JP6522395B2 - Polyimide film, flexible metal-clad laminate, and method of manufacturing flexible printed wiring board - Google Patents

Polyimide film, flexible metal-clad laminate, and method of manufacturing flexible printed wiring board Download PDF

Info

Publication number
JP6522395B2
JP6522395B2 JP2015074448A JP2015074448A JP6522395B2 JP 6522395 B2 JP6522395 B2 JP 6522395B2 JP 2015074448 A JP2015074448 A JP 2015074448A JP 2015074448 A JP2015074448 A JP 2015074448A JP 6522395 B2 JP6522395 B2 JP 6522395B2
Authority
JP
Japan
Prior art keywords
bis
clad laminate
aminophenoxy
polyimide film
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015074448A
Other languages
Japanese (ja)
Other versions
JP2016193543A (en
Inventor
誠二 細貝
誠二 細貝
裕之 後
裕之 後
隼平 齋藤
隼平 齋藤
小野 和宏
和宏 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2015074448A priority Critical patent/JP6522395B2/en
Publication of JP2016193543A publication Critical patent/JP2016193543A/en
Application granted granted Critical
Publication of JP6522395B2 publication Critical patent/JP6522395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、フレキシブル金属張積層板をロールツーロールで連続的に搬送しながら回路を形成する工程で発生するクラックを抑制することができるポリイミドフィルム、ポリイミドフィルムと金属箔を有するフレキシブル金属張積層板、およびフレキシブルプリント配線板の製造方法に関するものである。   The present invention is a polyimide film capable of suppressing a crack generated in a process of forming a circuit while continuously conveying a flexible metal-clad laminate by roll-to-roll, a flexible metal-clad laminate having a polyimide film and a metal foil. And a method of manufacturing a flexible printed wiring board.

近年、電子機器の高性能化、高機能化、小型化が急速に進んでおり、これに伴って電子機器に用いられる電子部品に対しても小型化、薄型化の要請が高まっている。更に、コストダウン化も進み、フレキシブルプリント配線板(以下、FPCともいう)の製造工程は従来のバッチ式からロールツーロール式の加工方法へと変化しつつある。   2. Description of the Related Art In recent years, high performance, high functionality, and miniaturization of electronic devices have rapidly progressed, and along with this, demands for miniaturization and thinning of electronic components used in electronic devices are increasing. Furthermore, cost reduction is progressing, and the manufacturing process of a flexible printed wiring board (hereinafter, also referred to as FPC) is changing from the conventional batch type to a roll-to-roll type processing method.

具体的には、従来のFPCの製造工程は、現像工程、エッチング処理工程、レジスト剥離工程といった各工程をバッチ式で行っていた。一方、主に現像工程、エッチング処理工程、レジスト剥離工程の3工程をロールツーロール式で連続的に行うことにより、高生産性と人員の削減の両方が可能となり、コストダウンが実現できる。
バッチ式のFPC製造工程は、各工程ごとに細かい条件設定が可能であるというメリットがある一方で、手間がかかる。ロールツーロール式では、コストダウンが見込める一方で、一つの工程の処理時間が長くなると、自ずと連続的に続く工程全体の処理時間も長くなる等、バッチ式に対して小回りが利きづらく、結果としてフレキシブル金属張積層板にかかる熱的な負担も大きくなる。また、フレキシブル金属張積層板の基材の搬送時にシワを発生させないために基材にある一定以上の張力をかける必要があるなど、バッチ式に比べてロールツーロール式のほうが基材への機械的な負担が大きくなるケースがあり、バッチ式のFPC製造工程では問題とはならなかった新たな課題、すなわち、ロールツーロール式のFPC製造工程で基材のポリイミドフィルムにクラックが発生するという問題が発生する。
Specifically, in the conventional FPC manufacturing process, each process such as a developing process, an etching process, and a resist peeling process is performed in a batch system. On the other hand, by performing the three processes of the developing process, the etching process, and the resist stripping process continuously in a roll-to-roll system, both high productivity and personnel reduction can be realized, and cost reduction can be realized.
While the batch-type FPC manufacturing process has an advantage that fine conditions can be set in each process, it takes time and effort. In roll-to-roll type, while cost reduction can be expected, if the processing time of one process becomes long, the processing time of the whole of the continuously following process naturally becomes long, etc. The thermal burden on the flexible metal-clad laminate also increases. In addition, it is necessary to apply a certain level of tension to the substrate to avoid wrinkles during conveyance of the substrate of the flexible metal-clad laminate, so that the roll-to-roll system is a more machine-friendly machine than the batch system. In some cases, there is a case where the mechanical load is increased, and a new problem that did not become a problem in the batch-type FPC manufacturing process, that is, a problem that a crack occurs in the polyimide film of the substrate in the roll-to-roll FPC manufacturing process Occurs.

従来、現像・エッチング処理・レジスト剥離工程で使用するアルカリ溶液に対する耐性を制御したポリイミド(例えば、特許文献1、2)については報告がなされている。しかし、これらの材料では、従来のFPC製造工程においては問題にならずとも、上述のようなロールツーロール式により連続的にFPCを製造する工程に耐えるには不十分であり、このような工程を経てもクラックが発生しないようなポリイミド材料は、これまで提供されていなかった。   Conventionally, reports have been made on polyimides (for example, Patent Documents 1 and 2) in which the resistance to an alkaline solution used in the development, etching treatment, and resist stripping steps is controlled. However, even if these materials do not pose a problem in the conventional FPC manufacturing process, they are insufficient to withstand the process of continuously manufacturing the FPC by the roll-to-roll method as described above, and such a process Polyimide materials have not been provided so far that cracks do not occur even after passing through.

特開平06−120659号公報Unexamined-Japanese-Patent No. 06-120659 gazette 特開2012−186377号公報JP, 2012-186377, A

本発明では、上記に鑑みてなされたものであって、その目的は、ポリイミドフィルムに金属箔を設けてフレキシブル金属張積層板とし、さらにロールツーロール式で連続的にフレキシブルプリント配線板を製造する際に、クラックを抑制することができるようなポリイミドフィルムを提供することにある。本発明の別の目的は、ロールツーロール式で連続的にフレキシブルプリント配線板版を製造する工程において、クラックを抑制することができるようなフレキシブル金属張積層板を提供することにある。   In the present invention, in view of the above, the object of the present invention is to provide a metal foil on a polyimide film to form a flexible metal-clad laminate and to manufacture a flexible printed wiring board continuously by roll-to-roll method. It is an object of the present invention to provide a polyimide film capable of suppressing a crack. Another object of the present invention is to provide a flexible metal-clad laminate in which cracks can be suppressed in the process of continuously manufacturing a flexible printed wiring board in a roll-to-roll system.

本発明者は、以下の新規なポリイミドフィルム、フレキシブル金属張積層体、およびフレキシブル回路基板の製造方法により上記課題を解決しうる。
1) 少なくとも一層のポリイミド樹脂層を有する連続的に生産される長尺のポリイミドフィルムであって、フィルムの両端部および中央部の3点において、下記シェイキングテストを行い、クラックが発生するまでの時間ST(秒)を測定したときに、ST≧900秒以上であることを特徴とするポリイミドフィルム。
<シェイキングテスト>
6.0cm×5.5cm角のポリイミドフィルムを切り取り、その両面に12μmの厚みを有する銅箔を積層して両面に銅箔を有する銅張積層板を得、得られた銅張積層板の銅層の一部を格子状にエッチングした後、23±2℃に保たれた濃度4%の水酸化ナトリウム水溶液の入った容器に入れ230rpmの振とう速度で振とうしてクラックが入る時間(秒)を測定する。
2) 前記ポリイミドフィルムは、熱可塑性ポリイミド樹脂層と非熱可塑性ポリイミド樹脂層を有することを特徴とする1)記載のポリイミドフィルム。
3) 前記ポリイミドフィルムは、非熱可塑性ポリイミド樹脂層の両面に熱可塑性ポリイミド樹脂層を有することを特徴とする2)記載のポリイミドフィルム。
4) 前記ポリイミドフィルムは、幅が25cm以上であることを特徴とする1)〜3)のいずれか1項に記載のポリイミドフィルム。
5) 前記ポリイミドフィルムは、長手方向の長さが200m以上であることを特徴とする1)〜4)のいずれか1項に記載のポリイミドフィルム。
6) 少なくとも一層のポリイミド樹脂層を有するポリイミドフィルムと金属箔を有する、連続的に生産される長尺のフレキシブル金属張積層板であって、フレキシブル金属張積層板の両端部および中央部の3点において、下記シェイキングテストを行い、クラックが発生するまでの時間ST(秒)を測定したときに、ST≧900秒以上であるフレキシブル金属張積層板。
<シェイキングテスト>
6.0cm×5.5cm角のフレキシブル金属張積層板を切り取り、その金属箔の一部を格子状にエッチングした後、23±2℃に保たれた濃度4%の水酸化ナトリウム水溶液の入った容器に入れ230rpmの振とう速度で振とうしてクラックが入る時間(秒)を測定する。
7) 前記少なくとも一層のポリイミド樹脂層を有するポリイミドフィルムは、熱可塑性ポリイミド樹脂層と非熱可塑性ポリイミド樹脂層を有することを特徴とする6)記載のフレキシブル金属張積層板。
8) 前記少なくとも一層のポリイミド樹脂層を有するポリイミドフィルムは、非熱可塑性ポリイミド樹脂層の両面に熱可塑性ポリイミド樹脂層を有することを特徴とする7)記載のフレキシブル金属張積層板。
9) 前記フレキシブル金属張積層板の幅が25cm以上であることを特徴とする6)〜8)のいずれか1項に記載のフレキシブル金属張積層板。
10) 前記フレキシブル金属張積層板の長手方向の長さが200m以上であることを特徴とする6)〜9)のいずれか1項に記載のフレキシブル金属張積層板。
11) 前記フレキシブル金属張積層板は、ポリイミド樹脂層と金属箔を熱ラミネートして製造されることを特徴とする6)〜10)のいずれか1項に記載のフレキシブル金属張積層板。
12) 前記フレキシブル金属張積層板は、銅箔にポリイミドまたはポリアミック酸の少なくとも一方をキャストする工程を含む工程によって製造されることを特徴とする6)〜11)のいずれか1項に記載のフレキシブル金属張積層板。
13) 6)〜12)のいずれか1項に記載のフレキシブル金属張積層板を用意する工程、前記フレキシブル金属張積層板をロールツーロールで連続的に搬送しながらアルカリ存在下に回路を形成する工程、形成された回路基板を切りとる工程を含むフレキシブルプリント配線板の製造方法。
The inventors of the present invention can solve the above problems by the following novel polyimide film, flexible metal-clad laminate, and method of manufacturing a flexible circuit board.
1) A continuously produced long polyimide film having at least one polyimide resin layer, which is subjected to the following shaking test at three points on both ends and the central part of the film, and time taken for generation of a crack A polyimide film characterized by ST ≧ 900 seconds or more when ST (seconds) is measured.
<Shaking test>
A 6.0 cm × 5.5 cm square polyimide film is cut out, and a copper foil having a thickness of 12 μm is laminated on both sides thereof to obtain a copper clad laminate having copper foils on both sides, and copper of the obtained copper clad laminate After etching a part of the layer in a grid, put it in a container containing 4% aqueous sodium hydroxide solution kept at 23 ± 2 ° C and shake it at a shaking speed of 230 rpm for the time to crack (seconds Measure).
2) The polyimide film according to 1), wherein the polyimide film has a thermoplastic polyimide resin layer and a non-thermoplastic polyimide resin layer.
3) The polyimide film according to 2), wherein the polyimide film has a thermoplastic polyimide resin layer on both sides of the non-thermoplastic polyimide resin layer.
4) The said polyimide film is 25 cm or more in width, The polyimide film of any one of 1)-3) characterized by the above-mentioned.
5) The polyimide film according to any one of 1) to 4), wherein the length of the polyimide film in the longitudinal direction is 200 m or more.
6) A continuously produced long flexible metal-clad laminate having a polyimide film having at least one polyimide resin layer and a metal foil, which comprises three points at both ends and a central portion of the flexible metal-clad laminate The flexible metal-clad laminate in which ST 900 900 seconds or more when the following shaking test is performed to measure the time ST (seconds) until a crack occurs.
<Shaking test>
A 6.0 cm x 5.5 cm square flexible metal-clad laminate was cut out, a part of the metal foil was etched in a grid, and then a 4% aqueous sodium hydroxide solution kept at 23 ± 2 ° C was added. Place in a container and shake at a shaking speed of 230 rpm to measure the time (seconds) for cracking.
7) The flexible metal-clad laminate according to 6), wherein the polyimide film having at least one polyimide resin layer has a thermoplastic polyimide resin layer and a non-thermoplastic polyimide resin layer.
8) The flexible metal-clad laminate according to 7), wherein the polyimide film having at least one polyimide resin layer has a thermoplastic polyimide resin layer on both sides of a non-thermoplastic polyimide resin layer.
9) The width of the flexible metal-clad laminate is 25 cm or more, The flexible metal-clad laminate according to any one of 6) to 8).
10) The length of the longitudinal direction of the flexible metal-clad laminate is 200 m or more, The flexible metal-clad laminate according to any one of 6) to 9).
11) The flexible metal-clad laminate according to any one of 6) to 10), wherein the flexible metal-clad laminate is produced by thermally laminating a polyimide resin layer and a metal foil.
12) The flexible metal-clad laminate according to any one of 6) to 11), which is manufactured by a process including a process of casting at least one of polyimide and polyamic acid on copper foil. Metal-clad laminate.
13) A step of preparing the flexible metal-clad laminate according to any one of 6) to 12), wherein the flexible metal-clad laminate is continuously transported by roll-to-roll to form a circuit in the presence of alkali A manufacturing method of a flexible printed wiring board including a process and a process of cutting off a formed circuit board.

本発明により得られるポリイミドフィルムおよびフレキシブル金属張積層板はFPCのロールツーロール式の連続的製造工程においてクラックの発生を抑えることが出来る。   The polyimide film and the flexible metal-clad laminate obtained according to the present invention can suppress the occurrence of cracks in the roll-to-roll continuous manufacturing process of the FPC.

本発明のシェイキングテストで使用する試験片を示す図である。It is a figure which shows the test piece used by the shaking test of this invention.

本発明の実施の形態について以下に説明するが、本発明はこれに限定されるものではない。なお、本明細書において特記しない限り、数値範囲を表す「A〜B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」をそれぞれ意味する。   The embodiments of the present invention will be described below, but the present invention is not limited thereto. In the present specification, unless otherwise specified, “A to B” representing a numerical range means “more than A (including A and greater than A) B or less (including B and less than B)”.

本発明のポリイミドフィルムは、少なくとも一層のポリイミド樹脂層を有する連続的に生産される長尺のポリイミドフィルムであって、フィルムの両端部および中央部の3点において、シェイキングテストを行い、クラックが発生するまでの時間STを測定したときに、ST≧900秒以上であることを特徴とする。以下に、本発明における、連続的に生産される長尺のポリイミドフィルムについて説明する。   The polyimide film of the present invention is a continuously produced long polyimide film having at least one polyimide resin layer, which is subjected to a shaking test at three points on both ends and the central part of the film to generate cracks. When measuring the time ST until it does, it is characterized by ST 900 900 seconds or more. Hereinafter, the continuously produced long polyimide film in the present invention will be described.

FPCを連続的に製造する工程では、幅広・長尺状のフレキシブル金属張積層板を用いて、主に現像工程、エッチング処理工程、レジスト剥離工程の3工程をロールツーロール式で連続的に行う。   In the process of manufacturing FPC continuously, using the wide and long flexible metal-clad laminate, the roll-to-roll process is continuously performed mainly for the developing process, the etching process and the resist stripping process. .

現像工程とは、露光工程にて生成した潜像が、現像液に対してネガタイプではレジストが硬化して不溶性となり、ポジタイプでは可溶性となっており、現像はこの未硬化部、可溶部を溶解除去する工程となる。レジストの種類により現像液は異なるが、一般的には炭酸ナトリウム系のアルカリ水溶液を使用している。現像作業は液をスプレー噴射して行う。スプレーノズルは左右に振るなどしてレジスト表面に均一に当てる必要がある。   In the development process, the latent image generated in the exposure process hardens and becomes insoluble in the negative type resist, and becomes soluble in the positive type in the developer, and this development dissolves the uncured and soluble parts. It becomes a process to remove. Although the developing solution differs depending on the type of resist, a sodium carbonate-based alkaline aqueous solution is generally used. The development work is carried out by spraying the liquid. The spray nozzle needs to be uniformly applied to the resist surface by swinging left and right.

エッチング工程とは、現像工程によって露出したレジストの無い金属部分を化学的に溶解し、導体パターンを形成する工程である。エッチング液を回路基板の上下からスプレー噴射することにより、金属を溶解するのが一般的である。エッチング液として、主に塩化鉄、塩化銅、アルカリ溶液が使用される。   The etching step is a step of chemically dissolving the resist-free metal portion exposed in the developing step to form a conductor pattern. The metal is generally dissolved by spraying the etching solution from above and below the circuit board. Iron chloride, copper chloride and an alkali solution are mainly used as an etching solution.

レジスト剥離工程とは、エッチングを完了し導体パターンが完成した表面上のレジストは不要なので、これを剥離し、金属箔のパターンとする工程である。剥離作業はエッチング完了後、水洗いをしてから行う。剥離も現像、エッチングと同様に剥離液のスプレー噴射によって行う。剥離液はアルカリ水溶液を使用する。   The resist removing step is a step of removing the resist on the surface on which the etching is completed and the conductor pattern is completed, so that the resist is removed to form a metal foil pattern. After the etching is completed, the peeling operation is performed after washing with water. Peeling is also performed by spray injection of a peeling solution as in the case of development and etching. The stripping solution uses an alkaline aqueous solution.

このように現像工程、エッチング工程、レジスト剥離工程の3工程中の少なくとも2工程はアルカリ溶液が用いられる。   Thus, an alkaline solution is used in at least two of the three steps of the development step, the etching step, and the resist stripping step.

ポリイミドは一般にアルカリ溶液と接触することによって、加水分解反応を起こすことが知られている。また基材には長手方向に張力がかかっており、さらに各工程での薬液のスプレー噴射により回路基板に対しては回路基板の厚み方向に繰返し応力がかかる状態となる。   The polyimide is generally known to cause a hydrolysis reaction by contacting with an alkaline solution. In addition, tension is applied to the base in the longitudinal direction, and the spray injection of the chemical solution in each process causes the circuit board to be repeatedly stressed in the thickness direction of the circuit board.

これらのことから、FPCをロールツーロール式で連続的に製造する工程においてクラックが発生する原因は、ABS樹脂(アクリロニトリル・ブタジエン・スチレン樹脂)などの射出成形体の成形時に蓄積された内部応力が、化学物質によって応力緩和し破壊に至る現象(ケミカルストレスクラック)と同じ現象ではないかと仮説を立てた。   From these things, the cause of the occurrence of cracks in the roll-to-roll process of continuously manufacturing the FPC is the internal stress accumulated during the molding of the injection-molded product such as ABS resin (acrylonitrile butadiene styrene resin). It was hypothesized that it might be the same phenomenon as the phenomenon (chemical stress crack) which leads to stress relaxation and failure by chemical substances.

ケミカルストレスクラックは、樹脂(材料)の引張強度以下の引張応力で発生する、典型的な脆性破壊であり、成形品において引張応力発生箇所(荷重がかかっている箇所)に薬品が付着・接触した場合、時間経過を伴って薬品と応力との相乗作用にて割れが起る現象である。割れ面は滑らかで、顕著な場合、鏡面状態を示す。発生メカニズムは引張応力存在下(荷重がかかっている状態)で分子間に隙間が生じ、この隙間に薬品が浸透し、分子間凝集力が低下し、局部的に分子のすり抜けが起ることにより歪みが緩和しクラックが発生すると考えられる。   Chemical stress cracking is a typical brittle fracture that occurs with a tensile stress equal to or less than the tensile strength of the resin (material), and a chemical adheres to or comes into contact with a location where a tensile stress occurs (a location under load) in a molded product. In the case, it is a phenomenon in which a crack occurs due to the synergistic action of a drug and stress with the passage of time. The cracked surface is smooth and exhibits a mirror-like state in the remarkable case. The generation mechanism is that a gap is created between molecules in the presence of tensile stress (under load), the drug penetrates into the gap, the intermolecular cohesive force decreases, and the molecule slips off locally. It is believed that the strain is relaxed and a crack occurs.

このような仮説をもとに、実際にロールツーロール式で連続的にFPCを製造する工程において様々な条件変更を行い、この工程中にクラックが発生する要因を探る実験を行った結果、下記のようなことが分かった。
(A)回路基板を長手方向に張力をかけながら搬送した状態で、水をシャワーリングしてもクラックは生じない。
(B)回路基板を停止した状態で、薬液をシャワーリングしてもクラックは生じない。
(C)回路基板を長手方向に張力をかけながら搬送した状態で、薬液をシャワーリングするとクラックが生じる。
(D)クラックが生じる箇所は金属箔とフィルムの境界面で、金属箔の形状が丸みを帯びたものよりも鋭角に近いほうがクラックが入りやすい。
(E)シャワーリング(薬液)の温度が高いほど回路基板にクラックが入りやすい。
Based on such a hypothesis, various conditions are changed in the process of actually manufacturing the FPC continuously in a roll-to-roll system, and an experiment was conducted to find out the cause of the occurrence of cracks during this process. I found something like
(A) In the state where the circuit board is transported while being tensioned in the longitudinal direction, cracks do not occur even if water is showered.
(B) In the state where the circuit board is stopped, no cracks occur even if the chemical solution is showered.
(C) Cracking occurs when the chemical solution is showered while the circuit board is transported while being tensioned in the longitudinal direction.
(D) The place where the crack occurs is the interface between the metal foil and the film, and the crack is more likely to occur when the shape of the metal foil is closer to an acute angle than the rounded one.
(E) As the temperature of the shower ring (chemical solution) is higher, the circuit board is more likely to crack.

(A)〜(C)の結果から、ポリイミドという樹脂に応力(引張強度以下)がかかった状態で、かつ薬液と樹脂が接触したときにのみクラックが発生することを突き止め、仮説が正しいことがわかった。   From the results of (A) to (C), it was found that a crack was generated only when a chemical solution and a resin were in contact while stress (less than tensile strength) was applied to the resin called polyimide, and the hypothesis was correct all right.

(D)の結果から、回路基板に応力がかかった際に金属箔が存在する箇所とそうでない箇所で硬さの違いにより振動のしやすさが異なり、金属箔とフィルムの境界面に応力集中しやすいことが推測できる。さらに、金属箔とフィルムの境界面の中でも、金属箔の形状が鋭角に近いほうが応力集中しやすいことがわかった。   From the result of (D), when the circuit board is stressed, the ease of vibration differs depending on the difference in hardness between the place where the metal foil exists and the place where it is not, and the stress concentration at the interface between the metal foil and the film I can guess that it is easy to do. Furthermore, it has been found that, among the interface between the metal foil and the film, stress concentration is more likely to occur when the shape of the metal foil is close to an acute angle.

(E)の結果から、薬液の温度が高いほどポリイミド樹脂および薬液の分子運動性が高まり、ポリイミド樹脂に薬液がより浸透しやすくなったと推察できる。   From the result of (E), it can be inferred that the higher the temperature of the chemical solution, the higher the molecular mobility of the polyimide resin and the chemical solution, and the more easily the chemical solution penetrates into the polyimide resin.

(A)〜(E)の結果から、バッチ式に比べてロールツーロール式でクラックが発生しやすい原因は、基材に張力やスプレー圧による厚み方向への繰返し応力がかかっている状態で、薬液に曝されるためであることがわかった。   From the results of (A) to (E), the roll-to-roll type crack is more likely to occur compared to the batch type because the base material is subjected to cyclic stress in the thickness direction by tension or spray pressure, It turned out that it was because it was exposed to the chemical | medical solution.

そこで本発明者らは、鋭意検討した結果、このような考察結果を踏まえてロールツーロール式で連続的にフレキシブルプリント配線板を製造する際に、材料が経験する環境を、以下に詳述するシェイキングテストという簡易な方法により再現することを見出した。   Accordingly, as a result of intensive investigations, the present inventors will describe in detail the environment that the material experiences when manufacturing a flexible printed wiring board continuously in a roll-to-roll method based on such consideration results. I found it to be reproduced by a simple method called shaking test.

シェイキングテストの具体的な方法を説明する。6.0cm×5.5cm角のポリイミドフィルムを切り取り、その両面に12μmの厚みを有する銅箔を積層して両面に銅箔を有する銅張積層板とし、得られた銅張積層板の銅層の一部を格子状にエッチングして試験片を得た。800mLの濃度4%の水酸化ナトリウム水溶液(23±2℃)が入った容器に前記試験片を投入し、230rpmの振とう速度で、23±2℃において振とうしてクラックが入るまでの時間(秒)を測定する。このときの振とうは実工程における基材へのスプレー圧とスプレーによる基材への繰り返し応力を再現している。また、銅層の一部を格子状にエッチングすることにより、角部で応力集中が再現される。シェイキングテストは3回行い、その平均をST(秒)とする。クラックの有無は、震とうを100秒毎に止め、試験片を入れた容器ごとにライトボックスにより光を当てて、試験片に光が透過したらクラックと判断した。なお、格子状の各角部の内側の曲率半径を50μm以下とする。曲率半径が50μmよりも大きくなると、応力集中しにくくなり正確な評価ができなくなる。   Explain the specific method of shaking test. A 6.0 cm × 5.5 cm square polyimide film is cut, and a copper foil having a thickness of 12 μm is laminated on both sides thereof to form a copper clad laminate having copper foils on both sides, and the copper layer of the obtained copper clad laminate A part of the sample was etched in a grid to obtain a test piece. The test piece is placed in a container containing 800 mL of a 4% aqueous solution of sodium hydroxide (23 ± 2 ° C.), and shaking time at 230 ± 2 ° C. at a shaking speed of 230 rpm is the time to crack. Measure (seconds). The shaking at this time reproduces the spray pressure on the substrate in the actual process and the repeated stress on the substrate by the spray. In addition, stress concentration is reproduced at the corner by etching a part of the copper layer in a lattice shape. The shaking test is performed three times, and the average is ST (seconds). The presence or absence of the crack was determined to be a crack when light was applied by the light box for each container containing the test piece by stopping shaking every 100 seconds and light was transmitted to the test piece. In addition, the curvature radius of the inner side of each corner | angular part of a grid | lattice form shall be 50 micrometers or less. If the curvature radius is larger than 50 μm, stress concentration is difficult and accurate evaluation can not be performed.

ロールツーロール式で連続的にFPCを製造する工程を経てもクラックが入らない材料かどうかを確認するには、幅広かつ長尺の材料に連続的方法で金属箔を設け、得られた幅広かつ長尺のフレキシブル金属張積層板を用いてロールツーロール式で現像工程、エッチング処理工程、レジスト剥離工程の3つの工程を含むFPCの製造工程により回路を形成する作業が必要になる。しかし、この方法はコストと時間がかかるため、現実的ではない。本発明者らは、材料となる長尺フィルムまたは長尺フレキシブル金属張積層板として、その両端部および中央部から試験片を切り出し、シェイキングテストにおけるSTを測定した場合に900秒以上となっているような材料を用いれば、クラックが発生しないことを見出した。シェイキングテストは簡単かつ低コストで行うことができ、STが900秒以上となっている材料を用いることにより、きわめて簡単にクラックを発生しないフレキシブル金属張積層体を得ることができる。   In order to check whether the material will not crack even if it goes through the process of manufacturing FPC in roll-to-roll type continuously, wide and long materials are provided with metal foil in a continuous method, It is necessary to form a circuit by a manufacturing process of FPC including three steps of a roll-to-roll type developing process, an etching process and a resist peeling process using a long flexible metal-clad laminate. However, this method is not practical because it is expensive and time-consuming. The present inventors cut out a test piece from the both ends and the central part as a long film or a long flexible metal-clad laminate which is a material, and when ST in a shaking test is measured, it is 900 seconds or more. It has been found that no crack occurs if such a material is used. The shaking test can be carried out easily and at low cost, and by using a material having an ST of 900 seconds or more, it is possible to obtain a flexible metal-clad laminate which does not generate a crack very easily.

フィルムの両端部および中央部においてシェイキングテストを行ったときのポリイミドフィルムのSTが900秒以上であると、これを用いてフレキシブル金属張積層板とし、ロールツーロール式の連続的なFPC製造工程によってフレキシブル配線板を製造した場合であっても、クラックの発生が抑制されるが、好ましくは1200秒以上であり、さらに好ましくは2000秒以上である。   If the ST of the polyimide film is 900 seconds or more when the shaking test is performed at both ends and the central part of the film, it is used as a flexible metal-clad laminate using this and a roll-to-roll continuous FPC manufacturing process Even when the flexible wiring board is manufactured, the occurrence of cracks is suppressed, but preferably 1200 seconds or more, and more preferably 2000 seconds or more.

本発明のポリイミドフィルムは、上述のように連続的なFPCの製造に使用される材料となるので、幅広かつ長尺状のポリイミドフィルムである。そして、フィルムの両端および中央部の3点において、シェイキングテストを行った場合のSTが900秒以上となっているフィルムである。このようなフィルムを用いれば、連続的なFPCの工程を経ても得られるFPCにクラックが発生しないので、FPCを効率よく生産することが可能となる。   The polyimide film of the present invention is a wide and long polyimide film because it is a material used for the production of a continuous FPC as described above. The film has a ST of 900 seconds or more when a shaking test is performed at three points at both ends and the center of the film. If such a film is used, a crack does not occur in the FPC obtained even after a continuous process of the FPC, so that the FPC can be efficiently produced.

本発明のポリイミドフィルムは、非熱可塑性ポリイミド樹脂層と熱可塑性ポリイミド樹脂層を有することが好ましい。ここでいうポリイミドは、芳香族ジアミン(以下、ジアミンともいう)と芳香族テトラカルボン酸二無水物(以下、酸二無水物ともいう)を従来公知の方法で重合してポリアミック酸を生成し、これをイミド化して得られる。   The polyimide film of the present invention preferably has a non-thermoplastic polyimide resin layer and a thermoplastic polyimide resin layer. In the polyimide referred to herein, a polyamic acid is formed by polymerizing an aromatic diamine (hereinafter, also referred to as a diamine) and an aromatic tetracarboxylic acid dianhydride (hereinafter, also referred to as an acid dianhydride) by a conventionally known method It is obtained by imidizing this.

ポリイミドは芳香環あるいは芳香族複素間などの剛直な構成単位からなるため、絡み合いも少なく、一般的な高分子のように折りたたみ鎖を形成しづらい。一方でイミド環を有する分子鎖に特有な分子鎖のパッキングが起こり、その局所的な秩序性をもった分子鎖のパッキングを凝集構造と呼ぶ。そのポリイミドの凝集構造がSTの向上に関係していることを本発明で見出した。凝集構造はポリイミドフィルムの製膜条件と一次構造により、制御することが可能である。   Polyimides are composed of rigid structural units such as aromatic rings or aromatic complexes, so they are less entangled, and it is difficult to form a folded chain like a general polymer. On the other hand, packing of a molecular chain peculiar to the molecular chain having an imide ring occurs, and packing of the molecular chain having the local order is called aggregation structure. It has been found in the present invention that the aggregation structure of the polyimide is related to the improvement of ST. The aggregation structure can be controlled by the film forming conditions and the primary structure of the polyimide film.

ポリイミドの製造条件では、延伸やイミド化温度を上げることによって、分子鎖が平行に並んだ、パッキングの程度が高い凝集構造を形成することができる。ポリアミド酸溶液をイミド化触媒を用いた化学イミド化もしくは加熱処理による熱イミド化の仮定でフィルムを長手方向および幅方向の少なくともいずれか一方に、1.05倍〜1.5倍で延伸することが好ましい。長手方向および幅方向のいずれの方向にも延伸する二軸延伸が、等方性が改良されるためより好ましい。イミド化温度は高い方が良いが、500℃以上になるとポリイミドの分解が一部開始するため、500℃を超えない温度で長時間加熱することが好ましい。   Under the polyimide production conditions, by raising the stretching or imidization temperature, it is possible to form a cohesive structure in which molecular chains are arranged in parallel and the degree of packing is high. Stretching the film in the longitudinal direction and / or width direction by 1.05 times to 1.5 times under the assumption of thermal imidization by chemical imidization using a imidization catalyst or heat treatment with a polyamic acid solution Is preferred. Biaxial stretching in which the film is stretched in any of the longitudinal direction and the width direction is more preferable because isotropy is improved. The higher the imidization temperature, the better. However, since decomposition of the polyimide partially starts at 500 ° C. or higher, it is preferable to heat at a temperature not exceeding 500 ° C. for a long time.

ポリイミドの一次構造において、剛直構造と柔軟構造を適切に組み合わせることによって、分子鎖のパッキングを形成しやすくできるように分子設計する。剛直構造のモノマーは例えば、パラフェニレンジアミン(以下、PDAともいう)であるが、PDAの量が多すぎると分子鎖の剛直さゆえ、分子鎖のパッキングが起こりづらい。一方、屈曲構造のモノマーは例えば、4,4’−ジアミノジフェニルエーテル(以下、ODAともいう)、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)、オキシジフタル酸(以下、ODPAともいう)であるが、これら屈曲性を有するモノマーが多すぎると、その柔軟さゆえ分子鎖のパッキングが起こりにくくなる。したがって、剛直構造と柔軟構造を適切に組み合わせることにより、分子鎖のパッキングの程度が高い凝集構造を形成することが可能である。   In the primary structure of polyimide, molecular design is made so that packing of molecular chains can be easily formed by appropriately combining rigid structure and flexible structure. The rigid-structured monomer is, for example, para-phenylenediamine (hereinafter also referred to as PDA), but if the amount of PDA is too large, packing of the molecular chains is difficult to occur due to the rigidity of the molecular chains. On the other hand, the monomer having a bending structure is, for example, 4,4'-diaminodiphenyl ether (hereinafter also referred to as ODA), 2,2-bis [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP), oxydiphthalic acid Although it is an acid (hereinafter also referred to as ODPA), when the amount of the monomer having such flexibility is too large, packing of molecular chains becomes difficult to occur due to its flexibility. Therefore, it is possible to form an aggregate structure with a high degree of molecular chain packing by appropriately combining a rigid structure and a flexible structure.

非熱可塑性ポリイミドフィルムの製造に使用するジアミンについては特に限定されるものではないが、上記の通り、最終的に得られるポリイミドが凝集構造を形成する必要があるため、酸二無水物の構造に合わせて剛直構造と柔軟構造のジアミンを適切に使用することが好ましい。剛直構造を有するジアミンは例えば、4,4’−ジアミノ−2,2’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニルなどが挙げられる。柔軟構造を有するジアミンは例えば、4,4’−ジアミノジフェニルエーテル、2,2−ビス{4−(4−アミノフェノキシ)フェニル}プロパン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼンなどが挙げられる。   The diamine used for producing the non-thermoplastic polyimide film is not particularly limited. However, as described above, since the finally obtained polyimide needs to form a cohesive structure, it is preferable to use an acid dianhydride structure. It is preferred that diamines of rigid and flexible structures be used appropriately. The diamine having a rigid structure is, for example, 4,4'-diamino-2,2'-dimethylbiphenyl, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-3,3'- Dihydroxybiphenyl, 1,4-diaminobenzene, 1,3-diaminobenzene, 4,4'-bis (4-aminophenoxy) biphenyl and the like can be mentioned. The diamine having a flexible structure is, for example, 4,4'-diaminodiphenyl ether, 2,2-bis {4- (4-aminophenoxy) phenyl} propane, 1,3-bis (4-aminophenoxy) benzene, 1,4 -Bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene and the like.

非熱可塑性ポリイミドフィルムの製造に使用する酸二無水物についても特に限定されるものではないが、最終的に得られるポリイミドが凝集構造を形成する必要があるため、ジアミンの構造に合わせて剛直構造と柔軟構造の酸二無水物を適切に使用することが好ましい。具体的な剛直構造を有する酸二無水物としては、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物などが挙げられる。柔軟構造を有する酸二無水物は3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物などが挙げられる。   The acid dianhydride used for producing the non-thermoplastic polyimide film is not particularly limited either, but since the finally obtained polyimide needs to form a cohesive structure, it has a rigid structure according to the structure of the diamine. It is preferable to appropriately use acid dianhydride having a flexible structure. Specific examples of the acid dianhydride having a rigid structure include 3,3 ', 4,4'-biphenyltetracarboxylic acid dianhydride and pyromellitic acid dianhydride. As the acid dianhydride having a flexible structure, 3,3 ', 4,4'-benzophenonetetracarboxylic acid dianhydride, 4,4'-oxydiphthalic acid dianhydride and the like can be mentioned.

ポリイミドの前駆体であるポリアミック酸は、上記ジアミンと酸二無水物を有機溶媒中で実質的に略等モルになるように混合、反応することにより得られる。使用する有機溶媒は、ポリアミック酸を溶解する溶媒であればいかなるものも用いることができるが、アミド系溶媒すなわちN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどが好ましく、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドが特に好ましく用いられ得る。ポリアミック酸の固形分濃度は特に限定されず、5〜35重量%の範囲内であればポリイミドとした際に十分な機械強度を有するポリアミック酸が得られる。   The polyamic acid which is a precursor of polyimide is obtained by mixing and reacting the above diamine and acid dianhydride in an organic solvent so as to be substantially equimolar. As the organic solvent to be used, any solvent can be used as long as it dissolves polyamic acid, but amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like N, N-dimethylformamide and N, N-dimethylacetamide can be particularly preferably used. The solid content concentration of the polyamic acid is not particularly limited, and when it is in the range of 5 to 35% by weight, a polyamic acid having sufficient mechanical strength can be obtained when it is used as a polyimide.

原料であるジアミンと酸二無水物の添加順序についても特に限定されないが、原料の化学構造だけでなく、添加順序を制御することによっても、得られるポリイミドの特性を制御することが可能である。   The order of addition of the raw material diamine and acid dianhydride is not particularly limited, but it is possible to control the properties of the obtained polyimide not only by the chemical structure of the raw material but also by controlling the order of addition.

上記ポリアミック酸には、摺動性、熱伝導性、導電性、耐コロナ性、ループスティフネス等のフィルムの諸特性を改善する目的でフィラーを添加することもできる。フィラーとしてはいかなるものを用いても良いが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。   A filler may be added to the polyamic acid for the purpose of improving various properties of the film such as slidability, thermal conductivity, conductivity, corona resistance, loop stiffness and the like. Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.

また、得られる樹脂層全体としての特性を損なわない範囲で、エポキシ樹脂、フェノキシ樹脂などの熱硬化性樹脂、ポリエーテルケトン、ポリエーテルエーテルケトンなどの熱可塑性樹脂を混合しても良い。これら樹脂の添加方法としては、溶剤に可溶のものであれば上記ポリアミック酸に添加する方法が挙げられる。ポリイミドも可溶性のものであるなら、ポリイミド溶液に添加しても良い。溶剤に不溶のものであれば、上記ポリアミック酸を先にイミド化した後、溶融混練で複合化する方法が挙げられる。但し、得られるフレキシブル金属張積層体の半田耐熱性や加熱収縮率などが悪化する可能性があるため、本発明では溶融性のあるポリイミドは使用しないことが望ましい。従って、ポリイミドと混合する樹脂は可溶性のものを用いることが望ましい。   In addition, thermosetting resins such as epoxy resin and phenoxy resin, and thermoplastic resins such as polyether ketone and polyether ether ketone may be mixed within a range that does not impair the characteristics of the entire resin layer obtained. As a method of adding these resins, a method of adding to the above polyamic acid as long as it is soluble in a solvent can be mentioned. If the polyimide is also soluble, it may be added to the polyimide solution. As long as it is insoluble in the solvent, a method may be mentioned in which the polyamic acid is first imidized and then compounded by melt-kneading. However, it is desirable not to use a melting polyimide in the present invention, since the solder heat resistance and the heat shrinkage rate of the obtained flexible metal-clad laminate may deteriorate. Therefore, it is desirable to use a soluble resin to be mixed with the polyimide.

熱可塑性ポリイミドフィルムの製造に使用するジアミンと酸二無水物は、非熱可塑性ポリイミドフィルムに使用されるそれらと同じものが挙げられるが、熱可塑性のポリイミドとするためには、屈曲性を有するジアミンと酸二無水物とを反応させることが好ましい。屈曲性を有するジアミンの例として、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2−ビス(4−アミノフェノキシフェニル)プロパンなどが挙げられる。   Examples of the diamine and acid dianhydride used for producing the thermoplastic polyimide film include the same as those used for the non-thermoplastic polyimide film, but in order to obtain a thermoplastic polyimide, the diamine having flexibility is used. It is preferable to react with acid dianhydride. Examples of flexible diamines include 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 2,2-bis (4-aminophenoxyphenyl) Propane and the like.

熱可塑性ポリイミドフィルムの製造に使用する酸二無水物の例としては、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物などが挙げられる。   Examples of the acid dianhydride used for producing the thermoplastic polyimide film include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid dianhydride, 3,3 ′, 4, 4'-biphenyl tetracarboxylic dianhydride, 4,4'- oxydiphthalic dianhydride etc. are mentioned.

本発明のポリイミドフィルムを得るには、以下の工程
i) 有機溶剤中で芳香族ジアミンと芳香族テトラカルボン酸二無水物を反応させてポリアミック酸溶液を得る工程、
ii)上記ポリアミック酸溶液を含む製膜ドープを支持体上に流延する工程、
iii)支持体上で加熱した後、支持体からゲルフィルムを引き剥がす工程、
iv)更に加熱して、残ったアミック酸をイミド化し、かつ乾燥させる工程、
を含むことが好ましい。
In order to obtain the polyimide film of the present invention, an aromatic diamine and an aromatic tetracarboxylic acid dianhydride are reacted in an organic solvent to obtain a polyamic acid solution,
ii) casting a film forming dope containing the above polyamic acid solution on a support,
iii) peeling off the gel film from the support after heating on the support;
iv) further heating to imidize the remaining amic acid and drying it;
Is preferred.

ii)以降の工程においては、熱イミド化法と化学イミド化法に大別される。熱イミド化法は、脱水閉環剤等を使用せず、ポリアミック酸溶液を製膜ドープとして支持体に流延、加熱だけでイミド化を進める方法である。一方の化学イミド化法は、ポリアミック酸溶液に、イミド化促進剤として脱水閉環剤及び触媒の少なくともいずれかを添加したものを製膜ドープとして使用し、イミド化を促進する方法である。どちらの方法を用いても構わないが、化学イミド化法の方が生産性に優れる。   In the following steps ii), thermal imidization and chemical imidization are roughly classified. The thermal imidization method is a method in which a polyamic acid solution is cast as a film forming dope on a support without using a dehydrating ring-closing agent or the like, and the imidization is promoted only by heating. One of the chemical imidization methods is a method of promoting imidization by using, as a film-forming dope, one obtained by adding at least one of a dehydrating ring-closing agent and a catalyst as an imidization promoter to a polyamic acid solution. Either method may be used, but the chemical imidation method is more excellent in productivity.

脱水閉環剤としては、無水酢酸に代表される酸無水物が好適に用いられ得る。触媒としては、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等の三級アミンが好適に用いられ得る。   As a dehydrating ring-closing agent, an acid anhydride represented by acetic anhydride can be suitably used. As the catalyst, tertiary amines such as aliphatic tertiary amines, aromatic tertiary amines and heterocyclic tertiary amines can be suitably used.

製膜ドープを流延する支持体としては、ガラス板、アルミ箔、エンドレスステンレスベルト、ステンレスドラム等が好適に用いられ得る。最終的に得られるフィルムの厚み、生産速度に応じて加熱条件を設定し、部分的にイミド化または乾燥のいずれか一方を行った後、支持体から剥離してポリアミック酸フィルム(以下、ゲルフィルムという)を得る。   As a support which casts film forming dope, a glass plate, aluminum foil, an endless stainless steel belt, a stainless steel drum etc. may be used suitably. The heating conditions are set according to the thickness of the film finally obtained and the production rate, and after either partial imidization or drying is performed, the support is peeled off to form a polyamic acid film (hereinafter, gel film) Get).

前記ゲルフィルムの端部を固定して硬化時の収縮を回避して乾燥し、ゲルフィルムから、水、残留溶媒、イミド化促進剤を除去し、そして残ったアミド酸を完全にイミド化して、ポリイミドを含有するフィルムが得られる。加熱条件については、最終的に得られるフィルムの厚み、生産速度に応じて適宜設定すれば良い。   The end of the gel film is fixed and dried to avoid shrinkage upon curing, water, residual solvent, imidization accelerator are removed from the gel film, and the remaining amic acid is completely imidized, A film containing a polyimide is obtained. The heating conditions may be appropriately set in accordance with the thickness of the film finally obtained and the production rate.

本発明においてポリイミド樹脂層を複層設ける方法としては、上記ii)工程において複数の流路を有する共押出しダイを使用して複層の樹脂層を同時に形成しても良いし、上記i)〜iv)工程まで進めて非熱可塑性ポリイミドフィルムを一旦回収した後、その上に塗工などで新たに樹脂層を形成しても良い。イミド化には非常に高い温度が必要となるため、ポリイミド以外の樹脂層を設ける場合は、熱分解を抑えるために後者の手段を採った方が好ましい。なお、塗工により熱可塑性ポリイミドフィルムを設ける場合は、熱可塑性ポリイミドの前駆体を塗布し、その後イミド化を行ってもよいし、熱可塑性ポリイミド溶液を塗布・乾燥してもよい。   In the present invention, as a method of providing a plurality of polyimide resin layers, a resin layer of multiple layers may be simultaneously formed using a co-extrusion die having a plurality of flow paths in the above step ii). After proceeding to the iv) step and temporarily recovering the non-thermoplastic polyimide film, a resin layer may be newly formed thereon by coating or the like. Since a very high temperature is required for imidization, when providing a resin layer other than polyimide, it is preferable to adopt the latter method in order to suppress thermal decomposition. In addition, when providing a thermoplastic polyimide film by coating, the precursor of a thermoplastic polyimide may be apply | coated and imidation may be performed after that, and a thermoplastic polyimide solution may be apply | coated and dried.

また、熱可塑性ポリイミドフィルムは、上述の工程において、ポリアミック酸溶液を支持体に流延する代わりに、ポリイミド溶液を流延し、冷却することにより得てもよい。   Also, the thermoplastic polyimide film may be obtained by casting and cooling a polyimide solution instead of casting a polyamic acid solution on a support in the above-mentioned steps.

本発明に係るフレキシブル金属張積層体は、ポリイミドフィルムと金属箔から構成される。金属箔上にポリイミドを形成する手段としては、
a) 上述のようにしてポリイミドフィルムを得た後、加熱加圧により金属箔を貼り合せてフレキシブル金属張積層体を得る手段
b) 金属箔上に、ポリアミック酸を含有する有機溶剤溶液をキャストし、加熱により溶剤除去、イミド化を行ってフレキシブル金属張積層体を得る手段
c) 金属箔上に、ポリイミドを含有する溶融液をキャストし、冷却することによりフレキシブル金属張積層体を得る手段
が挙げられる。このうち、ポリイミドに溶融性を持たせると、得られるフレキシブル金属張積層板の半田耐熱性や加熱収縮率などが悪化する可能性があるため、a)もしくはb)の手段を用いることが好ましい。ポリイミドが溶剤可溶性のものであるなら、ポリアミック酸を含有する有機溶剤溶液の代わりにポリイミドを含有する有機溶剤溶液を用いても良い。a)ならびにb)の詳細について、以下説明する。
The flexible metal-clad laminate according to the present invention is composed of a polyimide film and a metal foil. As a means to form polyimide on metal foil,
a) A polyimide film is obtained as described above, and then a metal foil is attached by heating and pressing to obtain a flexible metal-clad laminate b) An organic solvent solution containing a polyamic acid is cast on the metal foil A means for obtaining a flexible metal-clad laminate by heating and removing a solvent and imidating to obtain a flexible metal-clad laminate c) A method of obtaining a flexible metal-clad laminate by casting a polyimide-containing melt on metal foil and cooling Be Among these, when the polyimide has a melting property, the solder heat resistance and the heat shrinkage rate of the obtained flexible metal-clad laminate may deteriorate, so it is preferable to use the means of a) or b). If the polyimide is solvent soluble, an organic solvent solution containing polyimide may be used instead of the organic solvent solution containing polyamic acid. The details of a) and b) will be described below.

a)の手段では、得られたポリイミドフィルムに、金属箔を加熱加圧により貼り合せる熱ラミネートにより、本発明のフレキシブル金属張積層体が得られる。金属箔を貼り合せる手段、条件については、従来公知のものを適宜選択すればよい。   In the means a), the flexible metal-clad laminate of the present invention is obtained by thermal lamination in which a metal foil is bonded to the obtained polyimide film by heating and pressing. The means and conditions for bonding metal foils may be appropriately selected from conventionally known ones.

b)の手段において、金属箔上にポリアミック酸を含有する有機溶剤溶液をキャストする手段については特に限定されず、ダイコーターやコンマコーター(登録商標)、リバースコーター、ナイフコーターなどの従来公知の手段を使用できる。溶剤除去、イミド化を行うための加熱手段についても従来公知の手段を利用可能であり、例えば熱風炉、遠赤外線炉が挙げられる。   In the means b), the means for casting the organic solvent solution containing the polyamic acid on the metal foil is not particularly limited, and conventionally known means such as die coater, comma coater (registered trademark), reverse coater, knife coater, etc. Can be used. As a heating means for removing the solvent and imidization, any means known in the art can be used, and examples thereof include a hot air furnace and a far infrared furnace.

a)の手段と同様に、化学イミド化法によって加熱時間を短縮し、生産性を向上させることが出来る。しかし、イミド化の過程で脱水閉環剤である酸無水物から酸が生成するため、金属箔の種類によっては酸化が進行してしまう場合がある。脱水閉環剤の添加については、金属箔の種類や加熱条件に応じて適宜選択することが好ましい。
ポリイミド樹脂層を複層設ける場合、もしくはポリイミド以外の樹脂層も設ける場合は、上記キャスト、加熱工程を複数回繰り返すか、共押出しや連続キャストによりキャスト層を複層形成して一度に加熱する手段が好適に用いられ得る。
Similar to the method a), the chemical imidation method can shorten the heating time and improve the productivity. However, since an acid is formed from an acid anhydride which is a dehydrating ring-closing agent in the process of imidization, oxidation may proceed depending on the type of metal foil. About addition of a dehydration ring-closing agent, it is preferable to select suitably according to the kind of metal foil, and a heating condition.
When multiple layers of polyimide resin layer are provided, or when a resin layer other than polyimide is also provided, means for repeating the above casting and heating steps multiple times or forming multiple layers of cast layers by coextrusion or continuous casting and heating at one time Can be suitably used.

b)の手段では、イミド化が完了すると同時に、本発明のフレキシブル金属張積層体が得られる。樹脂層の両面に金属箔を設ける場合、加熱加圧により反対側の樹脂層面に金属箔を貼り合わせれば良い。   In the means b), the flexible metal-clad laminate of the present invention is obtained at the same time as the imidization is completed. When metal foil is provided on both sides of the resin layer, the metal foil may be attached to the surface of the resin layer on the opposite side by heat and pressure.

金属箔は、特に限定されるものではなく、あらゆる金属箔を用いることができる。例えば、銅、ステンレス、ニッケル、アルミニウム、およびこれら金属の合金などを好適に用いることができる。また、一般的な金属張積層板では、圧延銅、電解銅といった銅が多用されるが、本発明においても好ましく用いることができる。   The metal foil is not particularly limited, and any metal foil can be used. For example, copper, stainless steel, nickel, aluminum, and alloys of these metals can be suitably used. Moreover, although copper, such as rolled copper and electrolytic copper, is used abundantly in a general metal-clad laminate, it can also be preferably used in the present invention.

また、上記金属箔は、目的に応じて表面処理、表面粗さ等種々特性を有したものを選択できる。さらに、上記金属箔の表面には、防錆層や耐熱層あるいは接着層が塗布されていてもよい。   Moreover, the said metal foil can select what had various characteristics, such as surface treatment and surface roughness, according to the objective. Furthermore, a rustproof layer, a heat resistant layer or an adhesive layer may be applied to the surface of the metal foil.

上記金属箔の厚みについては特に限定されるものではなく、その用途に応じて、十分な機能が発揮できる厚みであればよい。   It does not specifically limit about the thickness of the said metal foil, According to the use, it should just be the thickness which can exhibit sufficient function.

本発明に係るポリイミドフィルム全体の厚みは7μm〜60μmであることが好ましい。その範囲内でも厚みが薄い方が、FPCとしての折り曲げ性が向上するので好ましい。しかし、厚みが7μmを下回ると、加工時のハンドリングが困難になる場合がある。厚みが60μmを上回ると、FPCとしての折り曲げ性が低下や薄型化が難しくなる場合がある。   It is preferable that the thickness of the whole polyimide film which concerns on this invention is 7 micrometers-60 micrometers. It is preferable that the thickness be as thin as possible because the bendability as the FPC is improved. However, if the thickness is less than 7 μm, handling during processing may be difficult. If the thickness is more than 60 μm, the bendability as an FPC may be lowered or it may be difficult to reduce the thickness.

本発明のポリイミドフィルムおよびフレキシブル金属張積層板は、ロールツーロール式で連続的に製造されるときに、特に効果を奏する。その際のポリイミドフィルムおよびフレキシブル金属張積層板の幅は25cm以上であることが好ましく、100cm以上であることがより好ましく、200cm以上であることが特に好ましい。ポリイミドフィルムおよびフレキシブル金属張積層板の長手方向の長さは200m以上であることが好ましく、1000m以上であることがより好ましく、2000m以上であることが特に好ましい。   The polyimide film and the flexible metal-clad laminate of the present invention are particularly effective when they are continuously manufactured in a roll-to-roll system. The width of the polyimide film and the flexible metal-clad laminate at that time is preferably 25 cm or more, more preferably 100 cm or more, and particularly preferably 200 cm or more. The length in the longitudinal direction of the polyimide film and the flexible metal-clad laminate is preferably 200 m or more, more preferably 1000 m or more, and particularly preferably 2000 m or more.

本発明に係るフレキシブル金属張積層体を用いて、ロールツーロール式で回路形成したFPCを連続的に得ることができる。STが900秒以上であるようにポリイミドの一次構造を制御しているため、フレキシブル金属張積層板を用意する工程とロールツーロールで連続的に搬送しながらアルカリ存在下に回路を形成する実工程を経てもクラックが入らない製造方法を提供することができる。   By using the flexible metal-clad laminate according to the present invention, a roll-to-roll FPC can be continuously obtained. Since the primary structure of polyimide is controlled so that ST is 900 seconds or more, a process of preparing a flexible metal-clad laminate and an actual process of forming a circuit in the presence of alkali while continuously conveying by roll-to-roll It is possible to provide a manufacturing method which does not crack even after passing through.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。なお、合成例、実施例及び比較例におけるポリイミドのSTの求め方、およびFPC製造工程における回路を形成した状態の模擬試験の評価方法は次の通りである。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. In addition, how to obtain | require ST of the polyimide in a synthesis example, an Example, and a comparative example, and the evaluation method of the simulation test of the state which formed the circuit in a FPC manufacturing process are as follows.

(STの求め方、シェイキングテスト)
フィルムの両端部および中央部の3点からフィルムを切り取り、それぞれフレキシブル金属張積層板とした。6.0cm×5.5cm角の大きさにフレキシブル金属張積層板を切り取り、その金属箔の一部を図1に示すように格子状(格子サイズ;1.3mm×1.5mm、)にエッチングして試験片を得た。800mLの濃度4%の水酸化ナトリウム水溶液(23±2℃)が入った容器に試験片を入れ、230rpmの振とう速度で、23±2℃において振とうしてクラックが入る時間を測定する。なお、エッチング後、格子状の各角部の内側の曲率半径が50μm以下となっていることを光学顕微鏡にて確認して、50μm以下となっているものを試験片とした。この試験片を水酸化ナトリウム水溶液に投入した。クラックの有無は、震とうを100秒毎に止め、試験片を入れた容器ごとにライトボックスにより光を当てて、試験片に光が透過したらクラックと判断した。
(How to determine ST, shaking test)
The film was cut out from three points at both ends and the central part of the film to make a flexible metal-clad laminate. A flexible metal-clad laminate is cut out to a size of 6.0 cm x 5.5 cm square, and a portion of the metal foil is etched in a grid shape (grid size: 1.3 mm x 1.5 mm) as shown in Fig. 1 The test pieces were obtained. The test piece is placed in a container containing 800 mL of a 4% aqueous solution of sodium hydroxide (23 ± 2 ° C.), and shaking is performed at 23 ± 2 ° C. at a shaking speed of 230 rpm to measure the time for crack initiation. After the etching, it was confirmed by an optical microscope that the curvature radius of the inner side of each of the lattice-like corner portions was 50 μm or less, and the test piece was made to be 50 μm or less. The test piece was placed in an aqueous sodium hydroxide solution. The presence or absence of the crack was determined to be a crack when light was applied by the light box for each container containing the test piece by stopping shaking every 100 seconds and light was transmitted to the test piece.

(FPC製造工程における模擬試験)
導体パターンをあらかじめ形成した長尺のフレキシブル金属張積層板に張力60Nをかけ、45℃の5%水酸化ナトリウム水溶液をスプレーで吹きつけた際のクラック発生有無を目視で観察した。クラックが発生しなかったものを合格(○)、1つでもクラックが発生したものを不合格(×)とした。
(Simulation test in FPC manufacturing process)
A tensile force of 60 N was applied to a long flexible metal-clad laminate on which a conductor pattern had been formed in advance, and the occurrence of cracks when sprayed at 45 ° C. with a 5% aqueous sodium hydroxide solution was visually observed. Those that did not generate a crack were accepted (○), and those that were cracked even if one were rejected (×).

(非熱可塑性ポリイミド前駆体の合成)
(合成例1)
反応系内を20℃に保った状態で、N,N−ジメチルホルムアミド(以下、DMFともいう)166.3kgに、4,4’−ジアミノジフェニルエーテル(以下、ODAともいう)2.63kg、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)8.10kgを添加し、窒素雰囲気下で撹拌した。ODA、BAPPが溶解したことを目視確認した後、ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAともいう)3.59kg添加した。BTDAが溶解したことを目視確認した後、ピロメリット酸二無水物(以下、PMDAともいう)3.59kgを添加して、溶解したことを確認した後、30分間攪拌を行った。1,4−ジアミノベンゼン(以下、p−PDAともいう)3.56kgを添加し、溶解したことを目視確認した後、PMDA7.60kgを徐々に添加し、30分間攪拌を行った。
最後に、0.8kgのBAPPを固形分濃度7%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が3000ポイズに達した時点で重合を終了した。
このポリアミック酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.6/2.8)からなるイミド化促進剤をポリアミック酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌しTダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×15秒、450℃×87秒で乾燥・イミド化させ、厚み9μmのポリイミドフィルムを得た。
(Synthesis of non-thermoplastic polyimide precursor)
Synthesis Example 1
2.6.3 kg of 4,4'-diaminodiphenyl ether (hereinafter also referred to as ODA) to 166.3 kg of N, N-dimethylformamide (hereinafter also referred to as DMF) while keeping the inside of the reaction system at 20 ° C. 8.10 kg of 2-bis [4- (4-amino phenoxy) phenyl] propanes (hereinafter, also referred to as BAPP) were added and stirred under a nitrogen atmosphere. After visually confirming that the ODA and BAPP were dissolved, 3.59 kg of benzophenone tetracarboxylic acid dianhydride (hereinafter also referred to as BTDA) was added. After visually confirming that BTDA was dissolved, 3.59 kg of pyromellitic dianhydride (hereinafter, also referred to as PMDA) was added, and after confirming that it was dissolved, stirring was performed for 30 minutes. After 3.56 kg of 1,4-diaminobenzene (hereinafter, also referred to as p-PDA) was added and visually confirmed to be dissolved, 7.60 kg of PMDA was gradually added and stirring was performed for 30 minutes.
Finally, a solution of 0.8 kg of BAPP in DMF so as to have a solid concentration of 7% is prepared, and this solution is gradually added to the above reaction solution while paying attention to viscosity increase, and the viscosity is 3000 poise. When it reached, the polymerization was finished.
An imidation accelerator consisting of acetic anhydride / isoquinoline / DMF (weight ratio 2.0 / 0.6 / 2.8) is added to this polyamic acid solution at a weight ratio of 50% with respect to the polyamic acid solution, continuously The mixture was stirred by a mixer, extruded from a T-die, and cast on a stainless steel endless belt. After heating this resin film at 130 ° C. for 100 seconds, the self-supporting gel film is peeled off from the endless belt and fixed to a tenter clip, dried and imidized at 250 ° C. for 15 seconds and 450 ° C. for 87 seconds. A polyimide film having a thickness of 9 μm was obtained.

(合成例2)
反応系内を20℃に保った状態で、DMF165.9kgに、ODA7.22kg、添加し、窒素雰囲気下で撹拌した。ODAが溶解したことを目視確認した後、3,3‘,4,4’−ビフェニルテトラカルボン酸ニ無水物(以下、BPDAともいう)6.36kg添加した。BPDAが溶解したことを確認した後、BTDA3.48kgを添加し、30分間攪拌を行った。続いて、ODA0.87kgを添加し、溶解したことを確認した後、PDA3.43kg添加した。PDAの溶解を確認した後、PMDA8.33kgを徐々に添加し、30分間攪拌を行った。
最後に、0.8kgのBAPPを固形分濃度7%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が3000ポイズに達した時点で重合を終了した。
このポリアミック酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.6/2.8)からなるイミド化促進剤をポリアミック酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌しTダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×15秒、350℃×87秒で乾燥・イミド化させ、厚み9μmのポリイミドフィルムを得た。
(Composition example 2)
With the reaction system maintained at 20 ° C., 7.22 kg of ODA was added to 165.9 kg of DMF, and the mixture was stirred under a nitrogen atmosphere. After visually confirming that the ODA was dissolved, 6.36 kg of 3,3 ′, 4,4′-biphenyltetracarboxylic acid dianhydride (hereinafter also referred to as BPDA) were added. After confirming that BPDA was dissolved, 3.48 kg of BTDA was added and stirring was performed for 30 minutes. Subsequently, 0.87 kg of ODA was added, and after confirming that it was dissolved, 3.43 kg of PDA was added. After confirming the dissolution of PDA, 8.33 kg of PMDA was gradually added, and stirring was performed for 30 minutes.
Finally, a solution of 0.8 kg of BAPP in DMF so as to have a solid concentration of 7% is prepared, and this solution is gradually added to the above reaction solution while paying attention to viscosity increase, and the viscosity is 3000 poise. When it reached, the polymerization was finished.
An imidation accelerator consisting of acetic anhydride / isoquinoline / DMF (weight ratio 2.0 / 0.6 / 2.8) is added to this polyamic acid solution at a weight ratio of 50% with respect to the polyamic acid solution, continuously The mixture was stirred by a mixer, extruded from a T-die, and cast on a stainless steel endless belt. After heating this resin film at 130 ° C. for 100 seconds, the self-supporting gel film is peeled off from the endless belt and fixed to a tenter clip, dried and imidized at 250 ° C. for 15 seconds and 350 ° C. for 87 seconds. A polyimide film having a thickness of 9 μm was obtained.

(合成例3)
合成例1で重合したポリアミック酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.6/2.8)からなるイミド化促進剤をポリアミック酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌しTダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×15秒、350℃×87秒で乾燥・イミド化させ、厚み9μmのポリイミドフィルムを得た。
(Composition example 3)
An imidation accelerator comprising acetic anhydride / isoquinoline / DMF (weight ratio 2.0 / 0.6 / 2.8) was added to the polyamic acid solution polymerized in Synthesis Example 1 at a weight ratio of 50% relative to the polyamic acid solution. It was added, continuously stirred by a mixer, extruded from a T-die, and cast on a stainless steel endless belt. After heating this resin film at 130 ° C. for 100 seconds, the self-supporting gel film is peeled off from the endless belt and fixed to a tenter clip, dried and imidized at 250 ° C. for 15 seconds and 350 ° C. for 87 seconds. A polyimide film having a thickness of 9 μm was obtained.

(合成例4)
合成例1で重合したポリアミック酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.6/2.8)からなるイミド化促進剤をポリアミック酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌しTダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を90℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定した。長手方向および幅方向に1.3倍ずつ延伸した後、250℃×15秒、350℃×87秒で乾燥・イミド化させ、厚み9μmのポリイミドフィルムを得た。
(Composition example 4)
An imidation accelerator comprising acetic anhydride / isoquinoline / DMF (weight ratio 2.0 / 0.6 / 2.8) was added to the polyamic acid solution polymerized in Synthesis Example 1 at a weight ratio of 50% relative to the polyamic acid solution. It was added, continuously stirred by a mixer, extruded from a T-die, and cast on a stainless steel endless belt. After heating this resin film at 90 ° C. for 100 seconds, the self-supporting gel film was peeled off from the endless belt and fixed to the tenter clip. The film was stretched 1.3 times in the longitudinal direction and width direction, and then dried and imidized at 250 ° C. × 15 seconds, 350 ° C. × 87 seconds to obtain a polyimide film with a thickness of 9 μm.

(合成例5)
反応系内を20℃に保った状態で、DMF170.0kgに、BPDA17.68kg、添加し、窒素雰囲気下で撹拌した。PDA6.14kgを添加し、PDAが溶解したことを確認した後、4、4’−オキシジフタル酸無水物(以下、ODPAともいう)1.66kgを添加した。続いて、BAPP4.11kgを添加し、30分間攪拌を行った。
最後に、0.4kgのODPAを固形分濃度5%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が3000ポイズに達した時点で重合を終了した。
このポリアミック酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.6/2.8)からなるイミド化促進剤をポリアミック酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌しTダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×15秒、350℃×87秒で乾燥・イミド化させ、厚み9μmのポリイミドフィルムを得た。
(Composition example 5)
While maintaining the reaction system at 20 ° C., 17.68 kg of BPDA was added to 170.0 kg of DMF, and the mixture was stirred under a nitrogen atmosphere. After 6.14 kg of PDA was added and it was confirmed that the PDA was dissolved, 1.66 kg of 4,4'-oxydiphthalic anhydride (hereinafter also referred to as ODPA) was added. Subsequently, 4.11 kg of BAPP was added and stirring was performed for 30 minutes.
Finally, a solution of 0.4 kg of ODPA dissolved in DMF so as to have a solid concentration of 5% is prepared, and this solution is gradually added to the above reaction solution while paying attention to viscosity increase, and the viscosity is 3000 poise. When it reached, the polymerization was finished.
An imidation accelerator consisting of acetic anhydride / isoquinoline / DMF (weight ratio 2.0 / 0.6 / 2.8) is added to this polyamic acid solution at a weight ratio of 50% with respect to the polyamic acid solution, continuously The mixture was stirred by a mixer, extruded from a T-die, and cast on a stainless steel endless belt. After heating this resin film at 130 ° C. for 100 seconds, the self-supporting gel film is peeled off from the endless belt and fixed to a tenter clip, dried and imidized at 250 ° C. for 15 seconds and 350 ° C. for 87 seconds. A polyimide film having a thickness of 9 μm was obtained.

(合成例6)
反応系内を20℃に保った状態で、DMF170.0kgに、ODA5.50kg、BAPP2.82kgを添加し、窒素雰囲気下で撹拌した。ODA、BAPPが溶解したことを目視確認した後、BTDA4.43kg添加した。BTDAが溶解したことを目視確認した後、PMDA7.79kgを添加して、溶解したことを確認した後、30分間攪拌を行った。p−PDA3.42kg、ODA0.55kgを添加し、溶解したことを目視確認した後、PMDA7.79kgを徐々に添加し、30分間攪拌を行った。
最後に、0.8kgのBAPPを固形分濃度7%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が3000ポイズに達した時点で重合を終了した。
このポリアミック酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.6/2.8)からなるイミド化促進剤をポリアミック酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌しTダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×15秒、350℃×87秒で乾燥・イミド化させ、厚み9μmのポリイミドフィルムを得た。
Synthesis Example 6
While maintaining the reaction system at 20 ° C., 5.50 kg of ODA and 2.82 kg of BAPP were added to 170.0 kg of DMF, and the mixture was stirred under a nitrogen atmosphere. After visually confirming that the ODA and BAPP were dissolved, 4.43 kg of BTDA was added. After visually confirming that BTDA was dissolved, 7.79 kg of PMDA was added to confirm dissolution, and then stirring was performed for 30 minutes. After 3.42 kg of p-PDA and 0.55 kg of ODA were added and visually confirmed to be dissolved, 7.79 kg of PMDA was gradually added and stirring was performed for 30 minutes.
Finally, a solution of 0.8 kg of BAPP in DMF so as to have a solid concentration of 7% is prepared, and this solution is gradually added to the above reaction solution while paying attention to viscosity increase, and the viscosity is 3000 poise. When it reached, the polymerization was finished.
An imidation accelerator consisting of acetic anhydride / isoquinoline / DMF (weight ratio 2.0 / 0.6 / 2.8) is added to this polyamic acid solution at a weight ratio of 50% with respect to the polyamic acid solution, continuously The mixture was stirred by a mixer, extruded from a T-die, and cast on a stainless steel endless belt. After heating this resin film at 130 ° C. for 100 seconds, the self-supporting gel film is peeled off from the endless belt and fixed to a tenter clip, dried and imidized at 250 ° C. for 15 seconds and 350 ° C. for 87 seconds. A polyimide film having a thickness of 9 μm was obtained.

(合成例7)
反応系内を20℃に保った状態で、DMF170.0kgに、m−トリジン13.38kgを添加し、窒素雰囲気下で撹拌しながら、BPDA11.12kg、PMDA5.09kg添加した。30分間攪拌を行った後、0.5kgのPMDAを固形分濃度7%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が3000ポイズに達した時点で重合を終了した。
このポリアミック酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.6/2.8)からなるイミド化促進剤をポリアミック酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌しTダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×15秒、350℃×87秒で乾燥・イミド化させ、厚み9μmのポリイミドフィルムを得た。
Synthesis Example 7
While maintaining the reaction system at 20 ° C., 13.38 kg of m-tolidine was added to 170.0 kg of DMF, and 11.12 kg of BPDA and 5.09 kg of PMDA were added while stirring under a nitrogen atmosphere. After stirring for 30 minutes, a solution of 0.5 kg of PMDA dissolved in DMF so as to have a solid concentration of 7% is prepared, and this solution is gradually added to the above reaction solution while paying attention to viscosity increase. The polymerization was terminated when the viscosity reached 3000 poise.
An imidation accelerator consisting of acetic anhydride / isoquinoline / DMF (weight ratio 2.0 / 0.6 / 2.8) is added to this polyamic acid solution at a weight ratio of 50% with respect to the polyamic acid solution, continuously The mixture was stirred by a mixer, extruded from a T-die, and cast on a stainless steel endless belt. After heating this resin film at 130 ° C. for 100 seconds, the self-supporting gel film is peeled off from the endless belt and fixed to a tenter clip, dried and imidized at 250 ° C. for 15 seconds and 350 ° C. for 87 seconds. A polyimide film having a thickness of 9 μm was obtained.

(熱可塑性ポリイミド前駆体の合成)
(合成例8)
反応系内を20℃に保った状態で、DMF164.0kgに、BAPP15.04kg加え、窒素雰囲気下で攪拌しながら、BPDA14.2kg徐々に添加した。続いて、BAPP3.96kg添加し、30分間攪拌を行った。0.7kgのBAPPを固形分濃度7%となるようにDMFに溶解した溶液を調整し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が300ポイズに達した時点で重合を終了した。
(Synthesis of Thermoplastic Polyimide Precursor)
Synthesis Example 8
While maintaining the reaction system at 20 ° C., 15.04 kg of BAPP was added to 164.0 kg of DMF, and 14.2 kg of BPDA was gradually added while stirring under a nitrogen atmosphere. Subsequently, 3.96 kg of BAPP was added and stirring was performed for 30 minutes. A solution of 0.7 kg of BAPP dissolved in DMF so as to have a solid concentration of 7% was adjusted, and this solution was gradually added to the above reaction solution while paying attention to viscosity increase, and the viscosity reached 300 poise. At the point of time, the polymerization was finished.

(合成例9)
反応系内を20℃に保った状態で、DMF168.9kgに、BAPP17.96kg加え、窒素雰囲気下で攪拌しながら、BPDA1.93kg徐々に添加した。BPDAが溶解したことを目視確認した後、PMDA7.87kgを添加し、30分間攪拌を行った。0.7kgのPMDAを固形分濃度7%となるようにDMFに溶解した溶液を調整し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が300ポイズに達した時点で重合を終了した。
Synthesis Example 9
While maintaining the reaction system at 20 ° C., 17.96 kg of BAPP was added to 168.9 kg of DMF, and 1.93 kg of BPDA was gradually added while stirring under a nitrogen atmosphere. After visually confirming that BPDA was dissolved, 7.87 kg of PMDA was added and stirring was performed for 30 minutes. A solution of 0.7 kg of PMDA dissolved in DMF so as to have a solid concentration of 7% was prepared, and this solution was gradually added to the above reaction solution while paying attention to viscosity increase, and the viscosity reached 300 poise. At the point of time, the polymerization was finished.

(合成例10)
反応系内を20℃に保った状態で、DMF167.7kgに、4,4‘−ビス(4−アミノフェノキシ)ビフェニル(以下、BAPBともいう)4.87kg加え、窒素雰囲気下で攪拌しながら、BPDA3.24kg徐々に添加した。BPDAが溶解したことを目視確認した後、BAPP12.67kgを添加した。続いて、PMDA6.88kg添加し30分間攪拌を行った。0.7kgのPMDAを固形分濃度7%となるようにDMFに溶解した溶液を調整し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が300ポイズに達した時点で重合を終了した。
Synthesis Example 10
While maintaining the inside of the reaction system at 20 ° C., 4.87 kg of 4,4′-bis (4-aminophenoxy) biphenyl (hereinafter also referred to as BAPB) is added to 167.7 kg of DMF, and stirring is performed under a nitrogen atmosphere. 3.24 kg of BPDA was added gradually. After visually confirming that the BPDA had dissolved, 12.67 kg of BAPP was added. Subsequently, 6.88 kg of PMDA was added and stirring was performed for 30 minutes. A solution of 0.7 kg of PMDA dissolved in DMF so as to have a solid concentration of 7% was prepared, and this solution was gradually added to the above reaction solution while paying attention to viscosity increase, and the viscosity reached 300 poise. At the point of time, the polymerization was finished.

(合成例11)
反応系内を20℃に保った状態で、DMF164.9kgに、BAPB5.26kg、ODA2.86kgを加え、窒素雰囲気下で攪拌しながら、BPDA7.70kg徐々に添加した。BPDAが溶解したことを目視確認した後、BAPB2.63kg、BAPP4.88kgを加えた。BAPB、BAPPが溶解したことを確認した後、PMDA4.15kgを添加し、30分間攪拌を行った。0.7kgのPMDAを固形分濃度7%となるようにDMFに溶解した溶液を調整し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が300ポイズに達した時点で重合を終了した。
Synthesis Example 11
While maintaining the reaction system at 20 ° C., 5.26 kg of BAPB and 2.86 kg of ODA were added to 164.9 kg of DMF, and 7.70 kg of BPDA was gradually added while stirring under a nitrogen atmosphere. After visually confirming that the BPDA had dissolved, 2.63 kg of BAPB and 4.88 kg of BAPP were added. After confirming that BAPB and BAPP were dissolved, 4.15 kg of PMDA was added and stirring was performed for 30 minutes. A solution of 0.7 kg of PMDA dissolved in DMF so as to have a solid concentration of 7% was prepared, and this solution was gradually added to the above reaction solution while paying attention to viscosity increase, and the viscosity reached 300 poise. At the point of time, the polymerization was finished.

(合成例12)
反応系内を20℃に保った状態で、DMF172.0kgに、BPDA17.14kgを加え、窒素雰囲気下で攪拌しながら、ODA9,92kg、PDA0.63kgを添加した。30分間攪拌を行った後、0.5kgのPDAを固形分濃度5%となるようにDMFに溶解した溶液を調整し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が300ポイズに達した時点で重合を終了した。
Synthesis Example 12
While maintaining the reaction system at 20 ° C., 17.14 kg of BPDA was added to 172.0 kg of DMF, and while stirring under a nitrogen atmosphere, 9,92 kg of ODA and 0.63 kg of PDA were added. After stirring for 30 minutes, a solution of 0.5 kg of PDA dissolved in DMF to a solid concentration of 5% is prepared, and this solution is gradually added to the above reaction solution while paying attention to viscosity increase. The polymerization was finished when the viscosity reached 300 poise.

(合成例13)
反応系内を20℃に保った状態で、DMF172.0kgに、BAPP18.28kgを加え、窒素雰囲気下で攪拌しながら、PMDA9.23kgを添加した。30分間攪拌を行った後、0.5kgのPDAを固形分濃度7%となるようにDMFに溶解した溶液を調整し、この溶液を粘度上昇に気を付けながら上記反応溶液に徐々に添加し、粘度が300ポイズに達した時点で重合を終了した。
Synthesis Example 13
While maintaining the reaction system at 20 ° C., 18.28 kg of BAPP was added to 172.0 kg of DMF, and 9.23 kg of PMDA was added while stirring under a nitrogen atmosphere. After stirring for 30 minutes, a solution of 0.5 kg of PDA dissolved in DMF to a solid concentration of 7% is prepared, and this solution is gradually added to the above reaction solution while paying attention to viscosity increase. The polymerization was finished when the viscosity reached 300 poise.

(実施例1)
合成例1で得られたポリイミドフィルムの両面に、合成例8で得られたポリアミック酸溶液を、最終片面厚みが2.0μmとなるように塗布し、120℃で2分間乾燥した。続いて、350℃で1分間加熱してイミド化を行い、総厚み13μmのポリイミドフィルムを得た。
得られたポリイミドフィルムの両面に厚み12.5μmの電解銅箔(3EC−M3S−HTE、三井金属製)を配し、さらに電解銅箔の両側に保護フィルム(アピカル125NPI;カネカ製)を用いて、ラミネート温度360℃、ラミネート圧力265N/cm(27kgf/cm)、ラミネート速度1.0m/分の条件で熱ラミネートを行い、フレキシブル金属張積層体を作製した。
Example 1
The polyamic acid solution obtained in Synthesis Example 8 was coated on both sides of the polyimide film obtained in Synthesis Example 1 so that the final thickness on one side was 2.0 μm, and dried at 120 ° C. for 2 minutes. Subsequently, imidization was carried out by heating at 350 ° C. for 1 minute to obtain a polyimide film having a total thickness of 13 μm.
A 12.5 μm thick electrodeposited copper foil (3EC-M3S-HTE, made by Mitsui Metals) is placed on both sides of the obtained polyimide film, and protective films (Apical 125 NPI; made by Kaneka) are used on both sides of the electrodeposited copper foil. Thermal lamination was performed under conditions of a lamination temperature of 360 ° C., a lamination pressure of 265 N / cm (27 kgf / cm), and a lamination speed of 1.0 m / min to produce a flexible metal-clad laminate.

(実施例2)
合成例2で得られたポリイミドフィルムの両面に、合成例9で得られたポリアミック酸溶液を、最終片面厚みが2.0μmとなるように塗布し、120℃で2分間乾燥した。続いて、350℃で1分間加熱してイミド化を行い、総厚み13μmのポリイミドフィルムを得た。得られたポリイミドフィルムを用いて、実施例1と同様の方法でフレキシブル金属張積層体を作製した。
(Example 2)
The polyamic acid solution obtained in Synthesis Example 9 was coated on both sides of the polyimide film obtained in Synthesis Example 2 so that the final thickness on one side was 2.0 μm, and dried at 120 ° C. for 2 minutes. Subsequently, imidization was carried out by heating at 350 ° C. for 1 minute to obtain a polyimide film having a total thickness of 13 μm. A flexible metal-clad laminate was produced in the same manner as in Example 1 using the obtained polyimide film.

(実施例3)
合成例5で得られたポリイミドフィルムの両面に、合成例9で得られたポリアミック酸溶液を、最終片面厚みが2.0μmとなるように塗布し、120℃で2分間乾燥した。続いて、350℃で1分間加熱してイミド化を行い、総厚み13μmのポリイミドフィルムを得た。得られたポリイミドフィルムを用いて、実施例1と同様の方法でフレキシブル金属張積層体を作製した。
(Example 3)
The polyamic acid solution obtained in Synthesis Example 9 was applied to both sides of the polyimide film obtained in Synthesis Example 5 so that the final thickness on one side was 2.0 μm, and dried at 120 ° C. for 2 minutes. Subsequently, imidization was carried out by heating at 350 ° C. for 1 minute to obtain a polyimide film having a total thickness of 13 μm. A flexible metal-clad laminate was produced in the same manner as in Example 1 using the obtained polyimide film.

(実施例4)
合成例6で得られたポリイミドフィルムの両面に、合成例10で得られたポリアミック酸溶液を、最終片面厚みが2.0μmとなるように塗布し、120℃で2分間乾燥した。続いて、350℃で1分間加熱してイミド化を行い、総厚み13μmのポリイミドフィルムを得た。得られたポリイミドフィルムを用いて、実施例1と同様の方法でフレキシブル金属張積層体を作製した。
(Example 4)
The polyamic acid solution obtained in Synthesis Example 10 was coated on both sides of the polyimide film obtained in Synthesis Example 6 so that the final thickness on one side was 2.0 μm, and dried at 120 ° C. for 2 minutes. Subsequently, imidization was carried out by heating at 350 ° C. for 1 minute to obtain a polyimide film having a total thickness of 13 μm. A flexible metal-clad laminate was produced in the same manner as in Example 1 using the obtained polyimide film.

(実施例5)
合成例4で得られたポリイミドフィルムの両面に、合成例8で得られたポリアミック酸溶液を、最終片面厚みが2.0μmとなるように塗布し、120℃で2分間乾燥した。続いて、350℃で1分間加熱してイミド化を行い、総厚み13μmのポリイミドフィルムを得た。得られたポリイミドフィルムを用いて、実施例1と同様の方法でフレキシブル金属張積層体を作製した。
(Example 5)
The polyamic acid solution obtained in Synthesis Example 8 was coated on both sides of the polyimide film obtained in Synthesis Example 4 so that the final thickness on one side was 2.0 μm, and dried at 120 ° C. for 2 minutes. Subsequently, imidization was carried out by heating at 350 ° C. for 1 minute to obtain a polyimide film having a total thickness of 13 μm. A flexible metal-clad laminate was produced in the same manner as in Example 1 using the obtained polyimide film.

(実施例6)
合成例1で得られたポリイミドフィルムの両面に、合成例11で得られたポリアミック酸溶液を、最終片面厚みが2.0μmとなるように塗布し、120℃で2分間乾燥した。続いて、350℃で1分間加熱してイミド化を行い、総厚み13μmのポリイミドフィルムを得た。得られたポリイミドフィルムを用いて、実施例1と同様の方法でフレキシブル金属張積層体を作製した。
(Example 6)
The polyamic acid solution obtained in Synthesis Example 11 was coated on both sides of the polyimide film obtained in Synthesis Example 1 so that the final thickness on one side was 2.0 μm, and dried at 120 ° C. for 2 minutes. Subsequently, imidization was carried out by heating at 350 ° C. for 1 minute to obtain a polyimide film having a total thickness of 13 μm. A flexible metal-clad laminate was produced in the same manner as in Example 1 using the obtained polyimide film.

(比較例1)
合成例3で得られたポリイミドフィルムの両面に、合成例8で得られたポリアミック酸溶液を、最終片面厚みが2.0μmとなるように塗布し、120℃で2分間乾燥した。続いて、350℃で1分間加熱してイミド化を行い、総厚み13μmのポリイミドフィルムを得た。得られたポリイミドフィルムを用いて、実施例1と同様の方法でフレキシブル金属張積層体を作製した。
(Comparative example 1)
The polyamic acid solution obtained in Synthesis Example 8 was coated on both sides of the polyimide film obtained in Synthesis Example 3 so that the final thickness on one side was 2.0 μm, and dried at 120 ° C. for 2 minutes. Subsequently, imidization was carried out by heating at 350 ° C. for 1 minute to obtain a polyimide film having a total thickness of 13 μm. A flexible metal-clad laminate was produced in the same manner as in Example 1 using the obtained polyimide film.

(比較例2)
合成例3で得られたポリイミドフィルムの両面に、合成例9で得られたポリアミック酸溶液を、最終片面厚みが2.0μmとなるように塗布し、120℃で2分間乾燥した。続いて、350℃で1分間加熱してイミド化を行い、総厚み13μmのポリイミドフィルムを得た。得られたポリイミドフィルムを用いて、実施例1と同様の方法でフレキシブル金属張積層体を作製した。
(Comparative example 2)
The polyamic acid solution obtained in Synthesis Example 9 was coated on both sides of the polyimide film obtained in Synthesis Example 3 so that the final thickness on one side was 2.0 μm, and dried at 120 ° C. for 2 minutes. Subsequently, imidization was carried out by heating at 350 ° C. for 1 minute to obtain a polyimide film having a total thickness of 13 μm. A flexible metal-clad laminate was produced in the same manner as in Example 1 using the obtained polyimide film.

(比較例3)
合成例1で得られたポリイミドフィルムの両面に、合成例12で得られたポリアミック酸溶液を、最終片面厚みが2.0μmとなるように塗布し、120℃で2分間乾燥した。続いて、350℃で1分間加熱してイミド化を行い、総厚み13μmのポリイミドフィルムを得た。得られたポリイミドフィルムを用いて、実施例1と同様の方法でフレキシブル金属張積層体を作製した。
(Comparative example 3)
The polyamic acid solution obtained in Synthesis Example 12 was coated on both sides of the polyimide film obtained in Synthesis Example 1 so that the final thickness on one side was 2.0 μm, and dried at 120 ° C. for 2 minutes. Subsequently, imidization was carried out by heating at 350 ° C. for 1 minute to obtain a polyimide film having a total thickness of 13 μm. A flexible metal-clad laminate was produced in the same manner as in Example 1 using the obtained polyimide film.

(比較例4)
厚み12.5μmのアピカルNPI(株式会社カネカ製)の両面に、合成例9で得られたポリアミック酸溶液を、最終片面厚みが2.0μmとなるように塗布し、120℃で2分間乾燥した。続いて、350℃で1分間加熱してイミド化を行い、総厚み14.5μmのポリイミドフィルムを得た。得られたポリイミドフィルムを用いて、実施例1と同様の方法でフレキシブル金属張積層体を作製した。
(Comparative example 4)
The polyamic acid solution obtained in Synthesis Example 9 was applied to both sides of 12.5 μm thick Apical NPI (manufactured by Kaneka Co., Ltd.) so that the final thickness on one side was 2.0 μm and dried at 120 ° C. for 2 minutes . Subsequently, imidization was carried out by heating at 350 ° C. for 1 minute to obtain a polyimide film having a total thickness of 14.5 μm. A flexible metal-clad laminate was produced in the same manner as in Example 1 using the obtained polyimide film.

(比較例5)
厚み12.5μmのアピカルAH(株式会社カネカ製)の両面に、合成例9で得られたポリアミック酸溶液を、最終片面厚みが2.0μmとなるように塗布し、120℃で2分間乾燥した。続いて、350℃で1分間加熱してイミド化を行い、総厚み14.5μmのポリイミドフィルムを得た。得られたポリイミドフィルムを用いて、実施例1と同様の方法でフレキシブル金属張積層体を作製した。
(Comparative example 5)
The polyamic acid solution obtained in Synthesis Example 9 was applied to both sides of 12.5 μm thick Apical AH (manufactured by Kaneka Corporation) so that the final thickness on one side was 2.0 μm, and dried at 120 ° C. for 2 minutes . Subsequently, imidization was carried out by heating at 350 ° C. for 1 minute to obtain a polyimide film having a total thickness of 14.5 μm. A flexible metal-clad laminate was produced in the same manner as in Example 1 using the obtained polyimide film.

(比較例6)
合成例7で得られたポリイミドフィルムの両面に、合成例13で得られたポリアミック酸溶液を、最終片面厚みが2.0μmとなるように塗布し、120℃で2分間乾燥した。続いて、350℃で1分間加熱してイミド化を行い、総厚み13μmのポリイミドフィルムを得た。得られたポリイミドフィルムを用いて、実施例1と同様の方法でフレキシブル金属張積層体を作製した。
(Comparative example 6)
The polyamic acid solution obtained in Synthesis Example 13 was coated on both sides of the polyimide film obtained in Synthesis Example 7 so that the final thickness on one side was 2.0 μm, and dried at 120 ° C. for 2 minutes. Subsequently, imidization was carried out by heating at 350 ° C. for 1 minute to obtain a polyimide film having a total thickness of 13 μm. A flexible metal-clad laminate was produced in the same manner as in Example 1 using the obtained polyimide film.

実施例ならびに比較例のSTとFPC製造工程の模擬試験結果を表1に示す。   Table 1 shows simulated test results of ST and FPC manufacturing processes of the example and the comparative example.

STが700秒以下でFPC製造工程の模擬試験でクラックを生じるのに対し、STが900秒以上の場合、FPC製造工程の模擬試験でクラックを生じなかった。STが高いと、連続的にFPCを製造する工程でのクラックが抑制され、さらには、STが900秒以上となるような材料を提供すれば、連続的にFPCを製造する工程でのクラックが抑制できることを示している。   While a crack is generated in the simulation test of the FPC manufacturing process when the ST is 700 seconds or less, no crack is generated in the simulation test of the FPC manufacturing process when the ST is 900 seconds or more. If ST is high, cracks in the step of continuously manufacturing the FPC are suppressed, and further, if a material is provided such that ST is 900 seconds or more, cracks in the step of continuously manufacturing the FPC are It shows that it can be suppressed.

1.金属箔
2.ポリイミドフィルム
1. Metal foil 2. Polyimide film

Claims (11)

少なくとも一層のポリイミド樹脂層を有する連続的に生産される長尺のポリイミドフィルムであって、
前記ポリイミドフィルムは、熱可塑性ポリイミド樹脂層と非熱可塑性ポリイミド樹脂層とを有し
前記熱可塑性ポリイミド樹脂層は、
4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼンおよび2,2−ビス(4−アミノフェノキシフェニル)プロパンから選ばれる屈曲性を有するジアミンと、
ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物および4,4’−オキシジフタル酸二無水物から選ばれる酸無水物との反応物であり、
前記非熱可塑性ポリイミド樹脂層は、
4,4’−ジアミノ−2,2’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニルから選ばれる剛直構造を有するジアミンと、
4,4’−ジアミノジフェニルエーテル、2,2−ビス{4−(4−アミノフェノキシ)フェニル}プロパン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼンから選ばれる柔軟構造を有するジアミンと、
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物から選ばれる剛直構造を有する酸二無水物と、
3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物から選ばれる柔軟構造を有する酸二無水物との反応物であり、
フィルムの両端部および中央部の3点において、下記シェイキングテストを行い、クラックが発生するまでの時間STを測定したときに、ST≧900秒以上であることを特徴とするポリイミドフィルム。
<シェイキングテスト>
6.0cm×5.5cm角のポリイミドフィルムを切り取り、その両面に12μmの厚みを有する銅箔を積層して両面に銅箔を有する銅張積層板を得、得られた銅張積層板の銅層の一部を格子状にエッチングした後、23±2℃に保たれた濃度4%の水酸化ナトリウム水溶液の入った容器に入れ230rpmの振とう速度で振とうしてクラックが入る時間(秒)を測定する。
A continuously produced long polyimide film having at least one polyimide resin layer,
The polyimide film has a thermoplastic polyimide resin layer and a non-thermoplastic polyimide resin layer ,
The thermoplastic polyimide resin layer is
4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-amino) With flexibility selected from phenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene and 2,2-bis (4-aminophenoxyphenyl) propane With a diamine,
Pyromellitic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydiphthalic acid It is a reaction product with an acid anhydride selected from dianhydrides,
The non-thermoplastic polyimide resin layer is
4,4'-Diamino-2,2'-dimethylbiphenyl, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-3,3'-dihydroxybiphenyl, 1,4-diamino A diamine having a rigid structure selected from benzene, 1,3-diaminobenzene, 4,4′-bis (4-aminophenoxy) biphenyl,
4,4'-Diaminodiphenyl ether, 2,2-bis {4- (4-aminophenoxy) phenyl} propane, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) A diamine having a flexible structure selected from benzene and 1,3-bis (3-aminophenoxy) benzene;
Acid dianhydrides having a rigid structure selected from 3,3 ′, 4,4′-biphenyltetracarboxylic acid dianhydride and pyromellitic acid dianhydride;
A reactant with an acid dianhydride having a flexible structure selected from 3,3 ′, 4,4′-benzophenonetetracarboxylic acid dianhydride and 4,4′-oxydiphthalic acid dianhydride,
A polyimide film characterized by ST ST 900 seconds or more when the following shaking test is performed at three points at both ends and the center of the film to measure a time ST until a crack is generated.
<Shaking test>
A 6.0 cm × 5.5 cm square polyimide film is cut out, and a copper foil having a thickness of 12 μm is laminated on both sides thereof to obtain a copper clad laminate having copper foils on both sides, and copper of the obtained copper clad laminate After etching a part of the layer in a grid, put it in a container containing 4% aqueous sodium hydroxide solution kept at 23 ± 2 ° C and shake it at a shaking speed of 230 rpm for the time to crack (seconds Measure).
前記ポリイミドフィルムは、非熱可塑性ポリイミド樹脂層の両面に熱可塑性ポリイミド樹脂層を有することを特徴とする請求項1に記載のポリイミドフィルム。 The said polyimide film has a thermoplastic polyimide resin layer on both surfaces of a non-thermoplastic polyimide resin layer, The polyimide film of Claim 1 characterized by the above-mentioned. 前記ポリイミドフィルムは、幅が25cm以上であることを特徴とする請求項1または2に記載のポリイミドフィルム。 The said polyimide film is 25 cm or more in width, The polyimide film of Claim 1 or 2 characterized by the above-mentioned. 前記ポリイミドフィルムは、長手方向の長さが200m以上であることを特徴とする請求項1〜のいずれか1項に記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 3 , wherein a length in a longitudinal direction of the polyimide film is 200 m or more. 少なくとも一層のポリイミド樹脂層を有するポリイミドフィルムと金属箔を有する、連続的に生産される長尺のフレキシブル金属張積層板であって、
前記少なくとも一層のポリイミド樹脂層を有するポリイミドフィルムは、熱可塑性ポリイミド樹脂層と非熱可塑性ポリイミド樹脂層を有し、
前記熱可塑性ポリイミド樹脂層は、
4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼンおよび2,2−ビス(4−アミノフェノキシフェニル)プロパンから選ばれる屈曲性を有するジアミンと、
ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物および4,4’−オキシジフタル酸二無水物から選ばれる酸無水物との反応物であり、
前記非熱可塑性ポリイミド樹脂層は、
4,4’−ジアミノ−2,2’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニルから選ばれる剛直構造を有するジアミンと、
4,4’−ジアミノジフェニルエーテル、2,2−ビス{4−(4−アミノフェノキシ)フェニル}プロパン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼンから選ばれる柔軟構造を有するジアミンと、
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物から選ばれる剛直構造を有する酸二無水物と、
3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物から選ばれる柔軟構造を有する酸二無水物との反応物であり、
フレキシブル金属張積層板の両端部および中央部の3点において、下記シェイキングテストを行い、クラックが発生するまでの時間STを測定したときに、ST≧900秒以上であるフレキシブル金属張積層板。
<シェイキングテスト>
6.0cm×5.5cm角のフレキシブル金属張積層板を切り取り、その金属箔の一部を格子状にエッチングした後、23±2℃に保たれた濃度4%の水酸化ナトリウム水溶液の入った容器に入れ230rpmの振とう速度で振とうしてクラックが入る時間(秒)を測定する。
A continuously produced long flexible metal-clad laminate having a polyimide film having at least one polyimide resin layer and a metal foil,
The polyimide film having at least one polyimide resin layer has a thermoplastic polyimide resin layer and a non-thermoplastic polyimide resin layer,
The thermoplastic polyimide resin layer is
4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-amino) With flexibility selected from phenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene and 2,2-bis (4-aminophenoxyphenyl) propane With a diamine,
Pyromellitic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydiphthalic acid It is a reaction product with an acid anhydride selected from dianhydrides,
The non-thermoplastic polyimide resin layer is
4,4'-Diamino-2,2'-dimethylbiphenyl, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-3,3'-dihydroxybiphenyl, 1,4-diamino A diamine having a rigid structure selected from benzene, 1,3-diaminobenzene, 4,4′-bis (4-aminophenoxy) biphenyl,
4,4'-Diaminodiphenyl ether, 2,2-bis {4- (4-aminophenoxy) phenyl} propane, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) A diamine having a flexible structure selected from benzene and 1,3-bis (3-aminophenoxy) benzene;
Acid dianhydrides having a rigid structure selected from 3,3 ′, 4,4′-biphenyltetracarboxylic acid dianhydride and pyromellitic acid dianhydride;
A reactant with an acid dianhydride having a flexible structure selected from 3,3 ′, 4,4′-benzophenonetetracarboxylic acid dianhydride and 4,4′-oxydiphthalic acid dianhydride,
A flexible metal-clad laminate in which ST ≧ 900 seconds or more when the following shaking test is performed on the three points of the both ends and the central part of the flexible metal-clad laminate to measure the time ST until a crack occurs.
<Shaking test>
A 6.0 cm x 5.5 cm square flexible metal-clad laminate was cut out, a part of the metal foil was etched in a grid, and then a 4% aqueous sodium hydroxide solution kept at 23 ± 2 ° C was added. Place in a container and shake at a shaking speed of 230 rpm to measure the time (seconds) for cracking.
前記少なくとも一層のポリイミド樹脂層を有するポリイミドフィルムは、非熱可塑性ポリイミド樹脂層の両面に熱可塑性ポリイミド樹脂層を有することを特徴とする請求項5に記載のフレキシブル金属張積層板。 The flexible metal-clad laminate according to claim 5, wherein the polyimide film having at least one polyimide resin layer has a thermoplastic polyimide resin layer on both sides of the non-thermoplastic polyimide resin layer. 前記フレキシブル金属張積層板の幅が25cm以上であることを特徴とする請求項5または6に記載のフレキシブル金属張積層板。 The width of the flexible metal-clad laminate is 25 cm or more, The flexible metal-clad laminate according to claim 5 or 6 . 前記フレキシブル金属張積層板の長手方向の長さが200m以上であることを特徴とする請求項5〜7のいずれか1項に記載のフレキシブル金属張積層板。 The length in the longitudinal direction of the flexible metal-clad laminate is 200 m or more, The flexible metal-clad laminate according to any one of claims 5 to 7 . 前記フレキシブル金属張積層板は、ポリイミド樹脂層と金属箔を熱ラミネートして製造されることを特徴とする請求項5〜8のいずれか1項に記載のフレキシブル金属張積層板。 The flexible metal-clad laminate according to any one of claims 5 to 8 , wherein the flexible metal-clad laminate is produced by thermally laminating a polyimide resin layer and a metal foil. 前記フレキシブル金属張積層板は、銅箔にポリイミドまたはポリアミック酸の少なくとも一方をキャストする工程を含む工程によって製造されることを特徴とする請求項5〜9のいずれか1項に記載のフレキシブル金属張積層板。 The flexible metal-clad laminate according to any one of claims 5 to 9 , wherein the flexible metal-clad laminate is manufactured by a process including a process of casting at least one of polyimide and polyamic acid on copper foil. Laminated board. 請求項5〜10のいずれか1項に記載のフレキシブル金属張積層板を用意する工程、前記フレキシブル金属張積層板をロールツーロールで連続的に搬送しながらアルカリ存在下に回路を形成する工程、形成された回路基板を切りとる工程を含むフレキシブルプリント配線板の製造方法。 A process of preparing a flexible metal-clad laminate according to any one of claims 5 to 10 , a process of forming a circuit in the presence of alkali while continuously conveying the flexible metal-clad laminate by roll-to-roll, The manufacturing method of a flexible printed wiring board including the process of cutting off the formed circuit board.
JP2015074448A 2015-03-31 2015-03-31 Polyimide film, flexible metal-clad laminate, and method of manufacturing flexible printed wiring board Active JP6522395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015074448A JP6522395B2 (en) 2015-03-31 2015-03-31 Polyimide film, flexible metal-clad laminate, and method of manufacturing flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015074448A JP6522395B2 (en) 2015-03-31 2015-03-31 Polyimide film, flexible metal-clad laminate, and method of manufacturing flexible printed wiring board

Publications (2)

Publication Number Publication Date
JP2016193543A JP2016193543A (en) 2016-11-17
JP6522395B2 true JP6522395B2 (en) 2019-05-29

Family

ID=57322477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015074448A Active JP6522395B2 (en) 2015-03-31 2015-03-31 Polyimide film, flexible metal-clad laminate, and method of manufacturing flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP6522395B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7195530B2 (en) * 2019-01-11 2022-12-26 エルジー・ケム・リミテッド Film, metal-clad laminate, flexible substrate, method for producing film, method for producing metal-clad laminate, and method for producing flexible substrate
KR102334130B1 (en) * 2019-04-12 2021-12-03 피아이첨단소재 주식회사 Multilayer polyimide film having improved adhesion and low dielectric loss, method for preparing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270035A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate
JP4193461B2 (en) * 2001-10-11 2008-12-10 宇部興産株式会社 Heat-sealable polyimide and laminate using the polyimide
JP2006188025A (en) * 2005-01-07 2006-07-20 Ube Ind Ltd Copper-clad laminate
JP5134198B2 (en) * 2005-09-28 2013-01-30 株式会社カネカ Polyimide film laminate and use thereof

Also Published As

Publication number Publication date
JP2016193543A (en) 2016-11-17

Similar Documents

Publication Publication Date Title
JP6971580B2 (en) Multilayer polyimide film and flexible metal-clad laminate
JP5049594B2 (en) Novel polyimide film with improved adhesion
JP6793232B2 (en) Rigid flexible board
JP4625458B2 (en) Adhesive film and use thereof
JP6788357B2 (en) Polyimide film, multilayer polyimide film, coverlay, and flexible printed wiring board
JPWO2006115258A1 (en) Novel polyimide film and its use
JP2017177601A (en) Multilayer polyimide film and method for manufacturing multilayer polyimide film
JP2021074894A (en) Multilayer polyimide film
JP2008188954A (en) Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
KR101244589B1 (en) Novel polyimide film with improved adhesiveness
JP2017177604A (en) Polyimide laminate film
JP7039390B2 (en) Multilayer polyimide film
JP2017179150A (en) Polyimide film
JP6522395B2 (en) Polyimide film, flexible metal-clad laminate, and method of manufacturing flexible printed wiring board
JP5362752B2 (en) Polyamic acid composition, polyimide, polyimide film and method for producing them
JP2008188778A (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminated sheet and manufacturing method of multilayer polyimide film
JP2017179148A (en) Polyimide film
TWI683836B (en) Polyimide laminated film, method for producing polyimide laminated film, method for producing thermoplastic polyimide, and method for producing flexible metal clad laminate
JP2017177602A (en) Polyimide laminate film
JP5329163B2 (en) Method for producing polyimide film and polyimide film
JP5069844B2 (en) Method for producing insulating film for printed wiring board, polyimide / copper laminate and printed wiring board
TW201805168A (en) Long polyimide laminate and method for manufacturing same
JP2006316232A (en) Adhesive film and its preparation process
JP2017074714A (en) Production method of multilayer polyimide film
JP2023149882A (en) multilayer polyimide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190424

R150 Certificate of patent or registration of utility model

Ref document number: 6522395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250