ′, 4,4′-biphenyltetracarboxylic acid or dianhydrides thereof, and 3,3 ′, 4,4′-. Although benzophenone tetracarboxylic acid or its dianhydride can be mentioned, the former is preferable in terms of increasing the elastic modulus of the polyimide film obtained and increasing the low water absorption.
[0018]
The polyamic acid solution which is a precursor for obtaining the polyimide film of the present invention will be described.
[0019]
The polymerization method may be performed by any known method, for example,
(1). A method in which the total amount of the aromatic diamine component is first put in a solvent, and then the aromatic tetracarboxylic acid component is added so as to be equivalent to the total amount of the aromatic diamine component for polymerization.
[0020]
(2). A method in which the whole amount of the aromatic tetracarboxylic acid component is first put in a solvent, and then the aromatic diamine component is added in an amount equal to the amount of the aromatic tetracarboxylic acid component for polymerization.
[0021]
(3). After putting the aromatic diamine compound having a rigid structure in a solvent, the aromatic tetracarboxylic acid compound is mixed at a ratio of 95 to 105 mol% with respect to the reaction components for a time required for the reaction, and then the flexible structure aromatic A method in which a diamine compound is added, and then an aromatic tetracarboxylic acid compound is added and polymerized so that the total aromatic diamine component and the total aromatic tetracarboxylic acid component are approximately equal.
[0022]
(Four). After putting the aromatic tetracarboxylic acid compound in the solvent, the aromatic tetracarboxylic acid compound is mixed for a time required for the reaction at a ratio of 95 to 105 mol% of the rigid aromatic diamine compound with respect to the reaction component. A method in which a compound is added, and then a flexible aromatic diamine compound is added and polymerized so that the total aromatic diamine component and the total aromatic tetracarboxylic acid component are approximately equal.
[0023]
(Five). A polyamic acid solution (A) is prepared by reacting a rigid aromatic diamine component with an aromatic tetracarboxylic acid in a solvent so that either one is excessive, and a flexible aromatic diamine component in another solvent. A polyamic acid solution (B) is prepared by reacting one of the aromatic tetracarboxylic acids in an excess amount. A method of mixing the polyamic acid solutions (A) and (B) thus obtained to complete the polymerization. At this time, when adjusting the polyamic acid solution (A), if the aromatic diamine component is excessive, the polyamic acid solution (B) contains excessive aromatic tetracarboxylic acid component, and the polyamic acid solution (A) contains aromatic tetracarboxylic acid. When the acid component is excessive, the polyamic acid solution (B) makes the aromatic diamine component excessive, and the polyamic acid solutions (A) and (B) are combined to form the wholly aromatic diamine component and wholly aromatic compound used in these reactions. Adjustment is made so that the amount of the tetracarboxylic acid component is approximately equal.
[0024]
The polymerization method is not limited to these, and other known methods may be used.
[0025]
Next, a method for obtaining a polyimide film from the obtained polyamic acid solution will be described.
[0026]
First, a polyimide gel film is obtained by chemically cyclizing the polyamic acid solution using a cyclization catalyst and a dehydrating agent or by thermal cyclization by heat treatment.
[0027]
Next, it is preferable to fix the edge part of this gel film, and to extend | stretch by the magnification of 1.05-1.5 in the vertical direction, and 1.05-2.0 in the horizontal direction. It is preferable to perform such biaxial stretching because the resulting polyimide film has improved mechanical properties and isotropic properties.
[0028]
Moreover, although a running speed is adjusted and the thickness of a polyimide film is adjusted, as thickness of a polyimide film, 3-250 micrometers is preferable. If it is thinner or thicker than this, the film-forming property of the film is remarkably deteriorated.
[0029]
Solvents used in the above polymerization include dimethyl sulfoxide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methyl-2-pyrrolidone and dimethyl Examples thereof include sulfone, and these are preferably used alone or in combination.
[0030]
The polyamic acid obtained by the above polymerization is adjusted to a ratio of 10 to 30% by weight in the solvent.
[0031]
When the resulting polyamic acid is cyclized into a polyimide film, either a chemical ring closure method using a dehydrating agent and a catalyst or a thermal ring closure method using thermal dehydration may be used. It is preferable to carry out by the method because the resulting polyimide film has a high elastic modulus, a low thermal expansion coefficient, and chemical etching properties.
[0032]
Examples of the dehydrating agent used in the chemical ring closure method include aliphatic acid anhydrides such as acetic anhydride and aromatic acid anhydrides such as phthalic anhydride, and these are preferably used alone or in combination. Examples of the catalyst include heterocyclic tertiary amines such as pyridine, picoline and quinoline, aliphatic tertiary amines such as triethylamine, and aromatic tertiary amines such as N, N-dimethylaniline. These are preferably used alone or in combination.
[0033]
In addition, when performing the chemical ring closure method, a catalyst / dehydrating agent is mixed in the polyamic acid solution and imidized, and then this solution is coated to obtain a polyimide film, and the polyamic acid solution is coated to form a thin film. There is a method of obtaining a polyimide film by immersing in a catalyst / dehydrating agent mixture and imidizing it later. The former is preferable because a uniform polyimide film can be obtained in the thickness direction.
[0034]
It is preferable to anneal the polyimide film thus obtained at a temperature of 350 to 400 ° C. By doing so, thermal relaxation of the film occurs and the dimensional change of the polyimide film can be kept small when used in a process at the same temperature. Specifically, the film is run under a low tension in an oven at 350 to 400 ° C., and annealing treatment is performed. The time during which the film stays in the furnace is the processing time, but it is controlled by changing the running speed, and the processing time is preferably 30 seconds to 5 minutes. If it is shorter than this, heat is not sufficiently transmitted to the film, and if it is longer, it becomes overheated and the flatness is impaired. The film tension during running is preferably 10 to 50 N / m, more preferably 20 to 30 N / m. When the tension is lower than this range, the running property of the film is deteriorated, and when the tension is high, the heat shrinkage rate in the running direction of the obtained film is increased, which is not preferable.
[0035]
In addition, an organic filler or an inorganic filler may be mixed in the polyamic acid solution in order to roughen the surface of the obtained polyimide film to give the film slipperiness and improve process stability.
[0036]
Moreover, in order to give adhesiveness to the obtained polyimide film, the film surface may be subjected to electrical treatment such as corona treatment or plasma treatment or physical treatment such as blast treatment.
[0037]
The polyimide film thus obtained has a Young's modulus of 4 GPa or more, a water absorption of 2.5% or less, a heat shrinkage at 350 ° C. of 0.20% or less, and a heat shrinkage at 400 ° C. of 0.15% or less. Furthermore, since the characteristic that the coefficient of thermal expansion at 350 to 400 ° C. is 20 to 30 ppm / ° C. can be obtained, it has excellent workability and high dimensional stability, and can reduce the dimensional change even in a high temperature process. Suitable for a fine pitch circuit substrate.
[0038]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
[0039]
In the examples, PPD is paraphenylenediamine, 4,4′-ODA is 4,4′-diaminodiphenyl ether, PMDA is pyromellitic dianhydride, and BPDA is 3,3′-4,4′-diphenyltetracarboxylic. Acid dianhydride and DMAc each represent N, N-dimethylacetamide.
[0040]
Moreover, each characteristic in an Example was evaluated with the following method.
(1) Water absorption 98% It left still in the desiccator of RH atmosphere for 2 days, and evaluated by the weight increase% with respect to the weight at the time of drying.
(2) Elastic modulus apparatus: RTM-250 was used, and measurement was performed under the condition of a tensile speed: 100 mm / min.
(3) Heat shrinkage rate
(a) 350 ° C
The film size (L1) after being left in a room adjusted to 25 ° C. and 60% RH for 2 days was measured, and subsequently heated to 350 ° C. for 30 minutes, and then again 2 ° C. in a room adjusted to 25 ° C. and 60% RH. After standing for days, the film dimension (L2) was measured and evaluated by the following formula calculation.
[0041]
Heat shrinkage rate = − (L2−L1) / L1 × 100
(b) 400 ° C
The film size (L1) after being left in a room adjusted to 25 ° C. and 60% RH for 2 days was measured, and subsequently heated to 400 ° C. for 30 minutes, and then again to a room adjusted to 25 ° C. and 60% RH. After standing for days, the film dimension (L2) was measured and evaluated by the following formula calculation.
[0042]
Heat shrinkage rate = − (L2−L1) / L1 × 100
(4) Thermal expansion coefficient apparatus: TMA-50 was used, and measurement was performed under the conditions of a measurement temperature range: 350 to 400 ° C. and a temperature rising rate: 10 ° C./min.
[0043]
[Example 1]
In a 500 ml separable flask, 239.1 g of DMAc was placed, and here, 2.71 g (0.025 mol) of PPD, 24.44 g (0.122 mol) of 4,4′-ODA, 6.49 g (0.022 mol) of BPDA, PMDA27 .27 g (0.125 mol) was added, reacted for 1 hour at room temperature and normal pressure, and stirred until uniform to obtain a polyamic acid solution.
[0044]
In this polymerization, the addition molar ratio of each raw material was carried out at the ratio shown in Table 1, and the total solid content weight was adjusted to 60.9 g. After taking 15 g from this polyamic acid solution and cooling at minus 5 ° C., 1.5 g of acetic anhydride and 1.6 g of β-picoline were mixed to imidize the polyamic acid.
[0045]
The polyimide polymer thus obtained was coated on a glass plate and heated at 100 ° C. for 5 minutes to obtain a gel film. Then, the gel film was peeled off from the glass plate, the ends of the gel film were pinned, The film was stretched 1.1 times in the direction and 1.3 times in the transverse direction. Thereafter, it was dried by heating at 300 ° C. for 20 minutes and then at 400 ° C. for 5 minutes to obtain a polyimide film having a thickness of 25 μm. The polyimide film was annealed for 1 minute in a furnace set at 370 ° C. with a tension of 20 N / m, and then evaluated for each physical property.
[0046]
Young's modulus: 5.3 GPa
Water absorption rate: 2.4%
350 ° C. heat shrinkage: 0.06%
400 ° C. heat shrinkage: 0.09%
350-400 ° C. Thermal expansion coefficient: 28.3 ppm / ° C.
[Examples 2 to 4]
In the same procedure as in Example 1, after changing the aromatic diamine component and the aromatic tetracarboxylic acid component to the proportions shown in Table 1 and obtaining the polyamic acid solution, respectively, the operation for obtaining the polyimide film from the polyamic acid solution is as follows. The annealing was performed in the same manner as in Example 1, and the annealing treatment was also performed in the same manner as in Example 1.
[0047]
The physical property evaluation results of the obtained polyimide films are shown in Table 1.
[0048]
[Table 1]
Figure 0004665373
[0049]
[Comparative Example 1]
The same adjustment as in each raw material example 1, after obtaining a polyamic acid solution in the same procedure, the operation for obtaining a polyimide film from the polyamic acid solution was also carried out in the same manner as in example 1, without any annealing treatment. The results of evaluating the physical properties are shown in Table 2.
[0050]
[Comparative Examples 2 and 3]
In the same procedure as in Example 1, after changing the aromatic diamine component and the aromatic tetracarboxylic acid component to the ratios shown in Table 2 to obtain the polyamic acid solution, respectively, the operation for obtaining the polyimide film from the polyamic acid solution is as follows. The annealing was performed in the same manner as in Example 1, and the annealing treatment was also performed in the same manner as in Example 1.
[0051]
The physical property evaluation results of the obtained polyimide films are also shown in Table 2.
[0052]
[Table 2]
Figure 0004665373
[0053]
【The invention's effect】
The polyimide film of the present invention has a Young's modulus of 4 GPa or more, a water absorption of 2.5% or less, a heat shrinkage at 350 ° C. of 0.20% or less, and a heat shrinkage at 400 ° C. of 0.15% or less. A characteristic that the coefficient of thermal expansion at 350 to 400 ° C. is 20 to 30 ppm / ° C. can be obtained, so that it has excellent workability, high dimensional stability, and can reduce dimensional changes even in high-temperature processes. It can be suitably used for a circuit board.

Claims (2)

パラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテルからなる芳香族ジアミン成分と、ピロメリット酸二無水物85〜75モル%及びビフェニルテトラカルボン酸二無水物15〜25モル%からなる芳香族酸無水物成分とによって構成された分子1単位当たりの分子量が420以下であるポリアミック酸からイミド化して得られたポリイミドフィルムを延伸した後、350〜400℃の温度でアニール処理することにより得られたポリイミドフィルムであって、ヤング率4GPa以上、350℃での加熱収縮率が0.15%以下、400℃での加熱収縮率が0.20%以下、吸水率が2.5%以下であることを特徴とするポリイミドフィルム。An aromatic diamine component composed of paraphenylenediamine and 4,4′-diaminodiphenyl ether, and an aromatic acid anhydride composed of 85 to 75 mol% of pyromellitic dianhydride and 15 to 25 mol% of biphenyltetracarboxylic dianhydride. A polyimide film obtained by stretching a polyimide film obtained by imidization from a polyamic acid having a molecular weight of 420 or less per molecule composed of components and then annealing at a temperature of 350 to 400 ° C. The Young's modulus is 4 GPa or more, the heat shrinkage at 350 ° C. is 0.15% or less, the heat shrinkage at 400 ° C. is 0.20% or less, and the water absorption is 2.5% or less. A polyimide film. 350〜400℃での熱膨張係数が20〜30ppm/℃であることを特徴とする請求項1記載のポリイミドフィルム。2. The polyimide film according to claim 1, wherein a thermal expansion coefficient at 350 to 400 [deg.] C. is 20 to 30 ppm / [deg.] C.
JP2002143319A 2002-05-17 2002-05-17 Polyimide film Expired - Fee Related JP4665373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002143319A JP4665373B2 (en) 2002-05-17 2002-05-17 Polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143319A JP4665373B2 (en) 2002-05-17 2002-05-17 Polyimide film

Publications (2)

Publication Number Publication Date
JP2003335874A JP2003335874A (en) 2003-11-28
JP4665373B2 true JP4665373B2 (en) 2011-04-06

Family

ID=29703378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143319A Expired - Fee Related JP4665373B2 (en) 2002-05-17 2002-05-17 Polyimide film

Country Status (1)

Country Link
JP (1) JP4665373B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777471B2 (en) * 2004-03-30 2011-09-21 東レ・デュポン株式会社 Polyimide film and copper-clad laminate based on the same
JP2005314669A (en) * 2004-03-30 2005-11-10 Du Pont Toray Co Ltd Polyimide film and copper-clad laminate using the same as substrate
JP4625458B2 (en) * 2004-07-27 2011-02-02 株式会社カネカ Adhesive film and use thereof
JP2008201940A (en) * 2007-02-21 2008-09-04 Du Pont Toray Co Ltd Low thermally shrinkable polyimide film and method for producing the same
JP2008248067A (en) * 2007-03-30 2008-10-16 Du Pont Toray Co Ltd Polyimide film and flexible circuit board
JP4947297B2 (en) * 2007-05-23 2012-06-06 東レ・デュポン株式会社 Copper plate
KR101227317B1 (en) * 2007-07-31 2013-01-28 코오롱인더스트리 주식회사 Polyimide film with improved thermal stability
JP5196344B2 (en) * 2008-03-26 2013-05-15 東レ・デュポン株式会社 Method for improving adhesion of polyimide film
JP2011167906A (en) * 2010-02-18 2011-09-01 Du Pont-Toray Co Ltd Polyimide sheet
JP2011167905A (en) * 2010-02-18 2011-09-01 Du Pont-Toray Co Ltd Polyimide sheet
JP2011167903A (en) * 2010-02-18 2011-09-01 Du Pont-Toray Co Ltd Polyimide sheet
KR101240955B1 (en) 2010-12-27 2013-03-11 웅진케미칼 주식회사 Polyimide film having excellent high temperature stability and substrate for display device using the same
JP6134213B2 (en) * 2013-06-26 2017-05-24 東レ・デュポン株式会社 Polyimide film

Also Published As

Publication number Publication date
JP2003335874A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
JP4826583B2 (en) Method for producing polyimide film
JP4665373B2 (en) Polyimide film
JP7375176B2 (en) Polyimide film, its manufacturing method, and soft metal foil laminate containing the same
JP2000159887A (en) Polyimide film and its production
JP4009918B2 (en) Polyimide film, method for producing the same, and metal laminate using the same
CN111187414A (en) High-performance transparent polyimide film and preparation method thereof
JP3687044B2 (en) Copolymerized polyimide film and method for producing the same
JP4318111B2 (en) Polyimide film and method for producing the same
JP5362752B2 (en) Polyamic acid composition, polyimide, polyimide film and method for producing them
JPH10114823A (en) Modified polyimide film
JP3860359B2 (en) Polyimide film and method for producing the same
JP5547874B2 (en) Polyimide resin
JPS62253621A (en) Polyimide resin
JP7230148B2 (en) Metal-clad laminates and circuit boards
JPH09227697A (en) Preparation of heat-resistant polyimide film through gel
TW202237705A (en) Polyimide, metal-clad laminate plate and circuit board
JP2000063543A (en) Polyimide film and its production
JP2003109989A (en) Polyimide film for flexible printed board
JPS63264632A (en) Low-thermal expansion resin
JP5941429B2 (en) Polyamic acid and polyimide
JP2001244380A (en) Polyimide film for surface mounted area array package
JPS60203638A (en) Polyimide film
JPS62185715A (en) Colorless polyimide film
JP2003335877A (en) Method for manufacturing polyimide film
JP2019214642A (en) Polyimide film for coverlay film, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080207

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080307

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees