JP5362752B2 - Polyamic acid composition, polyimide, polyimide film and method for producing them - Google Patents

Polyamic acid composition, polyimide, polyimide film and method for producing them Download PDF

Info

Publication number
JP5362752B2
JP5362752B2 JP2011014344A JP2011014344A JP5362752B2 JP 5362752 B2 JP5362752 B2 JP 5362752B2 JP 2011014344 A JP2011014344 A JP 2011014344A JP 2011014344 A JP2011014344 A JP 2011014344A JP 5362752 B2 JP5362752 B2 JP 5362752B2
Authority
JP
Japan
Prior art keywords
polyamic acid
polyimide
mol
acid composition
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011014344A
Other languages
Japanese (ja)
Other versions
JP2012153806A (en
Inventor
洋平 井上
浩章 中尾
盛裕 黄
美齡 曾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2011014344A priority Critical patent/JP5362752B2/en
Priority to TW101102020A priority patent/TWI439508B/en
Publication of JP2012153806A publication Critical patent/JP2012153806A/en
Application granted granted Critical
Publication of JP5362752B2 publication Critical patent/JP5362752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、特定のジアミン成分と、特定のテトラカルボン酸成分とを、特定の比率で用いたポリアミド酸組成物およびそれを硬化させて得られるポリイミドに関する。   The present invention relates to a polyamic acid composition using a specific diamine component and a specific tetracarboxylic acid component in a specific ratio, and a polyimide obtained by curing it.

芳香族テトラカルボン酸二無水物および芳香族ジアミンを縮重合し、硬化して得られるポリイミド組成物、その中でも特にポリイミドフィルムは、電気絶縁性や耐熱性などに優れているため、フレキシブルプリント基板(以下、FPCという)など電子基板材料の用途で多く利用されている。FPCは、ポリイミドフィルムと銅箔をエポキシ樹脂などの接着剤で張り合わせて銅張積層板(以下、CCLという)を作製し、その銅箔に回路を施すことで製造される。最近では電子機器の薄型化、小型化、微細化、実装化が進む中で、基板材料の高加工性、高精度化の要求が高まっており、ポリイミドフィルムの特性としても高弾性率、高寸法安定性、低熱膨張性、低吸水性などが求められている。そのようなポリイミドの特性向上の手段としては、ポリイミドモノマーの成分やその配列(ランダム、ブロックなど)を制御することがあり、現在までに種々の検討がなされている。   Polyimide composition obtained by condensation polymerization and curing of aromatic tetracarboxylic dianhydride and aromatic diamine, and in particular polyimide film is excellent in electrical insulation and heat resistance. In the following, it is widely used in applications of electronic substrate materials such as FPC). FPC is manufactured by bonding a polyimide film and a copper foil with an adhesive such as an epoxy resin to produce a copper-clad laminate (hereinafter referred to as CCL) and applying a circuit to the copper foil. Recently, as electronic devices are becoming thinner, smaller, finer, and more advanced, there is an increasing demand for high workability and high precision of substrate materials. There are demands for stability, low thermal expansion, low water absorption, and the like. As means for improving the characteristics of such polyimide, there are cases where the components of polyimide monomers and their arrangement (random, block, etc.) are controlled, and various studies have been made so far.

FPCはポリイミドフィルムと銅箔をエポキシ樹脂などの接着剤で張り合わせてCCLを作製し、その銅箔にエッチング加工により電子回路を施すことで製造される。さらに最近では、電子回路のファインピッチ化の要求から、ICチップ等をFPCに金バンプ等を介して直接実装するチップオンフィルム(以下、COFという)方式が多く用いられている。COF方式ではICチップを実装する際、高温で直接CCLに圧着するなど、高温での加工工程がある。高温域でのポリイミドフィルムの熱膨張率が銅箔と異なると、CCLにしわやカールなどが発生する問題が生じる。また、ポリイミドフィルムのTgが低いと、実装時にポリイミドフィルムが軟化し、回路およびICチップが沈み込む問題がある。そのため、ICチップ実装を伴うCOF用途においては、ポリイミドフィルムの特性として、高温域においても熱膨張率が銅箔と同等であること、高いTgを有し高温圧着時に軟化しないことが求められる。しかし、既存のポリイミドフィルムであるピロメリット酸二無水物(以下、ピロメリット酸またはその無水物をPMDAと略称することがある)と4,4´−ジアミノジフェニルエーテル(以下、ODAと略称することがある)や、3,3´,4,4´−ビフェニルテトラカルボン酸二無水物(以下、当該カルボン酸またはその無水物をBPDAと略称することがある)とパラフェニレンジアミン(以下、PDAと略称することがある)との組合せからなる2成分系では、高温域における熱膨張率が銅箔よりも大きすぎたり小さすぎたりする問題がある。それらを組み合わせた3成分系や4成分系の多成分系では、モノマー比を調整することで熱膨張率をコントロールできるが、BPDA−ODAのような骨格が柔軟なブロックが存在するとポリイミドフィルムのTgが低下するという問題がある。   FPC is manufactured by bonding a polyimide film and a copper foil with an adhesive such as an epoxy resin to produce a CCL, and applying an electronic circuit to the copper foil by etching. In recent years, a chip-on-film (hereinafter referred to as COF) system in which an IC chip or the like is directly mounted on an FPC via a gold bump or the like is often used due to the demand for fine pitch electronic circuits. In the COF method, when an IC chip is mounted, there is a processing step at a high temperature, such as directly crimping to CCL at a high temperature. If the coefficient of thermal expansion of the polyimide film in the high temperature range is different from that of the copper foil, there arises a problem that wrinkles or curls occur in the CCL. Moreover, when Tg of a polyimide film is low, there exists a problem which a polyimide film softens at the time of mounting, and a circuit and an IC chip sink. For this reason, in COF applications involving IC chip mounting, the polyimide film is required to have a thermal expansion coefficient equivalent to that of a copper foil even in a high temperature region, and to have a high Tg and not be softened during high temperature pressure bonding. However, pyromellitic dianhydride (hereinafter, pyromellitic acid or its anhydride may be abbreviated as PMDA) and 4,4′-diaminodiphenyl ether (hereinafter, abbreviated as ODA), which are existing polyimide films. Or 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter, the carboxylic acid or its anhydride may be abbreviated as BPDA) and paraphenylenediamine (hereinafter abbreviated as PDA). In the two-component system consisting of a combination with the copper foil, there is a problem that the coefficient of thermal expansion in the high temperature range is too large or too small compared to the copper foil. In the case of ternary or quaternary multi-component systems that combine them, the coefficient of thermal expansion can be controlled by adjusting the monomer ratio, but if there is a flexible skeleton such as BPDA-ODA, the Tg of the polyimide film There is a problem that decreases.

例えば、特許文献1では、ODA−BPDAのブロック共重合部分や、ODA−PMDAのブロック共重合部分を含むポリアミド酸組成物からエナメル線製造用のワニスを得たことが記載される。
特許文献2では、モノマー成分の組合せとして、PMDA、ODA、BPDAおよびPDAを混合して重合しポリアミド酸組成物を得て、ポリイミド膜を製造する方法が記載されている。
For example, Patent Document 1 describes that a varnish for producing an enameled wire was obtained from a polyamic acid composition containing a block copolymer part of ODA-BPDA or a block copolymer part of ODA-PMDA.
Patent Document 2 describes a method for producing a polyimide film by mixing and polymerizing PMDA, ODA, BPDA and PDA as a combination of monomer components to obtain a polyamic acid composition.

特許文献3には、ODA−PMDAのブロック共重合部分、ODA−ジメチルベンジジンのブロック共重合部分を含むポリアミド酸共重合体溶液からポリイミド共重合体膜を得ることが記載されている。
特許文献4では、PDA−BPDAのポリアミド酸と、ODA−PMDAのポリアミド酸の混合物を得て、加熱して、ポリイミドを製造する旨が記載される。
Patent Document 3 describes that a polyimide copolymer film is obtained from a polyamic acid copolymer solution containing a block copolymer portion of ODA-PMDA and a block copolymer portion of ODA-dimethylbenzidine.
Patent Document 4 describes that a polyamic acid of PDA-BPDA and a polyamic acid of ODA-PMDA are obtained and heated to produce polyimide.

特許文献5には、PDA−PMDAのブロック共重合部分を有するポリアミド酸、ODA―BPDAのブロック共重合部分を有するポリアミド酸、さらにこれらにPMDAを重合させたポリアミド酸組成物の記載がある。
特許文献6には、PDA−PMDAのブロック共重合部分を有するポリアミド酸、ODA−BPDAのブロック共重合部分を有するポリアミド酸組成物に、さらにPMDAを重合させたポリアミド酸混合物からポリイミドフイルムを得たことが記載されている。
Patent Document 5 describes a polyamic acid having a block copolymerized portion of PDA-PMDA, a polyamic acid having a block copolymerized portion of ODA-BPDA, and a polyamic acid composition obtained by polymerizing PMDA thereon.
In Patent Document 6, a polyimide film was obtained from a polyamic acid mixture obtained by further polymerizing PMDA in a polyamic acid composition having a block copolymerization portion of PDA-PMDA and a polyamic acid composition having a block copolymerization portion of ODA-BPDA. It is described.

特許文献1、2、3、5では、PDA−BPDAのブロック共重合部分を有するポリアミド酸は記載されていない。一方、PDA−PMDAのブロック共重合部分を有するポリアミド酸を有する組成物では、得られるポリアミドのTgが低下して耐熱性に劣る恐れがある。
特許文献2では、PDA、ODA、BPDA、PMDAを混合して、重合するので、耐熱性が低下し、分子量があまり高くならない問題がある。
特許文献4では、PDA−BPDAのポリアミド酸と、ODA−PMDAのポリアミド酸の混合物が記載され、共重合物の記載はない。また、モノマーの各成分は全てが等モルの場合の実施例のみが記載されていて、得られるポリイミドフィルムは表面に微細な凹状構造が形成されると記載され、耐熱性等の特性は不明である。PDA−BPDAのポリアミド酸とODA−PMDAのポリアミド酸は、室温では混ざるまで数日かかるので均一混合が難しく、混合できても、分子量が低下するという問題がある。
特許文献6では、PDA−BPDAのブロック共重合部分を有するポリアミド酸が得られているが、各成分の組成比と弾性率との関係において改善が望まれる。
Patent Documents 1, 2, 3, and 5 do not describe polyamic acid having a PDA-BPDA block copolymer moiety. On the other hand, in a composition having a polyamic acid having a PDA-PMDA block copolymer moiety, the Tg of the resulting polyamide may be reduced, resulting in poor heat resistance.
In Patent Document 2, since PDA, ODA, BPDA, and PMDA are mixed and polymerized, there is a problem that the heat resistance is lowered and the molecular weight is not so high.
In Patent Document 4, a mixture of polyamic acid of PDA-BPDA and polyamic acid of ODA-PMDA is described, and there is no description of a copolymer. In addition, only examples in which all the components of the monomer are equimolar are described, and the obtained polyimide film is described as having a fine concave structure formed on the surface, and characteristics such as heat resistance are unknown. is there. Since the polyamic acid of PDA-BPDA and the polyamic acid of ODA-PMDA take several days to mix at room temperature, uniform mixing is difficult, and even if they can be mixed, there is a problem that the molecular weight decreases.
In Patent Document 6, a polyamic acid having a PDA-BPDA block copolymer portion is obtained, but an improvement in the relationship between the composition ratio of each component and the elastic modulus is desired.

特開昭59‐164328号公報JP 59-164328 A 特開昭61‐111359号公報JP 61-111359 A 特開昭63‐314242号公報JP 63-314242 A 特開平6−313055号公報JP-A-6-313055 特許3687044号公報Japanese Patent No. 3687044 特開2007−162005号公報JP 2007-162005 A

本発明は、従来技術の問題点を改善でき、優れた特性を有するポリイミドフィルムが得られるポリアミド酸組成物を提供することを目的とする。本発明のポリアミド酸組成物を用いて得られるポリイミドフィルムは、高温域においても銅箔と同等の熱膨張特性をもち、耐熱性が高い。   An object of this invention is to provide the polyamic-acid composition which can improve the problem of a prior art and can obtain the polyimide film which has the outstanding characteristic. The polyimide film obtained using the polyamic acid composition of the present invention has a thermal expansion characteristic equivalent to that of a copper foil even in a high temperature range, and has high heat resistance.

上記課題を解決する手段として、本発明は、ODAとPMDAとからなるブロック成分と、PDAとBPDAとからなるブロック成分が一定の比率で共重合されたポリアミド酸組成物およびそれを硬化させて得られるポリイミドを開発した。
すなわち、本発明は以下を提供する。
(1)パラフェニレンジアミン:50mol%超〜90mol%以下および
4,4´−ジアミノジフェニルエーテル:50mol%未満〜10mol%以上からなるジアミン成分ならびに
3,3´,4,4´−ビフェニルテトラカルボン酸二無水物:45〜87mol%および
ピロメリット酸二無水物:55〜13mol%からなるテトラカルボン酸成分からなるポリアミド酸組成物であって、
前記パラフェニレンジアミンと前記3,3´,4,4´−ビフェニルテトラカルボン酸二無水物の共重合体からなるブロック成分と
前記4,4´−ジアミノジフェニルエーテルと前記ピロメリット酸二無水物の共重合体からなるブロック成分を含むことを特徴とするポリアミド酸組成物。
(2)上記(1)に記載のポリアミド酸組成物が硬化されてなるポリイミド。
(3)上記(2)に記載のポリイミドがフィルムであるポリイミド。
(4)400℃から50℃への降温過程における熱膨張率が−18〜−25ppm/℃、ガラス転移温度が350℃以上であり、引張弾性率が5.8GPa以下であることを特徴とする請求項3に記載のポリイミドフィルム。
(5)上記(1)に記載のポリアミド酸組成物の製造方法であって、
前記パラフェニレンジアミン100mol%に対して前記3,3´,4,4´−ビフェニルテトラカルボン酸二無水物が90〜100mol%となる比率で、溶媒中で混合、反応させて、該パラフェニレンジアミンと該3,3´,4,4´−ビフェニルテトラカルボン酸二無水物のブロック共重合部分を得た後、
前記4,4´−ジアミノジフェニルエーテルを添加し、続いて前記ピロメリット酸二無水物を添加し、反応させて、該4,4´−ジアミノジフェニルエーテルと該ピロメリット酸二無水物のブロック共重合部分を得ることを特徴とするポリアミド酸組成物の製造方法。
(6)上記(5)で製造されたポリアミド酸組成物を硬化させて、ポリイミドを得るポリイミドの製造方法。
(7)上記(5)で製造されたポリアミド酸組成物を基板に塗布後、乾燥してゲルフィルムを製造後、前記ゲルフィルムを加熱してポリイミドフィルムを得ることを特徴とするポリイミドフィルムの製造方法。
As means for solving the above-mentioned problems, the present invention is obtained by curing a polyamic acid composition in which a block component composed of ODA and PMDA and a block component composed of PDA and BPDA are copolymerized at a certain ratio. Developed polyimide.
That is, the present invention provides the following.
(1) Paraphenylenediamine: more than 50 mol% to 90 mol% or less and 4,4′-diaminodiphenyl ether: a diamine component consisting of less than 50 mol% to 10 mol% or more, and 3,3 ′, 4,4′-biphenyltetracarboxylic acid A polyamic acid composition comprising a tetracarboxylic acid component consisting of an anhydride: 45-87 mol% and pyromellitic dianhydride: 55-13 mol%,
A block component composed of a copolymer of the paraphenylenediamine and the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, a co-polymer of the 4,4′-diaminodiphenyl ether and the pyromellitic dianhydride. A polyamic acid composition comprising a block component made of a polymer.
(2) A polyimide obtained by curing the polyamic acid composition according to (1) above.
(3) The polyimide whose polyimide as described in said (2) is a film.
(4) The coefficient of thermal expansion in the temperature lowering process from 400 ° C. to 50 ° C. is −18 to −25 ppm / ° C., the glass transition temperature is 350 ° C. or more, and the tensile modulus is 5.8 GPa or less. The polyimide film according to claim 3.
(5) A method for producing the polyamic acid composition according to (1) above,
The 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is mixed in a solvent at a ratio of 90 to 100 mol% with respect to 100 mol% of the paraphenylenediamine, and the paraphenylenediamine is reacted. And a block copolymerized part of the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride,
The 4,4'-diaminodiphenyl ether is added, and then the pyromellitic dianhydride is added and reacted to cause a block copolymer part of the 4,4'-diaminodiphenyl ether and the pyromellitic dianhydride. A process for producing a polyamic acid composition, characterized in that
(6) The manufacturing method of the polyimide which hardens the polyamic-acid composition manufactured by said (5), and obtains a polyimide.
(7) A polyimide film produced by applying the polyamic acid composition produced in (5) above to a substrate, drying to produce a gel film, and then heating the gel film to obtain a polyimide film. Method.

本発明のポリアミド酸組成物は、従来技術の問題点を改善でき、優れた特性を有するポリイミドフィルムが得られるポリアミド酸組成物である。本発明のポリアミド酸組成物を用いて得られるポリイミドフィルムは、高温域においても銅箔と同等の熱膨張特性をもち、耐熱性が高い。好ましくは、弾性率が適切範囲であるという優れた特性を持つ。   The polyamic acid composition of the present invention is a polyamic acid composition that can improve the problems of the prior art and obtain a polyimide film having excellent characteristics. The polyimide film obtained using the polyamic acid composition of the present invention has a thermal expansion characteristic equivalent to that of a copper foil even in a high temperature range, and has high heat resistance. Preferably, it has the outstanding characteristic that an elasticity modulus is an appropriate range.

上記課題を解決する手段として、ODAとPMDAとからなるブロック成分と、PDAとBPDAとからなるブロック成分が一定の比率で共重合されたポリアミド酸組成物およびそれを硬化させて得られるポリイミド組成物を開発した。
本発明は、パラフェニレンジアミン(PDA)と3,3´,4,4´−ビフェニルテトラカルボン酸二無水物(BPDA)の共重合体からなるブロック成分と4,4´−ジアミノジフェニルエーテル(ODA)とピロメリット酸二無水物(PMDA)の共重合体からなるブロック成分を含むポリアミド酸組成物である。成分比は、全芳香族ジアミン成分中PDAが50mol%超〜90mol%以上、ODAが50mol%未満、10mol%以上であり、かつ全芳香族テトラカルボン酸成分中PMDA13〜55mol%、BPDAが45〜87mol%である。
有機溶媒中の本発明のポリアミド酸組成物は部分的にイミド化されている部分があっても本発明の組成物に含まれる。
As means for solving the above problems, a polyamic acid composition in which a block component composed of ODA and PMDA and a block component composed of PDA and BPDA are copolymerized at a certain ratio, and a polyimide composition obtained by curing the polyamic acid composition Developed.
The present invention relates to a block component comprising a copolymer of paraphenylenediamine (PDA) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 4,4′-diaminodiphenyl ether (ODA). And a polyamic acid composition containing a block component made of a copolymer of pyromellitic dianhydride (PMDA). The component ratio is such that PDA in the wholly aromatic diamine component is more than 50 mol% to 90 mol% or more, ODA is less than 50 mol%, 10 mol% or more, and PMDA is 13 to 55 mol% in the wholly aromatic tetracarboxylic acid component, and BPDA is 45 to 45 mol%. 87 mol%.
The polyamic acid composition of the present invention in an organic solvent is included in the composition of the present invention even if there is a partially imidized portion.

芳香族ジアミン成分において、PDAの割合が上記より少なく、ODAの割合が多くなりすぎると、得られるポリイミド組成物の弾性率が低下しすぎたり、熱膨張率が増大しすぎたりするので好ましくない。弾性率が、高すぎると製造工程や長時間の使用でポリイミドフィルムに破断や割れが生じやすくなり、特にCOF用途では使用上ある程度の柔軟性が求められる。また弾性率が、低すぎると製造工程や加工工程においてフィルムのハンドリングが悪くなる。
弾性率、熱膨張率がいずれも適切であるという理由で、好ましくは、PDAが51〜90mol%、ODAが10〜49mol%であり、より好ましくは、PDAが70〜90mol%、ODAが10〜30mol%である。
またPDAの割合が上記より多く、ODAの割合が少なくすぎると、得られるポリイミドの吸水率が増大したり、熱膨張率が低下しすぎたり、弾性率が高くなりすぎて成形性を損なうので好ましくない。
In the aromatic diamine component, if the proportion of PDA is less than the above and the proportion of ODA is too large, the resulting polyimide composition will have an excessively low elastic modulus or an excessively high thermal expansion coefficient, which is not preferable. If the elastic modulus is too high, the polyimide film is likely to be broken or cracked in the production process or used for a long time, and a certain degree of flexibility is required for use particularly in COF applications. On the other hand, if the elastic modulus is too low, the handling of the film is deteriorated in the production process and the processing process.
The reason is that the elastic modulus and the coefficient of thermal expansion are both suitable, preferably, PDA is 51 to 90 mol%, ODA is 10 to 49 mol%, and more preferably, PDA is 70 to 90 mol% and ODA is 10 to 10 mol%. 30 mol%.
Further, if the proportion of PDA is larger than the above and the proportion of ODA is too small, the water absorption rate of the resulting polyimide increases, the thermal expansion coefficient decreases too much, or the elastic modulus becomes too high and the moldability is impaired. Absent.

芳香族テトラカルボン酸成分において、BPDAの割合が上記の割合より少なく、PMDAが多くなりすぎると、得られるポリイミドの弾性率が低下したり、吸水率が増大するので好ましくなく、またBPDAの割合が上記の割合より多く、PMDAが少なくなりすぎると、得られるポリイミドの気体透過率が低下し、加熱硬化の際に、ポリアミド酸組成物の表面に気泡が発生したり、接着力が低下するので好ましくない。好ましくは、BPDAが50〜87モル%、PMDAが13〜50mol%未満である。   In the aromatic tetracarboxylic acid component, if the ratio of BPDA is less than the above ratio and the PMDA is excessive, the resulting polyimide has a low elastic modulus or an increased water absorption rate. More than the above ratio, if PMDA becomes too small, the gas permeability of the resulting polyimide is lowered, and it is preferable because bubbles are generated on the surface of the polyamic acid composition or the adhesive strength is reduced during heat curing. Absent. Preferably, BPDA is 50 to 87 mol% and PMDA is less than 13 to 50 mol%.

本発明のポリアミド酸組成物を硬化させて得られるポリイミドは、好ましくは、以下の特性を持つ。
400℃から50℃への降温過程における熱膨張率が−18〜−25ppm/℃、ガラス転移温度が350℃以上であり、引張弾性率が5.8GPa以下である。
より好ましくは、400℃から50℃への降温過程における熱膨張率が−18〜−24ppm/℃、ガラス転移温度が350℃〜400℃であり、引張弾性率が5〜5.8GPaである。
このポリイミドをフイルムに成形したポリイミドフイルムは、好ましくは、伸び率が50%以上である。より好ましくは伸び率50〜100%である。
The polyimide obtained by curing the polyamic acid composition of the present invention preferably has the following characteristics.
The thermal expansion coefficient in the temperature lowering process from 400 ° C. to 50 ° C. is −18 to −25 ppm / ° C., the glass transition temperature is 350 ° C. or higher, and the tensile modulus is 5.8 GPa or lower.
More preferably, the thermal expansion coefficient in the temperature lowering process from 400 ° C. to 50 ° C. is −18 to −24 ppm / ° C., the glass transition temperature is 350 ° C. to 400 ° C., and the tensile elastic modulus is 5 to 5.8 GPa.
The polyimide film obtained by molding this polyimide into a film preferably has an elongation of 50% or more. More preferably, the elongation is 50 to 100%.

ポリアミド酸組成物を形成するPMDAおよびBPDAは、これら以外の芳香族テトラカルボン酸成分を本発明の目的を阻害しない範囲で含むことができ、それらの具体例としては、2,3’,3,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、2,3,6,7−ナフタレンジカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)エーテル、ピリジン−2,3,5,6−テトラカルボン酸およびこれらのアミド形成性誘導体が挙げられる。ポリアミド酸組成物の製造にあたっては、これらの芳香族テトラカルボン酸の酸無水物を少量添加してもかまわない。   PMDA and BPDA forming the polyamic acid composition may contain an aromatic tetracarboxylic acid component other than these as long as the object of the present invention is not impaired, and specific examples thereof include 2,3 ′, 3, 4'-biphenyltetracarboxylic acid, 3,3 ', 4,4'-benzophenonetetracarboxylic acid, 2,3,6,7-naphthalenedicarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) ether Pyridine-2,3,5,6-tetracarboxylic acid and amide-forming derivatives thereof. In producing the polyamic acid composition, a small amount of these aromatic tetracarboxylic acid anhydrides may be added.

ポリアミド酸組成物を形成するパラフェニレンジアミンおよび4,4’−ジアミノジフェニルエーテルは、これら以外の芳香族ジアミン成分を本発明の目的を阻害しない範囲で含むことができ、それらの具体例としては、メタフェニレンジアミン、ベンチジン、パラキシリレンジアミン、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、1,5−ジアミノナフタレン、3,3’−ジメトキシベンチジン、1,4−ビス(3メチル−5アミノフェニル)ベンゼンおよびこれらのアミド形成性誘導体が挙げられる。ポリアミド酸組成物の製造にあたっては、これらの芳香族ジアミン類を少量添加してもかまわない。   The paraphenylene diamine and 4,4′-diaminodiphenyl ether forming the polyamic acid composition can contain an aromatic diamine component other than these as long as they do not impair the object of the present invention. Phenylenediamine, benzidine, paraxylylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, Examples include 1,5-diaminonaphthalene, 3,3′-dimethoxybenzidine, 1,4-bis (3methyl-5aminophenyl) benzene, and amide-forming derivatives thereof. In producing the polyamic acid composition, a small amount of these aromatic diamines may be added.

本発明のポリアミド酸組成物の製造方法は、溶媒中で、PDAに対してBPDAが好ましくは、90〜100mol%となる比率で、混合、反応した後、ODAを添加し、続いてPMDAを全芳香族テトラカルボン酸類成分と全芳香族ジアミン成分とがほぼ等モルとなる量添加して、混合、反応することで得られる。
ポリアミック酸を構成する芳香族テトラカルボン酸成分と芳香族ジアミン成分とは、それぞれのモル数が大略等しくなる割合で重合される。PDAに対してBPDAが90〜100mol%となる比率で用いると、重合度を制御できるという利点があるからである。より好ましくは、PDAに対してBPDAが95〜100mol%となる比率で用いる。
重合反応は、有機溶媒中で撹拌および/または混合しながら、0〜80℃の温度の範囲で、10分〜30時間進められるのが好ましく、上記の順序の範囲内であれば必要により重合反応を分割したり、温度を上下させたりしてもかまわない。重合反応中に真空脱泡することは、良質なポリアミド酸組成物の有機溶媒溶液を製造するのに有効な方法である。
In the method for producing the polyamic acid composition of the present invention, in a solvent, BPDA is mixed with PDA at a ratio of preferably 90 to 100 mol%, and after mixing and reacting, ODA is added, and then PMDA is completely added. The aromatic tetracarboxylic acid component and the wholly aromatic diamine component are added in an amount that is approximately equimolar, and are mixed and reacted.
The aromatic tetracarboxylic acid component and the aromatic diamine component constituting the polyamic acid are polymerized at a ratio in which the number of moles thereof is approximately equal. This is because when the BPDA is used in a ratio of 90 to 100 mol% with respect to the PDA, there is an advantage that the degree of polymerization can be controlled. More preferably, the BPDA is used in a ratio of 95 to 100 mol% with respect to the PDA.
The polymerization reaction is preferably allowed to proceed for 10 minutes to 30 hours in the temperature range of 0 to 80 ° C. with stirring and / or mixing in an organic solvent. If within the above order, the polymerization reaction is necessary. May be divided or the temperature may be raised or lowered. Vacuum degassing during the polymerization reaction is an effective method for producing an organic solvent solution of a good quality polyamic acid composition.

上記製造方法で使用する溶媒としては、N,N−ジメチルアセトアミド(以下、DMAcと略称することがある)、ジメチルスルホキシド、N−メチル−2−ピロリドン、N,N−ジエチルアセトアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミドおよびジメチルスルホンなどが挙げられ、これらを単独あるいは混合して使用するのが好ましい。
上記製造方法で得られるポリアミド酸組成物は前記溶媒中に10〜30重量%の割合で調製するのが好ましい。
As the solvent used in the above production method, N, N-dimethylacetamide (hereinafter sometimes abbreviated as DMAc), dimethyl sulfoxide, N-methyl-2-pyrrolidone, N, N-diethylacetamide, N, N- Examples thereof include dimethylformamide, N, N-diethylformamide and dimethylsulfone, and these are preferably used alone or in combination.
The polyamic acid composition obtained by the above production method is preferably prepared in a proportion of 10 to 30% by weight in the solvent.

上記製造方法で得られる共重合ポリアミド酸組成物を環化させて共重合ポリイミドにする際、脱水剤と触媒を用いて脱水する化学閉環法、熱的に脱水する熱閉環法のいずれで行っても良いが、化学閉環法で行った方が、ポリイミドフィルムの強度が向上する、生産性が向上するなどの点で好ましい。化学閉環法で使用する脱水剤としては、無水酢酸等の脂肪族酸無水物、フタル酸無水物等の芳香族酸無水物等が挙げられ、これらを単独あるいは混合して使用するのが好ましい。また触媒としては、ピリジン、ピコリン、キノリン等の複素環式第3級アミン類、トリエチルアミン等の脂肪族第3級アミン類、N,N−ジメチルアニリン等の芳香族第3級アミン類等が挙げられ、これらを単独あるいは混合して使用するのが好ましい。   When the copolymerized polyamic acid composition obtained by the above production method is cyclized into a copolymerized polyimide, either a chemical cyclization method in which dehydration is performed using a dehydrating agent and a catalyst, or a thermal cyclization method in which thermal dehydration is performed is performed. However, the chemical ring closure method is preferable from the viewpoint of improving the strength of the polyimide film and improving productivity. Examples of the dehydrating agent used in the chemical ring closure method include aliphatic acid anhydrides such as acetic anhydride and aromatic acid anhydrides such as phthalic anhydride, and these are preferably used alone or in combination. Examples of the catalyst include heterocyclic tertiary amines such as pyridine, picoline and quinoline, aliphatic tertiary amines such as triethylamine, and aromatic tertiary amines such as N, N-dimethylaniline. These are preferably used alone or in combination.

上記ポリイミドフィルムの製造方法において、フィルムの延伸操作を行う場合は、まず一連の反応で得られたポリアミド酸組成物を環化触媒および脱水剤を用いて化学環化するか、加熱処理による熱環化により得られたポリイミドのゲルフィルムの端部を固定して二軸延伸を行い、縦方向(MD)に対する横方向(TD)の延伸率の比(TD/MD)が0.95〜1.05になるよう調整するのが好ましい。このような二軸延伸操作を行うと、得られるポリイミドフィルムの機械特性向上、さらには等方性が向上する。   In the above polyimide film production method, when the film is stretched, the polyamic acid composition obtained by a series of reactions is first chemically cyclized using a cyclization catalyst and a dehydrating agent, or is thermally circulated by heat treatment. The ends of the polyimide gel film obtained by crystallization are fixed and biaxial stretching is performed, and the ratio of the stretching ratio in the transverse direction (TD) to the longitudinal direction (MD) (TD / MD) is 0.95-1. It is preferable to adjust to 05. When such a biaxial stretching operation is performed, the mechanical properties of the resulting polyimide film are improved, and the isotropic property is improved.

ポリイミドフィルムの機械特性においては、引張弾性率が5.8GPa以下、伸び率が50%以上に調整するのが好ましい。機械特性が上記範囲を外れると、製造工程や長時間の使用でポリイミドフィルムに破断や割れが生じやすくなる。またCOF用途ではポリイミドフィルムが硬くなりすぎて使用上取扱いにくくなる。   In the mechanical properties of the polyimide film, it is preferable to adjust the tensile modulus to 5.8 GPa or less and the elongation to 50% or more. If the mechanical properties are out of the above range, the polyimide film is likely to be broken or cracked during the manufacturing process or long-time use. In addition, in the COF application, the polyimide film becomes too hard and difficult to handle in use.

以下に、実施例および比較例を用いて本発明を具体例に説明する。本発明は以下の例に限定されない。
実施例、比較例の各特性は次の方法で評価した。
(1)熱膨張率(降温過程における熱膨張率)
機器:島津製作所製TMA−50
測定温度範囲:400℃〜50℃
昇温速度:−10℃/min
(2)引張弾性率および伸び率
JISK7113に準じて、以下の装置を以下の条件で用いて、応力−歪曲線を得て、初期の立ち上がり部の勾配から引張弾性率を求めた。
機器:島津製作所製AGS−J
引張速度:51mm/min
荷重範囲:400MPa
(3)ガラス転移温度
機器:TAインストルメント製DMAQ800
昇温速度:3℃/min
温度範囲:50〜450℃
周波数:1Hz
Hereinafter, the present invention will be described by way of specific examples using Examples and Comparative Examples. The present invention is not limited to the following examples.
Each characteristic of an Example and a comparative example was evaluated with the following method.
(1) Thermal expansion coefficient (thermal expansion coefficient in the temperature lowering process)
Equipment: TMA-50 manufactured by Shimadzu Corporation
Measurement temperature range: 400 ° C to 50 ° C
Temperature increase rate: −10 ° C./min
(2) Tensile modulus and elongation rate In accordance with JISK7113, the following apparatus was used under the following conditions to obtain a stress-strain curve, and the tensile modulus was determined from the gradient of the initial rising portion.
Equipment: AGS-J manufactured by Shimadzu Corporation
Tensile speed: 51 mm / min
Load range: 400 MPa
(3) Glass transition temperature equipment: DMAQ800 manufactured by TA Instruments
Temperature increase rate: 3 ° C / min
Temperature range: 50-450 ° C
Frequency: 1Hz

(実施例1)
500mlのセパラブルフラスコにDMAc255.0gを入れ、ここにPDAを10.95g(0.10モル)とBPDAを28.12g(0.096モル)を添加し、常温常圧中で1時間反応させた。次にODAを2.25g(0.011モル)添加し、均一になるまで撹拌した後、PMDAを3.68g(0.017モル)を添加し、1時間反応させポリアミド酸溶液を得た。なお、このポリアミド酸溶液から15gを取り、アプリケーターを用いてガラス板に塗布し、100℃で20分間加熱乾燥したのち、ゲルフィルムをガラス板から剥離した。ゲルフィルム端部をピン止めし、MD方向およびTD方向に表1に示す延伸比で二軸延伸した。その後200℃で20分間、300℃で20分間、続いて400℃で20分間加熱乾燥した後、ピン止めを外し、厚さ約30μmのポリイミドフィルムを得た。このフィルムの各特性の評価を行い、表1にその結果を示した。
Example 1
Into a 500 ml separable flask, 255.0 g of DMAc was added, and 10.95 g (0.10 mol) of PDA and 28.12 g (0.096 mol) of BPDA were added thereto and reacted at room temperature and normal pressure for 1 hour. It was. Next, 2.25 g (0.011 mol) of ODA was added and stirred until uniform, then 3.68 g (0.017 mol) of PMDA was added and reacted for 1 hour to obtain a polyamic acid solution. In addition, 15g was taken from this polyamic-acid solution, and it apply | coated to the glass plate using the applicator, and after heat-drying for 20 minutes at 100 degreeC, the gel film was peeled from the glass plate. The ends of the gel film were pinned and biaxially stretched in the MD direction and the TD direction at the stretch ratios shown in Table 1. Then, after heating and drying at 200 ° C. for 20 minutes, 300 ° C. for 20 minutes, and subsequently at 400 ° C. for 20 minutes, pinning was removed to obtain a polyimide film having a thickness of about 30 μm. Each characteristic of this film was evaluated, and the results are shown in Table 1.

(実施例2)
実施例1と同様の手順で、芳香族ジアミン成分および芳香族テトラカルボン酸成分を表1に示すモル比、添加順、延伸比でそれぞれポリアミド酸を重合、ポリイミドフィルムを作製、各特性評価を行い、表1にその結果を示した。なお、各成分モル比は、全芳香族ジアミン成分中および全芳香族テトラカルボン酸成分中のモル比とする。
(Example 2)
In the same procedure as in Example 1, the aromatic diamine component and the aromatic tetracarboxylic acid component were polymerized with polyamic acid in the molar ratio, the order of addition, and the stretch ratio shown in Table 1, respectively, and a polyimide film was prepared, and each characteristic was evaluated. Table 1 shows the results. In addition, let each component molar ratio be the molar ratio in a wholly aromatic diamine component and a wholly aromatic tetracarboxylic acid component.

(比較例1〜3)
実施例1と同様の手順で、芳香族ジアミン成分および芳香族テトラカルボン酸成分を表1に示すモル比、添加順、延伸比でそれぞれポリアミド酸組成物を重合、ポリイミドフィルムを作製、各特性評価を行い、表1にその結果を示した。なお、各成分モル比は、全芳香族ジアミン成分中および全芳香族テトラカルボン酸成分中のモル比とした。
(Comparative Examples 1-3)
In the same procedure as in Example 1, the aromatic diamine component and the aromatic tetracarboxylic acid component were polymerized with the polyamic acid composition in the molar ratio, the order of addition, and the stretch ratio shown in Table 1, respectively, and a polyimide film was prepared. Table 1 shows the results. In addition, each component molar ratio was made into the molar ratio in a wholly aromatic diamine component and a wholly aromatic tetracarboxylic acid component.

(比較例4)
DMAc239.1gを用い、ここにPDA1.870g(0.0173モル)とPMDA3.659g(0.0168モル)を投入し、常温常圧中で1時間反応させた。次にここにODA25.398g(0.1268モル)を投入し均一になるまで撹拌した後、BPDA8.481g(0.0288モル)を添加し、1時間反応させた。続いてここにPMDA21.491g(0.0985モル)を添加してさらに1時間反応させポリアミド酸溶液を得た。尚この重合で各原料の添加モル比は、表2に示す割合で行い、このポリアミド酸溶液から厚さ約25μmのポリイミドフィルムを得た。このフィルムの各特性の評価を行い、表2に示した。
(Comparative Example 4)
239.1 g of DMAc was used, and 1.870 g (0.0173 mol) of PDA and 3.659 g (0.0168 mol) of PMDA were added thereto and reacted at room temperature and normal pressure for 1 hour. Next, ODA25.398g (0.1268mol) was thrown here and it stirred until it became uniform, Then, BPDA8.481g (0.0288mol) was added, and it was made to react for 1 hour. Subsequently, 21.491 g (0.0985 mol) of PMDA was added thereto, and the mixture was further reacted for 1 hour to obtain a polyamic acid solution. In this polymerization, the addition molar ratio of each raw material was carried out at the ratio shown in Table 2, and a polyimide film having a thickness of about 25 μm was obtained from this polyamic acid solution. The properties of this film were evaluated and are shown in Table 2.

(比較例5)
実施例1と同様の原料で、ただし、PDA3.27g(30.2mmol)とN,N−ジメチルアセトアミド223.58gとを入れ、PMDA6.54g(30.0mmol)を数回に分けて投入し窒素雰囲気下、室温で1時間撹拌した。次に、これにODA24.25g(121.1mmol)を入れ、30分攪拌した後、BPDA、1.34g(4.5mmol)を数回に分けて投入し、さらに30分攪拌した後、PMDA、24.51g(112.4mmol)を数回に分けて投入した。1時間撹拌した後、PMDAのN,N’−ジメチルアセトアミド溶液(6重量%)12.68gを30分かけて滴下し、さらに1時間撹拌した。得られたポリアミド酸組成物から、延伸を行わず実施例1と同様の方法を用いて、ポリイミドフィルム(平均膜厚30μm)を得た。
(Comparative Example 5)
The same raw materials as in Example 1, except that 3.27 g (30.2 mmol) of PDA and 223.58 g of N, N-dimethylacetamide were added, and 6.54 g (30.0 mmol) of PMDA was added in several portions. Stir for 1 hour at room temperature under atmosphere. Next, 24.25 g (121.1 mmol) of ODA was added to this and stirred for 30 minutes, and then BPDA and 1.34 g (4.5 mmol) were added in several portions, and after stirring for another 30 minutes, PMDA, 24.51 g (112.4 mmol) was added in several portions. After stirring for 1 hour, 12.68 g of an N, N′-dimethylacetamide solution (6 wt%) of PMDA was added dropwise over 30 minutes, and the mixture was further stirred for 1 hour. From the obtained polyamic acid composition, a polyimide film (average film thickness 30 μm) was obtained using the same method as in Example 1 without stretching.

(比較例6)
比較例7と同様に、ただし表2に示すモノマーモル比でポリアミド酸組成物を重合した。得られたポリアミド酸組成物から、比較例7と同様にポリイミドフイルム(平均膜厚30μm)を得た。
(Comparative Example 6)
Similar to Comparative Example 7, except that the polyamic acid composition was polymerized at the monomer molar ratio shown in Table 2. From the obtained polyamic acid composition, a polyimide film (average film thickness 30 μm) was obtained in the same manner as in Comparative Example 7.

得られたポリイミドフィルムについて、ヤング率、線膨張係数、およびガラス転移温度を測定した結果を表2に示した。   The obtained polyimide film was measured for Young's modulus, linear expansion coefficient, and glass transition temperature. Table 2 shows the results.

本発明のポリイミドフィルムは、COF用途に対して適切な弾性と柔軟性、高温域においても銅箔と同等の熱膨張性などの優れた物性を有し、さらに低いTgをもつBPDA−ODAブロック成分が少なく、350℃以上のTgを有するため、高温熱処理によるフィルムの軟化を軽減することができる。   The polyimide film of the present invention has a suitable BPDA-ODA block component having excellent physical properties such as elasticity and flexibility suitable for COF applications, thermal expansion equivalent to copper foil even in a high temperature range, and having a lower Tg. Therefore, the film has a Tg of 350 ° C. or higher, so that softening of the film due to high-temperature heat treatment can be reduced.

Claims (7)

パラフェニレンジアミン:50mol%超〜90mol%以下および
4,4´−ジアミノジフェニルエーテル:50mol%未満〜10mol%以上からなるジアミン成分ならびに
3,3´,4,4´−ビフェニルテトラカルボン酸二無水物:45〜87mol%および
ピロメリット酸二無水物:55〜13mol%からなるテトラカルボン酸成分からなるポリアミド酸組成物であって、
前記パラフェニレンジアミンと前記3,3´,4,4´−ビフェニルテトラカルボン酸二無水物の共重合体からなるブロック成分と
前記4,4´−ジアミノジフェニルエーテルと前記ピロメリット酸二無水物の共重合体からなるブロック成分とを含むことを特徴とするポリアミド酸組成物。
Paraphenylenediamine: more than 50 mol% to 90 mol% or less and 4,4′-diaminodiphenyl ether: a diamine component consisting of less than 50 mol% to 10 mol% or more and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride: A polyamic acid composition comprising a tetracarboxylic acid component comprising 45 to 87 mol% and pyromellitic dianhydride: 55 to 13 mol%,
A block component composed of a copolymer of the paraphenylenediamine and the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, a co-polymer of the 4,4′-diaminodiphenyl ether and the pyromellitic dianhydride. A polyamic acid composition comprising a block component made of a polymer.
請求項1に記載のポリアミド酸組成物が硬化されてなるポリイミド。   A polyimide obtained by curing the polyamic acid composition according to claim 1. 請求項2に記載のポリイミドがフィルムであるポリイミド。   The polyimide whose polyimide of Claim 2 is a film. 400℃から50℃への降温過程における熱膨張率が−18〜−25ppm/℃、
ガラス転移温度が350℃以上であり、
引張弾性率が5.8GPa以下である請求項2または3に記載のポリイミド。
The coefficient of thermal expansion in the temperature lowering process from 400 ° C. to 50 ° C. is −18 to −25 ppm / ° C.
The glass transition temperature is 350 ° C. or higher,
The polyimide according to claim 2 or 3, wherein the tensile elastic modulus is 5.8 GPa or less.
請求項1に記載のポリアミド酸組成物の製造方法であって、
前記パラフェニレンジアミン100mol%に対して前記3,3´,4,4´−ビフェニルテトラカルボン酸二無水物が90〜100mol%となる比率で、溶媒中で混合、反応させて、該パラフェニレンジアミンと該3,3´,4,4´−ビフェニルテトラカルボン酸二無水物のブロック共重合部分を得た後、
前記4,4´−ジアミノジフェニルエーテルを添加し、続いて前記ピロメリット酸二無水物を添加し、反応させて、該4,4´−ジアミノジフェニルエーテルと該ピロメリット酸二無水物のブロック共重合部分を得ることを特徴とするポリアミド酸組成物の製造方法。
A method for producing the polyamic acid composition according to claim 1,
The 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is mixed in a solvent at a ratio of 90 to 100 mol% with respect to 100 mol% of the paraphenylenediamine, and the paraphenylenediamine is reacted. And a block copolymerized part of the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride,
The 4,4'-diaminodiphenyl ether is added, and then the pyromellitic dianhydride is added and reacted to cause a block copolymer part of the 4,4'-diaminodiphenyl ether and the pyromellitic dianhydride. A process for producing a polyamic acid composition, characterized in that
請求項5で製造されたポリアミド酸組成物を硬化させて、ポリイミドを得ることを特徴とするポリイミドの製造方法。   A method for producing a polyimide, comprising: curing the polyamic acid composition produced in claim 5 to obtain a polyimide. 請求項5で製造されたポリアミド酸組成物を基板に塗布後、乾燥してゲルフィルムを得た後、前記ゲルフィルムを加熱してポリイミドフィルムを得ることを特徴とするポリイミドフィルムの製造方法。   A method for producing a polyimide film comprising applying the polyamic acid composition produced in claim 5 to a substrate and drying to obtain a gel film, and then heating the gel film to obtain a polyimide film.
JP2011014344A 2011-01-26 2011-01-26 Polyamic acid composition, polyimide, polyimide film and method for producing them Active JP5362752B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011014344A JP5362752B2 (en) 2011-01-26 2011-01-26 Polyamic acid composition, polyimide, polyimide film and method for producing them
TW101102020A TWI439508B (en) 2011-01-26 2012-01-18 Polyamide acid composition, polyimide and polyimide film, and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011014344A JP5362752B2 (en) 2011-01-26 2011-01-26 Polyamic acid composition, polyimide, polyimide film and method for producing them

Publications (2)

Publication Number Publication Date
JP2012153806A JP2012153806A (en) 2012-08-16
JP5362752B2 true JP5362752B2 (en) 2013-12-11

Family

ID=46835879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011014344A Active JP5362752B2 (en) 2011-01-26 2011-01-26 Polyamic acid composition, polyimide, polyimide film and method for producing them

Country Status (2)

Country Link
JP (1) JP5362752B2 (en)
TW (1) TWI439508B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510552B (en) 2014-10-28 2015-12-01 Taiflex Scient Co Ltd Polyimide polymer, polyimide film, and flexible copper-coated laminate
CN106256542B (en) * 2015-06-17 2019-03-26 长兴材料工业股份有限公司 Polyimide resin and metal-coated laminate comprising same
TWI792818B (en) * 2021-12-29 2023-02-11 達邁科技股份有限公司 Alkali-resistant black matte polyimide film
CN115626987A (en) * 2022-09-19 2023-01-20 浙江中科玖源新材料有限公司 Wholly aromatic polyamic acid and wholly aromatic polyimide film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859171A (en) * 1997-05-21 1999-01-12 Dupont Toray Polyimide copolymer, polyimide copolymer resin molded products and their preparation
JP4009918B2 (en) * 1997-07-18 2007-11-21 東レ・デュポン株式会社 Polyimide film, method for producing the same, and metal laminate using the same
JP5374817B2 (en) * 2005-11-16 2013-12-25 東レ・デュポン株式会社 Polyimide film and method for producing the same
EP2502280B1 (en) * 2009-11-20 2014-03-05 E. I. du Pont de Nemours and Company Assemblies comprising a polyimide film and an electrode, and methods relating thereto

Also Published As

Publication number Publication date
JP2012153806A (en) 2012-08-16
TWI439508B (en) 2014-06-01
TW201231555A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
CN111491988B (en) Polyimide film for preparing flexible copper foil laminated board and flexible copper foil laminated board comprising same
CN111295411B (en) Polyimide film with improved surface quality and method for preparing same
JPWO2009019968A1 (en) Multilayer polyimide film, laminate and metal-clad laminate
JP2006270029A (en) Laminate for wiring board
EP1182222B1 (en) Polyimide film, method of manufacture, and metal interconnect board with polyimide film substrate
CN114651036A (en) Polyimide film having improved dimensional stability and method for preparing the same
JP5362752B2 (en) Polyamic acid composition, polyimide, polyimide film and method for producing them
JP2021160148A (en) Resin film, metal-clad laminate and circuit board
JP5254752B2 (en) Multilayer polyimide film
JP4665373B2 (en) Polyimide film
JP4426774B2 (en) Thermosetting resin composition, laminated body using the same, and circuit board
JP4009918B2 (en) Polyimide film, method for producing the same, and metal laminate using the same
KR102141891B1 (en) Polyimide Film for Preparing Flexible Copper Clad Laminate And Flexible Copper Clad Laminate Comprising the Same
JP2009028993A (en) Laminate for wiring substrate
JP4901509B2 (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film
KR20230117670A (en) Metal clad laminate and circuit board
JP4974068B2 (en) Polyimide film, method for producing the same, and flexible circuit board
JP2008303372A (en) Polyimide precursor having asymmetric structure, polyimide, and their production methods
JP6522395B2 (en) Polyimide film, flexible metal-clad laminate, and method of manufacturing flexible printed wiring board
JP2006348086A (en) Thermosetting resin composition and its utilization
JP2006117848A (en) Thermosetting resin composition and its use
JP4401893B2 (en) Polyimide precursor resin composition
JP2007043023A (en) Resin composition for coverlay and its utilization
JP2006116738A (en) Adhesive laminated film
JP2019214642A (en) Polyimide film for coverlay film, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130904

R150 Certificate of patent or registration of utility model

Ref document number: 5362752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250