WO2008010409A1 - Polyimide film - Google Patents

Polyimide film Download PDF

Info

Publication number
WO2008010409A1
WO2008010409A1 PCT/JP2007/063272 JP2007063272W WO2008010409A1 WO 2008010409 A1 WO2008010409 A1 WO 2008010409A1 JP 2007063272 W JP2007063272 W JP 2007063272W WO 2008010409 A1 WO2008010409 A1 WO 2008010409A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
flexible
aromatic diamine
polyamic acid
diamine
Prior art date
Application number
PCT/JP2007/063272
Other languages
French (fr)
Japanese (ja)
Inventor
Shogo Fujimoto
Hisayasu Kaneshiro
Takashi Kikuchi
Shimizu Masayoshi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Publication of WO2008010409A1 publication Critical patent/WO2008010409A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC

Definitions

  • the present invention relates to a polyimide film that has been widely used as an insulating material in accordance with the reduction in weight and size of various electronic devices. More specifically, the present invention relates to a polyimide film that can be suitably used as a flexible printed circuit board, particularly a TAB (Tape Automated Bonding) type base film, in various uses of polyimide films.
  • TAB Transmission Automated Bonding
  • FPCs flexible printed wiring boards
  • a film made of a polyimide having a high chemical structural flexibility is generally used.
  • polyimide has a large linear expansion coefficient.
  • a flexible printed circuit board using a film as an insulating material has a drawback that it tends to be warped and curled.
  • a polyimide with a small linear expansion coefficient is selected, the flexibility of the film itself is lost and the film becomes very fragile, and the flexibility of the resulting FPC also decreases! .
  • TAB technology uses a film carrier tape (FC tape) that has a three-layer structure of a protective layer, an adhesive layer, and an organic insulating film layer (base film layer).
  • FC tape film carrier tape
  • the process of processing the TAB tape includes (1) a process of forming sprocket holes and device holes by punching, and (2) removing the protective layer and laminating the copper foil, and then applying the adhesive. Curing process, (3) arrangement pattern formation process (resist coating, copper etching, resist stripping), (4) plating process, (5) inner lead bonding process, (6) grease sealing process, (7) This is done in 8 steps: punching process, (8) outer lead bonding process, and LSI is mounted through the above processing steps.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-328544
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-124091
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-80178
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-119521
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2006-96919
  • An object of the present invention is to provide a polyimide film that can be used for, for example, a flexible printed circuit board, in particular, a TAB-type base film, and in which warpage and curling are suppressed without causing problematic elongation.
  • a polyimide film using a polyamic acid having excellent storage stability, which enables stable continuous production in the polymerization of polyamic acid, which is a polyimide precursor.
  • the present invention is a polyimide film obtained using a polyamic acid solution as a precursor, wherein the polyamic acid comprises (1) at least one flexible aromatic diamine (1-a) and at least After forming a block composed of one kind of linear aromatic diamine (1 b) and at least one kind of aromatic dianhydride (1 c), (2) at least one kind of flexibility Aromatic diamine (2—a) and at least one aromatic dianhydride ( A polyimide film characterized by being obtained by forming a block by adding 2-c) so that the diamine component and the acid dianhydride component in all steps are substantially equimolar.
  • the number of the flexible groups contained in the flexible aromatic diamine (1a) is greater than the number of the flexible groups contained in the flexible aromatic diamine (2-a). It is related with the said polyimide film characterized by few.
  • the embodiment is characterized in that the flexible aromatic diamine (1a) has one flexible group, and the flexible aromatic diamine (2-a) has two or more flexible groups. And relates to the polyimide film.
  • a preferred embodiment relates to the polyimide film, characterized in that it comprises the flexible aromatic diamine (1a) force 4, 4'-diaminodiphenyl ether.
  • a preferred embodiment relates to the polyimide film, wherein the flexible aromatic diamine (1-a) is in the range of 10 to 50 mol% based on the total diamine component.
  • a preferred embodiment relates to the polyimide film, characterized in that it comprises the flexible aromatic diamine (2-a) force 2, 2 bis (4-aminophenoxyphenyl) propane.
  • a preferred embodiment relates to the polyimide film, wherein the flexible aromatic diamine (2-a) is in the range of 10 to 40 mol% based on the total diamine component.
  • the aromatic dianhydride (2-c) includes 3, 3 ', 4, 4' monobenzophenone tetracarboxylic dianhydride, Related to polyimide film.
  • the polyimide film is characterized in that the aromatic acid dianhydride (2-c) is in a range of 15 to 60 mol% based on the total acid dianhydride component. Concerning.
  • a preferred embodiment relates to the polyimide film, wherein the blocking force obtained by (1) is in the range of 40 to 90 mol% based on the total polyamic acid.
  • the embodiment relates to the polyimide film described above, which is used as a base material for a TAB tape.
  • a preferred embodiment relates to the polyimide film described above, wherein the polyimide film is obtained by chemically converting polyamic acid.
  • the average linear expansion coefficient at 100 to 200 ° C is 18 to 25 X 10 " 6 cm.
  • the present invention relates to the polyimide film, characterized by being ZcmZ ° C.
  • a preferred embodiment relates to the polyimide film, wherein the elastic modulus is 4. OGPa or more.
  • a preferred embodiment relates to the above polyimide film, characterized in that the amount of change in thickness when immersed in a 20 ° C IN sodium hydroxide aqueous solution for 6 hours is 5% or less.
  • a preferred embodiment relates to the above polyimide film, characterized in that the amount of change in thickness when immersed in an aqueous solution of sodium hydroxide and sodium hydroxide at 60 ° C for 2 minutes is 5% or less.
  • the dimensional change rate when immersed in an aqueous solution of sodium hydroxide and sodium hydroxide at 20 ° C IN for 6 hours is the film flow direction (MD direction) and the direction perpendicular to the MD direction (TD direction). Both are 0.05% or less of the above polyimide film.
  • a polyamic acid excellent in storage stability can be obtained, which enables stable continuous production while polymerization of polyamic acid which is a precursor of polyimide.
  • the polyimide film according to the present invention obtained using the polyamic acid is used as a flexible printed circuit board, particularly as a TAB-type base film, the occurrence of warpage and curling can be suppressed without causing problematic elongation. Furthermore, even when exposed to an alkaline plating solution, it is possible to suppress a decrease in adhesive strength, dimensional change, and the like.
  • the polyimide film of the present invention is obtained using a specific polyamic acid solution as a precursor, and the polyamic acid comprises (1) at least one flexible aromatic diamine (1-a ) And at least one linear aromatic diamine (1-b) and at least one aromatic dianhydride (1-c), and (2) at least one One kind of flexible aromatic diamine (2-a) and at least one kind of aromatic acid
  • the water product (2-c) is obtained by adding the diamine component and the acid dianhydride component in all steps so as to be substantially equimolar to form a block.
  • the polyamic acid has good storage stability, and the polyimide film obtained using the polyamic acid as a precursor suppresses the occurrence of warpage and curling. It is characterized by being able to produce.
  • step (1) In the production of the polyamic acid, first, in step (1), at least one kind of flexible aromatic diamine (1a), at least one kind of linear aromatic diamine (1b) and at least one kind are used. It is necessary to form a block composed of the aromatic dianhydride (1c).
  • the flexible aromatic diamine (1-a) in the present invention means an ether group, a methylene group, a propargyl group, a hexafluoropropargyl group, a carbonyl group, a sulfone group, a sulfide group, Diamine containing a flexible group such as an ester group in the main chain, or if the main chain does not contain a flexible group, the nitrogen atoms of the two amino groups and the carbon atom bonded to them are aligned.
  • 4, 4'-diaminodiphenyl ether is used in order to improve the storage stability of the polyamic acid and to develop the desired physical properties.
  • 3, 4 'oxydianiline, 3, 4' oxydianiline, 2,4 'oxydianiline are preferred.
  • 4,4′-diaminodiphenyl ether because the final polyimide film can be suitably obtained in addition to the above.
  • the number of the flexible groups contained in the flexible aromatic diamine (1a) used in the step (1) in the synthesis of the polyamic acid is the same as that of the flexible aromatic diamine used in the step (2) described later.
  • the number is preferably smaller than the number of flexible groups contained in (2-a). Furthermore, it is more preferable that the number of the flexible groups contained in the flexible aromatic diamine (1-a) is one U.
  • the amount of the flexible aromatic diamine (1a) used is the total amount used for synthesizing the polyamic acid from the viewpoint of the storage stability of the polyamic acid and the linear expansion coefficient of the finally obtained polyimide film.
  • the range of 10 to 50 mol% based on the diamine component is preferred, and the range of 20 to 40 mol% is more preferred.
  • the linear aromatic diamine (l-b) used in the step (1) is an ether group, a methylene group, a propargyl group, a hexafluoropropargyl group, or a carbo group.
  • the main chain does not contain a flexible group such as a sulfone group, a sulfide group, or an ester group, and the nitrogen atom of two amino groups and the carbon atom to which they are bonded are aligned.
  • a flexible group such as a sulfone group, a sulfide group, or an ester group, and the nitrogen atom of two amino groups and the carbon atom to which they are bonded are aligned.
  • p-phenylenediamine and its nuclear substitution compound benzidine and its nuclear substitution compound and the like can be mentioned. These can be used alone or in combination of two or more.
  • linear aromatic diamines (1-b) it is particularly preferred to use p-phenylenediamine in terms of processability, handleability, and the balance of properties of the final polyimide film.
  • the amount of the linear aromatic diamine (1b) used is preferably in the range of 25 to 60 mol% based on the total diamine components used in the synthesis of the polyamic acid, and more preferably 30 to 50 m. It is more preferable to use in the range of ol%. If the amount of linear aromatic diamine (1-b) used is out of the above range, the linear expansion coefficient of the final polyimide film is preferred and may deviate from the range. In some cases, it is impossible to continuously obtain a film with stable warping.
  • the use ratio of the flexible diamine (1a) and the linear diamine (1b) in the step (1) can be appropriately set.
  • Storage stability of the polyamic acid and finally obtained polyimide film From the standpoint of the linear expansion coefficient, the flexible diamine should be used in the range of 20-50 mol%, preferably 30-40 mol% with respect to the sum of the flexible diamine (1-a) and linear diamine (1-b). Is preferred.
  • Examples of the acid dianhydride that can be used as the aromatic dianhydride (1c) include pyromellitic dianhydride, 2, 3, 6, 7 naphthalene tetracarboxylic dianhydride, 3, 3 ', 4, 4, -biphenyl tetracarboxylic dianhydride, 1, 2, 5, 6 naphthalene tetracarboxylic dianhydride, 2, 2 ', 3, 3, -biphenyl tetracarboxylic dianhydride, 3, 3 ', 4, 4, monobenzophenone tetracarboxylic dianhydride, 2, 2', 3, 3, monobenzophenone tetracarboxylic dianhydride, 4, 4'-oxydiphthalic dianhydride 3, 4'-oxydiphthalic dianhydride, 2, 2 Bis (3,4 dicarboxyphenyl) propane dianhydride, 3, 4, 9, 10 Perylenetetracarboxylic dianhydride, Bis (3,4 di
  • aromatic acid dianhydrides (1c) pyromellitic acid dianhydride, 2, 2 ', 3, 3,-, from the viewpoint of controlling the linear expansion coefficient within the set range.
  • Biphenyltetracarboxylic dianhydride, 3, 3 ', 4, 4, monobenzophenone tetracarboxylic dianhydride, 2, 2', 3, 3, monobenzophenone tetracarboxylic dianhydride A thing can illustrate more preferably.
  • pyromellitic dianhydride is particularly preferred.
  • the amount of the aromatic dianhydride (1c) used is 40 to 85 mol%, more preferably 50 to 70 mol% based on the total acid dianhydride component. Control within the range is preferable from two viewpoints.
  • the present invention is characterized by a method for polymerizing a polyamic acid, which is a polyimide precursor, and in particular in step (1), a flexible aromatic diamine (1-a) and a linear aromatic diamine ( It is characterized by forming blocks using 1-b) and aromatic dianhydride (1c).
  • a polyamic acid which is a polyimide precursor
  • a flexible aromatic diamine (1-a) and a linear aromatic diamine It is characterized by forming blocks using 1-b) and aromatic dianhydride (1c).
  • the linear expansion coefficient of the resulting polyimide film is higher than the target value.
  • the present inventors copolymerized the flexible aromatic diamine (1a), which is a highly flexible diamine, which is more flexible than the linear aromatic diamine (1-b), into the above system, The inventors have found a surprising finding that it is possible to obtain a polyamic acid that can suppress the linear expansion coefficient of the film from becoming too high than the target value and has good storage stability.
  • the flexible aromatic diamine (2-a) in the step (2) will be described.
  • the flexible aromatic diamine (2-a) include the same compounds as the diamine compounds exemplified as the flexible aromatic diamine (1-a). These can be used alone or in combination of two or more. Among these, 2, 2 bis (4 aminophenoxyphenol) propane and 4, 4, 1-diaminodiphenol propane are more preferred from the viewpoint of achieving the target alkali resistance. 4-aminophenol) propane is particularly preferably used.
  • the number of the flexible groups in the flexible aromatic diamine (2-a) used in the step (2) is used in the step (1).
  • the number is preferably larger than the number of flexible groups in the flexible aromatic diamine (1a).
  • the number of flexible groups in the flexible aromatic diamine (2-a) is more preferably 2 or more.
  • the amount of the flexible aromatic diamine (2-a) used is 10% on the basis of all diamine components used in the synthesis of polyamic acid from the viewpoint of suppression of breakage during film formation and linear expansion coefficient. Preferably it is in the range of ⁇ 40 mol%, more preferably in the range of 20-30 mol%.
  • the aromatic acid dianhydride (2-c) in the step (2) is exemplified by the same acid dianhydride compounds exemplified as the aromatic acid dianhydride (1c). it can. These can be used singly or in combination of two or more.
  • the amount of the aromatic dianhydride (2-c) used is preferably 15 to 60 mol% based on the total acid dianhydride component used in the synthesis of the polyamic acid. More preferred is 50mol%. If the amount of aromatic dianhydride (2-c) used is less than 15 mol%, the storage modulus of the film in the high temperature region may become too low, making film formation difficult, and conversely exceeding 60 mol%. And the linear expansion coefficient of the film deviates from the preferred range. In some cases, it takes time to reach a saturated moisture absorption state.
  • the flexible aromatic diamine (2-a) and the aromatic dianhydride (2-c) in the step (2) are the diamine component and acid dianhydride used in all steps of the polyamic acid synthesis. It is necessary to add the physical components so as to be substantially equimolar to form a block.
  • substantially equimolar means that the total diamine component is used in the range of 49.5 to 50.5 mol% with respect to the sum of the total diamine component and the total acid dianhydride component.
  • the total amount of diamine components is less than 49.5 mol%, it may be difficult to produce stably, and if it exceeds 50.5 mol%, the viscosity of the polyamic acid becomes too high, resulting in defects in the polyimide film. Tend to be easier to make.
  • step (1) and step (2) performed in the synthesis of polyamic acid will be described.
  • a flexible aromatic diamine (1-a), a linear aromatic diamine (1 b), and an aromatic acid dianhydride (1 c) are compared.
  • a rigid, non-thermoplastic polyimide block is formed to prevent the final polyimide film from having an excessively high linear expansion coefficient.
  • Block obtained by copolymerizing the aromatic aromatic diamine (2-a) and aromatic acid dianhydride (2-c) to form a relatively soft block can achieve the target linear expansion coefficient of the polyimide film.
  • the blocking force obtained by the step (1) is preferably in the range of 40 to 90 mol% based on the total polyamic acid, and in the range of 50 to 80 mol%. It is more preferable. If the block obtained by the step (1) is less than 40 mol%, the desired physical properties may not be stably expressed. Conversely, if it exceeds 90 mol%, the polyamic acid is stably produced in continuous production. It may be difficult to get
  • any known method can be used.
  • an aromatic dianhydride and an aromatic diamine are dissolved in an organic solvent,
  • the obtained polyamic acid solution can be produced by stirring under controlled temperature conditions until the polymerization of the acid dianhydride and diamine is completed.
  • These polyamic acid solutions are usually obtained at a concentration of 5 to 35% by weight, preferably 10 to 30% by weight. Generally, when the concentration is in the above range, a polyamic acid solution having an appropriate molecular weight and solution viscosity can be obtained.
  • any known method can be used.
  • any solvent that dissolves the resulting polyamic acid can be used.
  • amide solvents that is, N, N-dimethylformamide, N, N N, N-dimethylformamide and N, N-dimethylacetamide are particularly preferably used, such as —dimethylacetamide and N-methyl-2-pyrrolidone.
  • a filler can be added to the polyamic acid solution for the purpose of improving various properties of the film such as slidability, thermal conductivity, conductivity, and corona resistance.
  • Any material may be used as the filler, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.
  • the particle diameter of the filler is not particularly limited because it is determined by the film characteristics to be modified and the type of filler to be added, but generally the average particle diameter is 0.05. To 100 ⁇ m, preferably 0.1 to 75 ⁇ m, more preferably 0.1 to 50 ⁇ m, and particularly preferably 0.1 to 25 / ⁇ ⁇ . If the particle diameter is below this range, the effect of improving the film properties is hardly exhibited. Conversely, if it exceeds this range, the surface properties may be greatly impaired or the mechanical properties may be greatly deteriorated.
  • the number of added parts of the filler is not particularly limited because the film characteristics to be modified are determined by the filler particle size and the like.
  • the amount of filler added is from 0.01 to 100 parts by weight of LEO, preferably from 0.01 to 90 parts by weight, and more preferably from 0.02 to 80 parts by weight per 100 parts by weight of positive imide. If the amount of filler added is below this range, the effect of reforming by the filler becomes difficult to be exhibited. Conversely, if it exceeds this range, the mechanical properties of the film may be greatly impaired.
  • the filler may be added by (1) adding a reaction solution before or during the polymerization of polyamic acid. How to add, (2) After polymerization is completed, a method of kneading filler using three rolls, etc., (3) A method of preparing a dispersion containing filler and mixing it with a polyamic acid solution, etc. Although a method may be used, the method of mixing the dispersion containing the filler with the polyamic acid solution, particularly the method of mixing just before the film formation is preferable because the contamination by the filler in the production line is minimized. When preparing a dispersion containing a filler, it is preferable to use the same solvent as the polymerization solvent for the polyamic acid. Further, in order to disperse the filler satisfactorily and stabilize the dispersion state, it is possible to use a dispersant, a thickener, etc. within a range that does not affect the film properties.
  • a conventionally known method can be used without any particular limitation. Examples of this method include a thermal imidization method and a chemical imidization method, but imidization by a chemical imidation method is preferable in terms of thermal dimensional stability and mechanical strength.
  • the method for producing a polyimide film includes the following steps.
  • a polyamic acid solution is mixed with a dehydrating agent typified by an acid anhydride such as acetic anhydride, and an imidic acid catalyst typified by a tertiary amine such as isoquinoline, ⁇ -picoline, and pyridine. It is a method of acting.
  • a thermal imidization method may be used in combination with the chemical imidization method. The heating conditions can vary depending on the type of polyamic acid, the thickness of the film, and the like.
  • a film-forming dope can be obtained by mixing the dehydrating agent and the imido catalyst at a low temperature in a polyamic acid solution. Subsequently, this dope is applied to a glass plate, aluminum foil, endless stainless steel. Casting in the form of a film on a support such as a les belt or stainless drum, and heating on the support in a temperature range of 80 ° C to 200 ° C, preferably 100 ° C to 180 ° C. After partially curing and Z or drying by activating the imidization catalyst, the support force can be peeled off to obtain a polyamic acid film (hereinafter referred to as gel film! /).
  • the gel film is in an intermediate stage of curing to polyamic acid polyimide and has a self-supporting property.
  • the calculated volatile content is in the range of 5 to 500%. Preferably it is 5 to 100%, more preferably 10 to 80%, and most preferably 30 to 60%. It is preferable to use a film in this range, and if it is removed, the mechanical strength of the polyimide film may be lowered.
  • a and B represent the following.
  • the end of the gel film is fixed and dried while avoiding shrinkage during curing, water, residual solvent, residual dehydrating agent and imidization catalyst are removed, and the remaining amic acid unit is completely removed.
  • the polyimide film of the present invention can be obtained by imidization.
  • the heat treatment can be performed under the minimum tension necessary for transporting the film.
  • This heat treatment may be performed in the film manufacturing process, or may be provided separately.
  • the heating conditions vary depending on the film characteristics and the equipment used, and therefore cannot be determined in general. Generally 200 ° C to 500 ° C, preferably 250 ° C to 500 ° C, particularly preferred
  • the internal stress can be relieved by heat treatment at a temperature of 300 ° C. or higher and 450 ° C. or lower for 1 to 300 seconds, preferably 2 to 250 seconds, and particularly preferably 5 to 200 seconds.
  • the film can be stretched before and after fixing the gel film. At this time, preferred!
  • the volatile content is 30 to 200%, preferably 50 to 150%. If the volatile content is below this range, it may be difficult to stretch, and if it exceeds this range, the self-supporting property of the film is poor, and the stretching operation itself may be difficult.
  • Stretching may be performed using a well-known and well-known method such as a method using a differential roll or a method of widening the fixing interval of the tenter.
  • the average linear expansion coefficient of force preferably 18 ⁇ 25 X 10- 6 cm / cm / ° range C in 100 to 200 ° C, more preferably 20 ⁇ 23 X 10- 6 cm /
  • Elastic modulus is preferably 4.0-10.
  • OGPa more preferably 4.5-7.
  • OGPa and (3) Thickness is 10-125 m, preferably ⁇ .
  • a polyimide film of 35 to: LOO m, more preferably 50 to 75 m, can be suitably obtained.
  • Non-thermoplastic refers to a material that melts and maintains the shape of the film when it is heated to about 450-500 ° C. Therefore, the polyimide film should be designed so that it becomes non-thermoplastic by the above-mentioned yarn formation.
  • the polyimide film of the present invention is suitably used as a base material for TAB tape.
  • the adhesive is completely dried after being completely cured, and humidity is adjusted at 60% RH and a temperature of 23 ° C. Saturated moisture absorption when the amount of warpage no longer changes If the amount of warpage in the dry state Xi force Warp change time until the amount of warpage Xe in the saturated moisture absorption state (time from XI to Xe) is within 6 hours Preferably, it is within 5 hours, particularly preferably within 4 hours.
  • Warp change time exceeds the above range, a photomask exposure failure or etching failure occurs during notching due to a dimensional change due to warpage change during the processing process. There is a tendency for defects due to warping to occur, such as good and poor alignment during semiconductor mounting.
  • a polyimide film having a thickness change of 5% or less when immersed in a 20 ° C IN sodium hydroxide aqueous solution for 6 hours can be obtained.
  • a polyimide film having a thickness change of 5% or less when immersed in an aqueous sodium hydroxide solution for 30 minutes can be obtained.
  • the dimensional change rate when immersed in an aqueous solution of sodium hydroxide and sodium hydroxide at 20 ° C IN for 6 hours is 0.05% or less in both the film flow direction (MD direction) and the MD direction (TD direction).
  • MD direction film flow direction
  • TD direction MD direction
  • linear expansion coefficient, elastic modulus, warpage measurement, and storage stability evaluation method in the synthesis examples, examples, and comparative examples are as follows.
  • the linear expansion coefficient at 100 to 200 ° C was measured using a TMA120C manufactured by Seiko Electronics Co., Ltd. (sample size width 3 mm, length 10 mm), 10 ° C to 400 ° at 10 ° C / min with a load of 3 g. The temperature is raised to C once, then cooled to 10 ° C, further heated at 10 ° C / min, and the average value is determined from the coefficient of thermal expansion at 100 ° C and 200 ° C during the second temperature increase. As calculated.
  • the elastic modulus was measured according to ASTM D882.
  • the resulting polyamic acid is allowed to stand at 15 ° C for 4 hours, and then subjected to a leaf filter (leaf diameter: 15 inches, number of leaves: 100 sheets, opening size: 3 m).
  • the storage stability when the filtration time twice as long as the initial filtration time was required was evaluated as NG, and the others were evaluated as good (OK).
  • the value of warpage is 40mm in length X 35mm in width for TAB tape created by the following procedure.
  • the cut and vacuum dried (0. lMPa, 2 hours) state was completely dried, left on a flat surface, and the height of the four corners was measured.
  • the amount of warping is Xi).
  • the amount of warpage was measured while adjusting the humidity of a vacuum-dried sample at a humidity of 60% RH and a temperature of 23 ° C, and the point when the amount of warpage stopped changing was regarded as a saturated moisture absorption state. To do).
  • a TAB tape was prepared as follows.
  • Polyamide resin (Platabond M1276 from Nippon Rilsan) 50 parts by weight, Bisphenol A type epoxy resin (Epicoat 828 from Yuka Shell Epoxy) 30 parts by weight, Cresol novolac epoxy resin 10 parts by weight, toluene
  • An adhesive solution was prepared by mixing 150 parts by weight of a 1Z1 mixed solution of Z isopropyl alcohol with 45 parts by weight of a 20% by weight methylceosolve solution of diaminodiphenylsulfone Z dicyandiamide 4Z1.
  • the adhesive solution was applied on a 25 ⁇ m thick PET film to a thickness of 11 m after drying, and dried at 120 ° C. for 2 minutes.
  • This PET film with B-stage adhesive was slit to a width of 26 mm.
  • the above copper bonded product is heated in steps of 60 ° C for 3 hours, 80 ° C for 3 hours, 120 ° C for 3 hours, 140 ° C for 3 hours, 160 ° C for 4 hours, and then slowly cooled.
  • the adhesive was cured.
  • the 5 ⁇ 5 cm sample was obtained from the following formula from the thickness before and after immersing the sample in a sodium hydroxide aqueous solution.
  • Table 1 shows the results of evaluating film physical properties and storage stability.
  • Table 1 shows the results of evaluating film physical properties and storage stability.
  • TAB tape was prepared according to the reference example.
  • Table 2 shows the characteristics of TAB tape.
  • a film was formed in the same manner as in Example 1, but the film was brittle and fractured in the tenter furnace.
  • Table 3 shows the characteristics of the polyimide film evaluated at the part where the film was formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

A polyimide film suitable for use as, e.g., a base film for the TAB technique. The polyimide film is obtained from a polyamic acid solution as a precursor, and is characterized in that the polyamic acid is obtained by (1) forming a block from at least one flexible aromatic diamine (1-a), at least one linear aromatic diamine (1-b), and at least one aromatic acid dianhydride (1-c) and (2) subsequently adding at least one flexible aromatic diamine (2-a) and at least one aromatic acid dianhydride (2-c) so that the molar amount of the diamine ingredients added in all steps is substantially equal to that of the acid dianhydride ingredients added in all steps to thereby form a block.

Description

明 細 書  Specification
ポリイミドフィルム  Polyimide film
技術分野  Technical field
[0001] 本発明は、様々な電子機器の軽量、小型化に伴い、絶縁材料として多用されるよう になってきたポリイミドフィルムに関する。さらに詳細には、ポリイミドフィルムの様々な 用途の中で、フレキシブルプリント基板、特に TAB (Tape Automated Bonding)方式 のベースフィルムとして好適に用いることのできるポリイミドフィルムに関する。  TECHNICAL FIELD [0001] The present invention relates to a polyimide film that has been widely used as an insulating material in accordance with the reduction in weight and size of various electronic devices. More specifically, the present invention relates to a polyimide film that can be suitably used as a flexible printed circuit board, particularly a TAB (Tape Automated Bonding) type base film, in various uses of polyimide films.
背景技術  Background art
[0002] 従来、フレキシブルプリント配線板 (以下、 FPCと 、う。)は、そのフレキシビリティを 活かし、主にカメラ内部の狭いスペースに折り畳まれて用いられてきた。し力し近年、 フレキシブルディスクドライブ、ハードディスクドライブ、コピー機、プリンタなどの駆動 部に使われるようになり、摺動屈曲特性の更なる向上が要求されるようになってきた。 ベースフィルムのフレキシビリティを高くするには、化学構造的に屈曲性の高いポリィ ミドからなるフィルムを用いればょ 、が、一般に屈曲性の高!、ポリイミドは線膨張係数 が大き 、ため、該ポリイミドフィルムを絶縁材として用いたフレキシブルプリント基板は 反りやカールを生じやすいという欠点を有している。また、逆に線膨張係数が小さい ポリイミドを選択した場合はフィルム自体の可とう性が失われ非常に脆弱となり、得ら れる FPCの屈曲性までも低下してしまうと!、う問題があった。  Conventionally, flexible printed wiring boards (hereinafter referred to as FPCs) have been used by being folded mainly in a narrow space inside the camera, taking advantage of their flexibility. In recent years, however, it has come to be used in drive units of flexible disk drives, hard disk drives, copiers, printers, etc., and further improvements in sliding and bending characteristics have been demanded. In order to increase the flexibility of the base film, a film made of a polyimide having a high chemical structural flexibility is generally used. However, since the flexibility is generally high, polyimide has a large linear expansion coefficient. A flexible printed circuit board using a film as an insulating material has a drawback that it tends to be warped and curled. On the other hand, if a polyimide with a small linear expansion coefficient is selected, the flexibility of the film itself is lost and the film becomes very fragile, and the flexibility of the resulting FPC also decreases! .
[0003] また近年、半導体デバイスの多ピン化、小型化、高密度実装に対応できる技術とし て、長尺の絶縁フィルムに LSI等の半導体チップを載置するための孔 (デバイスホー ル)を設け、その上に非常に薄い銅箔リードを形成し、このリードを介して LSI等とプリ ント配線板などを接続する TAB技術が注目されて 、る。このような TAB技術にぉ ヽ て、一般に保護層、接着剤層、及び有機絶縁フィルム層(ベースフィルム層)の 3層構 造力 なるフィルムキャリアテープ (FCテープ)が用いられており、 FCテープを加工し た TABテープ上に LSIを実装するまでの加工工程は以下のようにして行われる。  [0003] In recent years, as a technology that can cope with the increase in the number of pins, miniaturization, and high-density mounting of semiconductor devices, holes (device holes) for mounting semiconductor chips such as LSIs on long insulating films have been provided. Attention has been focused on the TAB technology in which a very thin copper foil lead is formed on top of this and the LSI is connected to a printed wiring board via this lead. In general, TAB technology uses a film carrier tape (FC tape) that has a three-layer structure of a protective layer, an adhesive layer, and an organic insulating film layer (base film layer). The processing steps until the LSI is mounted on the TAB tape that has been processed are as follows.
[0004] すなわち、 TABテープの加工工程は、(1)パンチングによりスプロケットホール、デ バイスホールを形成する工程、(2)保護層を除去し銅箔をラミネートした後、接着剤を 硬化する工程、(3)配置パターン形成工程 (レジスト塗布、銅のエッチング、レジスト 剥離)、(4)メツキ処理工程、(5)インナーリードボンディング工程、(6)榭脂封止工程 、(7)パンチング工程、(8)アウターリードボンディング工程の 8工程で行われ、以上 の加工工程を経て、 LSIが実装されるのである。 [0004] That is, the process of processing the TAB tape includes (1) a process of forming sprocket holes and device holes by punching, and (2) removing the protective layer and laminating the copper foil, and then applying the adhesive. Curing process, (3) arrangement pattern formation process (resist coating, copper etching, resist stripping), (4) plating process, (5) inner lead bonding process, (6) grease sealing process, (7) This is done in 8 steps: punching process, (8) outer lead bonding process, and LSI is mounted through the above processing steps.
[0005] これらカ卩ェ工程において、実装不良を起こす最も大きな原因の一つとして、フレキ シブル銅張積層板 (FCCL)や TABテープの反りやカールが挙げられる。反りやカー ルは、配置パターン形成、インナーリードボンディングやアウターリードボンディングな どのように寸法精度を要求されるような工程で、配置パターンの形成不良や半導体 チップの接合不良などを引き起こす。また、実際の工程はリールトウリールで行われ、 TABテープの長手方向には張力が力かるため、長手方向の反りやカールは矯正す ることができるが、テープ幅方向の反りやカールを矯正することはできない。このような 不都合を生じさせないためには、具体的には TABテープの加工において、設計され た線膨張係数、弾性率を有するベースフィルムが必要となる。  [0005] In these cache processes, one of the biggest causes of mounting defects is warping and curling of flexible copper clad laminates (FCCL) and TAB tape. Warpage and curl cause defective formation of the arrangement pattern and poor bonding of the semiconductor chip in processes that require dimensional accuracy such as formation of the arrangement pattern, inner lead bonding, and outer lead bonding. In addition, the actual process is performed with a reel reel, and tension is applied in the longitudinal direction of the TAB tape, so that warping and curling in the longitudinal direction can be corrected, but warping and curling in the tape width direction are corrected. I can't do it. In order to prevent such inconvenience, specifically, a base film having a designed linear expansion coefficient and elastic modulus is required in the processing of TAB tape.
[0006] これまで、 TABテープの特性として、反りの抑制や線膨張係数の制御が注目され、 TABテープの基材として適切な線膨張係数を有するポリイミドフィルムや、反りの発 生の少ないポリイミドフィルムが提案されてきた。そして、 3, 3' , 4, 4'一べンゾフエノ ンテトラカルボン酸二無水物を用いたポリイミドフィルムを TAB用ベースフィルムとし て用いることが開示されている (特許文献 1、 2参照)。  [0006] Up to now, the suppression of warping and the control of the linear expansion coefficient have attracted attention as the characteristics of TAB tape, and polyimide films having an appropriate linear expansion coefficient as a base material for TAB tape and polyimide films with less warpage Has been proposed. In addition, it is disclosed that a polyimide film using 3, 3 ′, 4, 4 ′ monobenzophenone tetracarboxylic dianhydride is used as a base film for TAB (see Patent Documents 1 and 2).
[0007] しかし、 TABテープの工業的な生産という観点から、アプローチされたものは少なく 、工業的生産における反り量のバラツキにっ 、ては認識されて 、な 、。  [0007] However, from the viewpoint of industrial production of TAB tape, few approaches have been made, and the variation in warpage in industrial production has been recognized.
[0008] また熱的寸法安定性、吸水特性、機械特性の改善に対し、例えば p—フヱ-レンジ ァミンとピロメリット酸二無水物により剛直な非熱可塑性ポリイミドのブロック成分を含 有させたポリイミドフィルムによりこれら特性を達成する技術が開示されて 、る(特許 文献 3乃至 5参照)。しかし、これらはポリイミド前駆体溶液であるポリアミド酸溶液の 貯蔵安定性が悪ぐ分子量制御などを行って貯蔵安定性を改善しない限り安定的に 工業生産することは困難であった。  [0008] In addition, for the improvement of thermal dimensional stability, water absorption characteristics, and mechanical characteristics, for example, a block component of rigid non-thermoplastic polyimide is included by p-phenol-diamine and pyromellitic dianhydride. A technique for achieving these characteristics by using a polyimide film is disclosed (see Patent Documents 3 to 5). However, it has been difficult to stably industrially produce these unless the storage stability is improved by controlling the molecular weight of the polyamic acid solution, which is a polyimide precursor solution, which has poor storage stability.
[0009] 一方、 TABテープの製造工程では金めつきの工程があり、アルカリ性のめっき液に 浸漬する工程を経る。従って、ポリイミドフィルムを TAB用途に用いる場合は、線膨張 係数や反りといった基本的な特性を満足することはもちろんである力 アルカリのめつ き液に浸漬しても十分耐えうる材料である必要がある。 [0009] On the other hand, in the manufacturing process of TAB tape, there is a process of gold plating, and a process of immersing in an alkaline plating solution is performed. Therefore, when polyimide film is used for TAB applications, linear expansion Needless to say, the material must be able to withstand basic characteristics such as modulus and warpage, even when immersed in an alkaline solution.
[0010] し力しながら、従来、このような特性にまで着目してポリイミドフィルムの設計が行わ れることはなぐ現実にはアルカリ耐性は十分ではなぐアルカリ性のめっき液に浸漬 した場合には、銅箔との接着強度が低下する、寸法が変化するなど信頼性を落とし てしまうといった問題があった。  [0010] However, in the past, polyimide films have never been designed by focusing on such characteristics, and in reality, when immersed in an alkaline plating solution that has insufficient alkali resistance, copper There was a problem that reliability was lowered such as a decrease in adhesive strength with the foil and a change in dimensions.
特許文献 1:特開平 9— 328544号公報  Patent Document 1: Japanese Patent Laid-Open No. 9-328544
特許文献 2:特開 2004 - 124091号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-124091
特許文献 3 :特開 2000— 80178号公報  Patent Document 3: Japanese Patent Laid-Open No. 2000-80178
特許文献 4:特開 2000— 119521号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2000-119521
特許文献 5:特開 2006 - 96919号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2006-96919
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明の課題は、例えば、フレキシブルプリント基板、特に TAB方式のベースフィ ルムに用いることができ、問題となる伸びが生じることがなぐ反りやカールの発生が 抑制されたポリイミドフィルムを提供することにあり、ポリイミドの前駆体であるポリアミド 酸の重合において安定した連続生産が可能となる、貯蔵安定性に優れたポリアミド 酸を用いてポリイミドフィルムを得ることにある。さらに、アルカリ性のめっき液にさらさ れながらも接着強度の低下や寸法変化などを起こさない TAB用ベースフィルムに好 適に使用できるポリイミドフィルムを提供することにある。 [0011] An object of the present invention is to provide a polyimide film that can be used for, for example, a flexible printed circuit board, in particular, a TAB-type base film, and in which warpage and curling are suppressed without causing problematic elongation. In particular, it is to obtain a polyimide film using a polyamic acid having excellent storage stability, which enables stable continuous production in the polymerization of polyamic acid, which is a polyimide precursor. It is another object of the present invention to provide a polyimide film that can be suitably used for a TAB base film that does not cause a decrease in adhesive strength or dimensional change while being exposed to an alkaline plating solution.
課題を解決するための手段  Means for solving the problem
[0012] 上記状況に鑑み、本発明者らは鋭意検討を行った結果、以下の構成により本発明 の課題を解決できることを見出し、本発明を完成するに至ったのである。  In view of the above situation, as a result of intensive studies, the present inventors have found that the following problems can solve the problems of the present invention, and have completed the present invention.
[0013] 即ち本発明は、ポリアミド酸溶液を前駆体として用いて得られるポリイミドフィルムで あって、前記ポリアミド酸が、(1)少なくとも一種類の屈曲性芳香族ジァミン(1— a)お よび少なくとも一種類の直線性芳香族ジァミン(1 b)並びに少なくとも一種類の芳 香族酸二無水物( 1 c)を用 、て構成されるブロックを形成した後、(2)少なくとも一 種類の屈曲性芳香族ジァミン (2— a)並びに少なくとも一種類の芳香族酸二無水物( 2— c)を、全工程におけるジァミン成分と酸二無水物成分が実質的に等モルとなるよ うに添加してブロックを形成して得られることを特徴とする、ポリイミドフィルムに関する [0013] That is, the present invention is a polyimide film obtained using a polyamic acid solution as a precursor, wherein the polyamic acid comprises (1) at least one flexible aromatic diamine (1-a) and at least After forming a block composed of one kind of linear aromatic diamine (1 b) and at least one kind of aromatic dianhydride (1 c), (2) at least one kind of flexibility Aromatic diamine (2—a) and at least one aromatic dianhydride ( A polyimide film characterized by being obtained by forming a block by adding 2-c) so that the diamine component and the acid dianhydride component in all steps are substantially equimolar.
[0014] 好ましい実施態様は、前記屈曲性芳香族ジァミン(1 a)中に含まれる屈曲性基の 数が、屈曲性芳香族ジァミン (2— a)中に含まれる屈曲性基の数よりも少ないことを特 徴とする、前記のポリイミドフィルムに関する。 [0014] In a preferred embodiment, the number of the flexible groups contained in the flexible aromatic diamine (1a) is greater than the number of the flexible groups contained in the flexible aromatic diamine (2-a). It is related with the said polyimide film characterized by few.
[0015] 好ま 、実施態様は、前記屈曲性芳香族ジァミン( 1 a)が屈曲性基を一つ有し、 屈曲性芳香族ジァミン (2— a)が屈曲性基を二以上有することを特徴とする、前記の ポリイミドフィルムに関する。 [0015] Preferably, the embodiment is characterized in that the flexible aromatic diamine (1a) has one flexible group, and the flexible aromatic diamine (2-a) has two or more flexible groups. And relates to the polyimide film.
[0016] 好ましい実施態様は、前記屈曲性芳香族ジァミン(1 a)力 4, 4'ージアミノジフエ ニルエーテルを含むことを特徴とする、前記のポリイミドフィルムに関する。 [0016] A preferred embodiment relates to the polyimide film, characterized in that it comprises the flexible aromatic diamine (1a) force 4, 4'-diaminodiphenyl ether.
[0017] 好ましい実施態様は、前記屈曲性芳香族ジァミン(1— a)が、全ジァミン成分を基 準として 10〜50mol%の範囲であることを特徴とする、前記のポリイミドフィルムに関 する。 [0017] A preferred embodiment relates to the polyimide film, wherein the flexible aromatic diamine (1-a) is in the range of 10 to 50 mol% based on the total diamine component.
[0018] 好ましい実施態様は、前記屈曲性芳香族ジァミン(2— a)力 2, 2 ビス (4ーァミノ フエノキシフエニル)プロパンを含むことを特徴とする、前記のポリイミドフィルムに関す る。  [0018] A preferred embodiment relates to the polyimide film, characterized in that it comprises the flexible aromatic diamine (2-a) force 2, 2 bis (4-aminophenoxyphenyl) propane.
[0019] 好ましい実施態様は、前記屈曲性芳香族ジァミン (2— a)が、全ジァミン成分を基 準として 10〜40mol%の範囲であることを特徴とする、前記のポリイミドフィルムに関 する。  [0019] A preferred embodiment relates to the polyimide film, wherein the flexible aromatic diamine (2-a) is in the range of 10 to 40 mol% based on the total diamine component.
[0020] 好ましい実施態様は、前記芳香族酸二無水物(2— c)が、 3, 3 ' , 4, 4'一べンゾフ エノンテトラカルボン酸二無水物を含むことを特徴とする、前記のポリイミドフィルムに 関する。  [0020] In a preferred embodiment, the aromatic dianhydride (2-c) includes 3, 3 ', 4, 4' monobenzophenone tetracarboxylic dianhydride, Related to polyimide film.
[0021] 好ましい実施態様は、前記芳香族酸二無水物(2— c)が、全酸二無水物成分を基 準として 15〜60mol%の範囲であることを特徴とする、前記のポリイミドフィルムに関 する。  In a preferred embodiment, the polyimide film is characterized in that the aromatic acid dianhydride (2-c) is in a range of 15 to 60 mol% based on the total acid dianhydride component. Concerning.
[0022] 好ましい実施態様は、前記(1)により得られるブロック力 全ポリアミド酸を基準とし て 40〜90mol%の範囲であることを特徴とする、前記のポリイミドフィルムに関する。 [0023] 好ま ヽ実施態様は、 TABテープの基材として用いられることを特徴とする、前記 のポリイミドフィルムに関する。 [0022] A preferred embodiment relates to the polyimide film, wherein the blocking force obtained by (1) is in the range of 40 to 90 mol% based on the total polyamic acid. [0023] Preferably, the embodiment relates to the polyimide film described above, which is used as a base material for a TAB tape.
[0024] 好ましい実施態様は、ポリアミド酸をィ匕学的に転ィ匕して得られることを特徴とする、 前記のポリイミドフィルムに関する。 [0024] A preferred embodiment relates to the polyimide film described above, wherein the polyimide film is obtained by chemically converting polyamic acid.
[0025] 好ましい実施態様は、 100〜200°Cにおける平均線膨張係数が 18〜25 X 10"6cm[0025] In a preferred embodiment, the average linear expansion coefficient at 100 to 200 ° C is 18 to 25 X 10 " 6 cm.
ZcmZ°Cであることを特徴とする、前記のポリイミドフィルムに関する。 The present invention relates to the polyimide film, characterized by being ZcmZ ° C.
[0026] 好ましい実施態様は、弾性率が 4. OGPa以上であることを特徴とする、前記のポリ イミドフィルムに関する。 [0026] A preferred embodiment relates to the polyimide film, wherein the elastic modulus is 4. OGPa or more.
[0027] 好ましい実施態様は、 20°C INの水酸ィ匕ナトリウム水溶液に 6時間浸漬した際の 厚み変化量が 5%以下であることを特徴とする、前記のポリイミドフィルムに関する。 [0027] A preferred embodiment relates to the above polyimide film, characterized in that the amount of change in thickness when immersed in a 20 ° C IN sodium hydroxide aqueous solution for 6 hours is 5% or less.
[0028] 好ましい実施態様は、 60°C 2Nの水酸ィ匕ナトリウム水溶液に 30分浸漬した際の厚 み変化量が 5%以下であることを特徴とする、前記のポリイミドフィルムに関する。 [0028] A preferred embodiment relates to the above polyimide film, characterized in that the amount of change in thickness when immersed in an aqueous solution of sodium hydroxide and sodium hydroxide at 60 ° C for 2 minutes is 5% or less.
[0029] 好ましい実施態様は、 20°C INの水酸ィ匕ナトリウム水溶液に 6時間浸漬した際の 寸法変化率が、フィルムの流れ方向(MD方向)、 MD方向と垂直な方向(TD方向) ともに 0. 05%以下であることを特徴とする、前記のポリイミドフィルムに関する。 [0029] In a preferred embodiment, the dimensional change rate when immersed in an aqueous solution of sodium hydroxide and sodium hydroxide at 20 ° C IN for 6 hours is the film flow direction (MD direction) and the direction perpendicular to the MD direction (TD direction). Both are 0.05% or less of the above polyimide film.
発明の効果  The invention's effect
[0030] 本発明によれば、ポリイミドの前駆体であるポリアミド酸の重合にぉ 、て安定した連 続生産が可能となる、貯蔵安定性に優れたポリアミド酸を得ることができる。当該ポリ アミド酸を用いて得られた本発明に係るポリイミドフィルムをフレキシブルプリント基板 、特に TAB方式のベースフィルムとして用いた場合、問題となる伸びが生じることなく 、反りやカールの発生も抑制できる。さらに、アルカリ性のめっき液にさらされた場合 でも、接着強度の低下や寸法変化などを抑制できる。  [0030] According to the present invention, a polyamic acid excellent in storage stability can be obtained, which enables stable continuous production while polymerization of polyamic acid which is a precursor of polyimide. When the polyimide film according to the present invention obtained using the polyamic acid is used as a flexible printed circuit board, particularly as a TAB-type base film, the occurrence of warpage and curling can be suppressed without causing problematic elongation. Furthermore, even when exposed to an alkaline plating solution, it is possible to suppress a decrease in adhesive strength, dimensional change, and the like.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 本発明のポリイミドフィルムは、特定のポリアミド酸溶液を前駆体として用いて得られ るものであって、前記ポリアミド酸が、(1)少なくとも一種類の屈曲性芳香族ジァミン( 1 -a)および少なくとも一種類の直線性芳香族ジァミン(1—b)並びに少なくとも一種 類の芳香族酸二無水物(1—c)を用いて構成されるブロックを形成した後、 (2)少なく とも一種類の屈曲性芳香族ジァミン (2— a)並びに少なくとも一種類の芳香族酸二無 水物(2— c)を、全工程におけるジァミン成分と酸二無水物成分が実質的に等モルと なるように添加してブロックを形成して得られることを特徴とするものである。 [0031] The polyimide film of the present invention is obtained using a specific polyamic acid solution as a precursor, and the polyamic acid comprises (1) at least one flexible aromatic diamine (1-a ) And at least one linear aromatic diamine (1-b) and at least one aromatic dianhydride (1-c), and (2) at least one One kind of flexible aromatic diamine (2-a) and at least one kind of aromatic acid The water product (2-c) is obtained by adding the diamine component and the acid dianhydride component in all steps so as to be substantially equimolar to form a block.
[0032] 当該ポリアミド酸は貯蔵安定性が良好であり、また当該ポリアミド酸を前駆体として 得られたポリイミドフィルムは、反りやカールの発生等が抑制されるため、ポリイミドフィ ルムを安定的に連続生産できることを特徴として 、る。 [0032] The polyamic acid has good storage stability, and the polyimide film obtained using the polyamic acid as a precursor suppresses the occurrence of warpage and curling. It is characterized by being able to produce.
[0033] 以下、本発明の実施の一形態について、具体的に説明する。 Hereinafter, an embodiment of the present invention will be specifically described.
[0034] (ポリアミド酸の合成) [0034] (Synthesis of polyamic acid)
本発明にお 、て、ポリイミドフィルムの前駆体として用いることのできるポリアミド酸を 製造する際に用いられるモノマー等について説明する。  In the present invention, a monomer and the like used in producing a polyamic acid that can be used as a precursor of a polyimide film will be described.
[0035] 前記ポリアミド酸の製造において、まず(1)工程で、少なくとも一種類の屈曲性芳香 族ジァミン( 1 a)および少なくとも一種類の直線性芳香族ジァミン( 1 b)並びに少 なくとも一種類の芳香族酸二無水物( 1 c)を用 ヽて構成されるブロックを形成するこ とを要する。 [0035] In the production of the polyamic acid, first, in step (1), at least one kind of flexible aromatic diamine (1a), at least one kind of linear aromatic diamine (1b) and at least one kind are used. It is necessary to form a block composed of the aromatic dianhydride (1c).
[0036] ここで、本発明における屈曲性芳香族ジァミン(1— a)とは、エーテル基、メチレン 基、プロパギル基、へキサフルォロプロパギル基、カルボニル基、スルホン基、スルフ イド基、エステル基などの屈曲性基を主鎖中に含むジァミン、または主鎖中に屈曲性 基を含まな 、場合は、 2個のアミノ基の窒素原子とそれらと結合する炭素原子が一直 線に並ばない構造を有するジァミンィ匕合物を意味する。  Here, the flexible aromatic diamine (1-a) in the present invention means an ether group, a methylene group, a propargyl group, a hexafluoropropargyl group, a carbonyl group, a sulfone group, a sulfide group, Diamine containing a flexible group such as an ester group in the main chain, or if the main chain does not contain a flexible group, the nitrogen atoms of the two amino groups and the carbon atom bonded to them are aligned. A diamine compound having no structure.
[0037] より具体的には、例えば、 2, 2 ビス(4ーァミノフエノキシフエ-ル)プロパン、 4, 4, —ジアミノジフエ-ルエーテル、 1, 3 ビス(4 アミノフエノキシ)ベンゼン、 1, 3 ビ ス(3—アミノフエノキシ)ベンゼン、 4, 4,一ビス(3—アミノフエノキシ)ビフエ-ル、 4, 4,一ビス(4 アミノフエノキシ)ビフエ-ル、ビス(4一(4 アミノフエノキシ)フエニル) スルホン、ビス(4— (3—アミノフエノキシ)フエ-ル)スルホン、 4, 4'—ジアミノジフエ ニルプロパン、 4, 4'ージアミノジフエニルメタン、 4, 4'ージアミノジフエニルスルフィ ド、 3, 3,ージアミノジフエニルスルホン、 4, 4'ージアミノジフエニルスルホン、 3, 3, ォキシジァニリン、 3, 4' ォキシジァニリン、 2, 4' ォキシジァニリン、 4, 4'ージ アミノジフ 二ルジェチルシラン、 4, 4'ージアミノジフ ニルシラン、 4, 4'ージァミノ ジフエニルェチルホスフィンォキシド、 4, 4'ージアミノジフエニル N—メチルァミン、 4 , 4,ージアミノジフエニル N—フエニルァミン、 1, 3 ジァミノベンゼン、 1, 2 ジアミ ノベンゼン、 1,5-ジァミノナフタレン、 5 アミノー 2— (p ァミノフエ-ル)ベンゾォキ サゾール、 6 アミノー 2— (p ァミノフエ-ル)ベンゾォキサゾール、 5 アミノー 2— (m—ァミノフエ-ル)ベンゾォキサゾール、 6 アミノー 2— (m—ァミノフエ-ル)ベン ゾォキサゾール、 2, 2,一p—フエ-レンビス(5 ァミノベンゾォキサゾール)、 2, 2, —p フエ-レンビス(6—ァミノベンゾォキサゾーノレ)、 1— (5—ァミノべンゾォキサゾ 口) 4一(6 ァミノべンゾォキサゾ口)ベンゼン、 2, 6—(4, 4,ージアミノジフエ-ノレ )べンゾ [1, 2-d : 5, 4 d' ]ビスォキサゾール、 2, 6—(4, 4'ージアミノジフエ-ル) ベンゾ [1, 2— d : 4, 5— d,]ビスォキサゾール、 2, 6— (3, 4,一ジアミノジフエ-ル) ベンゾ [1, 2— d : 5, 4— d' ]ビスォキサゾール、 2, 6— (3, 4' ジアミノジフエ-ル) ベンゾ [1, 2— d : 4, 5— d,]ビスォキサゾール、 2, 6— (3, 3,一ジァミノジフエ-ル) ベンゾ [1, 2— d : 5, 4— d,]ビスォキサゾール、 2, 6— (3, 3,一ジァミノジフエ-ル) ベンゾ [1, 2— d : 4, 5— d' ]ビスォキサゾール、及びそれらの類似物などが挙げられ る。これらは適宜 1種または 2種以上を組み合わせて用いることができる。 [0037] More specifically, for example, 2, 2 bis (4-aminophenoxyphenol) propane, 4, 4, —diaminodiphenyl ether, 1, 3 bis (4 aminophenoxy) benzene, 1, 3 Bis (3-aminophenoxy) benzene, 4,4,1bis (3-aminophenoxy) biphenyl, 4,4,1bis (4 aminophenoxy) biphenyl, bis (4 (4aminophenoxy) phenyl) sulfone, Bis (4- (3-aminophenoxy) phenyl) sulfone, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfide, 3, 3,- Diaminodiphenyl sulfone, 4, 4'-diaminodiphenyl sulfone, 3, 3, oxydianiline, 3, 4 'oxydianiline, 2, 4' oxydianiline, 4, 4'-diaminodiphenyl dijetylsilane, 4, 4'- Aminojifu Nirushiran, 4, 4 'Jiamino diphenyl E chill phosphine O dimethylsulfoxide, 4, 4' over diamino diphenyl N- Mechiruamin, 4 , 4, -Diaminodiphenyl N-phenylamine, 1,3 diaminobenzene, 1,2 diaminobenzene, 1,5-diaminonaphthalene, 5 amino-2— (p aminophenol) benzoxazole, 6 amino-2— (p Aminoamino) benzoxazole, 5 amino-2- (m-aminophenol) benzoxazole, 6-amino-2- (m-aminophenol) benzoxazole, 2,2,1-p-phenolenebis ( 5-Aminobenzoxazole), 2, 2, —p Huerenbis (6-Aminobenzoxazolone), 1— (5-Aminobenzoxazo mouth) 4 1 (6-Aminobenzoxazo mouth) Benzene , 2, 6- (4, 4, Diaminodiphenol) benzo [1, 2-d: 5, 4 d '] bisoxazole, 2, 6- (4, 4' Diaminodiphenol) Benzo [1, 2 — D: 4, 5— d,] bisoxazole, 2, 6— (3, 4, monodiam Diphenyl) benzo [1,2-d: 5,4-d '] bisoxazole, 2,6-(3,4' diaminodiphenyl) benzo [1,2-d: 4,5-d,] bisoxazole , 2, 6- (3, 3, 1-daminodiphenyl) benzo [1, 2- d: 5, 4-d,] bisoxazole, 2, 6- (3, 3, 1-daminodiphenyl) benzo [1, 2—d: 4, 5—d ′] bisoxazole, and the like. These can be used alone or in combination of two or more.
[0038] これら屈曲性芳香族ジァミン(1 a)の中で、ポリアミド酸の貯蔵安定性を向上する 点、 目的とする物性を発現させるといった点から、 4, 4 '—ジアミノジフエ二ルエーテ ル、 3, 3 ' ォキシジァニリン、 3, 4' ォキシジァニリン、 2, 4' ォキシジァニリンが 好ましい。さらに本発明においては、 4, 4'ージアミノジフエ-ルエーテルを用いること 力 前記に加え最終的に目的とするポリイミドフィルムを好適に得ることができる点か らより好ましい。 [0038] Among these flexible aromatic diamines (1a), 4, 4'-diaminodiphenyl ether is used in order to improve the storage stability of the polyamic acid and to develop the desired physical properties. 3, 4 'oxydianiline, 3, 4' oxydianiline, 2,4 'oxydianiline are preferred. Furthermore, in the present invention, it is more preferable to use 4,4′-diaminodiphenyl ether because the final polyimide film can be suitably obtained in addition to the above.
[0039] ポリアミド酸の合成における前記(1)工程で使用する屈曲性芳香族ジァミン(1 a) 中に含まれる屈曲性基の数は、後述する(2)工程で使用する屈曲性芳香族ジァミン (2— a)中に含まれる屈曲性基の数よりも少ないことが好ましい。さらには、屈曲性芳 香族ジァミン( 1— a)中に含まれる屈曲性基の数は 1つであることがより好ま U、。  [0039] The number of the flexible groups contained in the flexible aromatic diamine (1a) used in the step (1) in the synthesis of the polyamic acid is the same as that of the flexible aromatic diamine used in the step (2) described later. The number is preferably smaller than the number of flexible groups contained in (2-a). Furthermore, it is more preferable that the number of the flexible groups contained in the flexible aromatic diamine (1-a) is one U.
[0040] 前記屈曲性芳香族ジァミン(1 a)の使用量としては、ポリアミド酸の貯蔵安定性お よび最終的に得られるポリイミドフィルムの線膨張係数の観点から、ポリアミド酸の合 成に用いる全ジァミン成分を基準として 10〜50mol%の範囲であることが好ましぐ 2 0〜40mol%の範囲であることがより好ましい。 [0041] 本発明において、(1)工程で用いられる直線性芳香族ジァミン(l—b)とは、エーテ ル基、メチレン基、プロパギル基、へキサフルォロプロパギル基、カルボ-ル基、スル ホン基、スルフイド基、エステル基などのような屈曲性基を主鎖中に含まず、かつ 2個 のァミノ基の窒素原子とそれらが結合している炭素原子が一直線に並ぶ構造を有す るジァミンィ匕合物を意味する。 [0040] The amount of the flexible aromatic diamine (1a) used is the total amount used for synthesizing the polyamic acid from the viewpoint of the storage stability of the polyamic acid and the linear expansion coefficient of the finally obtained polyimide film. The range of 10 to 50 mol% based on the diamine component is preferred, and the range of 20 to 40 mol% is more preferred. In the present invention, the linear aromatic diamine (l-b) used in the step (1) is an ether group, a methylene group, a propargyl group, a hexafluoropropargyl group, or a carbo group. In addition, the main chain does not contain a flexible group such as a sulfone group, a sulfide group, or an ester group, and the nitrogen atom of two amino groups and the carbon atom to which they are bonded are aligned. This means the Jiaming compound.
[0042] より具体的には、例えば、 p フエ-レンジァミンおよびその核置換ィ匕合物、ベンジ ジンおよびその核置換ィ匕合物などが挙げられる。これらは適宜 1種または 2種以上を 組み合わせて用いることができる。これら直線性芳香族ジァミン(1—b)の中で、加工 性、取り扱い性、最終的に得られるポリイミドフィルムの特性バランスの面から、 p フ ェニレンジアミンを用いるのが特に好まし 、。  More specifically, for example, p-phenylenediamine and its nuclear substitution compound, benzidine and its nuclear substitution compound and the like can be mentioned. These can be used alone or in combination of two or more. Among these linear aromatic diamines (1-b), it is particularly preferred to use p-phenylenediamine in terms of processability, handleability, and the balance of properties of the final polyimide film.
[0043] 前記直線性芳香族ジァミン(1 b)の使用量は、ポリアミド酸の合成に用いる全ジァ ミン成分を基準として 25〜60mol%の範囲であることが好ましぐさらには 30〜50m ol%の範囲で用いるのがより好ま 、。直線性芳香族ジァミン(1—b)の使用量が上 記範囲を外れると、最終的に得られるポリイミドフィルムの線膨張係数が好ま 、範囲 を逸脱する場合があり、飽和吸湿状態までに時間を要してしまい、反りが安定したフ イルムを連続的に得ることができなくなる場合がある。  [0043] The amount of the linear aromatic diamine (1b) used is preferably in the range of 25 to 60 mol% based on the total diamine components used in the synthesis of the polyamic acid, and more preferably 30 to 50 m. It is more preferable to use in the range of ol%. If the amount of linear aromatic diamine (1-b) used is out of the above range, the linear expansion coefficient of the final polyimide film is preferred and may deviate from the range. In some cases, it is impossible to continuously obtain a film with stable warping.
[0044] また( 1)工程における屈曲性ジァミン( 1 a)と直線性ジァミン( 1 b)の使用比率と しては適宜設定できる力 ポリアミド酸の貯蔵安定性および最終的に得られるポリイミ ドフィルムの線膨張係数の観点から、屈曲性ジァミン(1— a)と直線性ジァミン(1—b) の総和に対して屈曲性ジァミンを 20〜50mol%、好ましくは 30〜40mol%の範囲で 用いるのが好ましい。  [0044] In addition, the use ratio of the flexible diamine (1a) and the linear diamine (1b) in the step (1) can be appropriately set. Storage stability of the polyamic acid and finally obtained polyimide film From the standpoint of the linear expansion coefficient, the flexible diamine should be used in the range of 20-50 mol%, preferably 30-40 mol% with respect to the sum of the flexible diamine (1-a) and linear diamine (1-b). Is preferred.
[0045] 次に、(1)工程で用いることのできる芳香族酸二無水物(1— c)について説明する。  Next, the aromatic dianhydride (1-c) that can be used in the step (1) will be described.
芳香族酸二無水物(1 c)として使用しうる酸二無水物としては、例えば、ピロメリット 酸二無水物、 2, 3, 6, 7 ナフタレンテトラカルボン酸二無水物、 3, 3 ' , 4, 4,ービ フエ-ルテトラカルボン酸二無水物、 1, 2, 5, 6 ナフタレンテトラカルボン酸二無水 物、 2, 2' , 3, 3,ービフエ-ルテトラカルボン酸二無水物、 3, 3 ' , 4, 4,一べンゾフエ ノンテトラカルボン酸二無水物、 2, 2' , 3, 3,一べンゾフエノンテトラカルボン酸二無 水物、 4, 4'ーォキシジフタル酸二無水物、 3, 4'ーォキシジフタル酸二無水物、 2, 2 ビス(3, 4 ジカルボキシフエ-ル)プロパン二無水物、 3, 4, 9, 10 ペリレンテ トラカルボン酸二無水物、ビス(3, 4 ジカルボキシフエ-ル)プロパン二無水物、 1, 1—ビス(2, 3 ジカルボキシフエ-ル)エタンニ無水物、 1, 1—ビス(3, 4 ジカル ボキシフエ-ル)エタンニ無水物、ビス(2, 3 ジカルボキシフエ-ル)メタン二無水物 、ビス(3, 4—ジカルボキシフエ-ル)エタンニ無水物、ビス(3, 4—ジカルボキシフエ -ル)スルホン二無水物、 p フエ-レンビス(トリメリット酸モノエステル酸無水物)、ェ チレンビス(トリメリット酸モノエステル酸無水物)、ビスフエノール Aビス(トリメリット酸モ ノエステル酸無水物)及びそれらの類似物等が挙げられる。これらを単独または任意 の割合で混合して適宜用いることができる。 Examples of the acid dianhydride that can be used as the aromatic dianhydride (1c) include pyromellitic dianhydride, 2, 3, 6, 7 naphthalene tetracarboxylic dianhydride, 3, 3 ', 4, 4, -biphenyl tetracarboxylic dianhydride, 1, 2, 5, 6 naphthalene tetracarboxylic dianhydride, 2, 2 ', 3, 3, -biphenyl tetracarboxylic dianhydride, 3, 3 ', 4, 4, monobenzophenone tetracarboxylic dianhydride, 2, 2', 3, 3, monobenzophenone tetracarboxylic dianhydride, 4, 4'-oxydiphthalic dianhydride 3, 4'-oxydiphthalic dianhydride, 2, 2 Bis (3,4 dicarboxyphenyl) propane dianhydride, 3, 4, 9, 10 Perylenetetracarboxylic dianhydride, Bis (3,4 dicarboxyphenyl) propane dianhydride, 1, 1-bis (2,3 dicarboxyphenol) ethane anhydride, 1,1-bis (3,4 carbonate diphenyl) ethane anhydride, bis (2,3 dicarboxyphenyl) methane dianhydride Bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, p-phenylene bis (trimellitic acid monoester anhydride), Examples include tylene bis (trimellitic acid monoester acid anhydride), bisphenol A bis (trimellitic acid monoester acid anhydride), and the like. These may be used as appropriate, alone or mixed at any ratio.
[0046] これら芳香族酸二無水物( 1 c)の中で、線膨張係数を設定範囲内に制御すると いった観点から、ピロメリット酸二無水物、 2, 2' , 3, 3,—ビフエ-ルテトラカルボン酸 二無水物、 3, 3 ' , 4, 4,一べンゾフエノンテトラカルボン酸二無水物、 2, 2' , 3, 3, 一べンゾフエノンテトラカルボン酸二無水物がより好ましく例示できる。さらにピロメリッ ト酸ニ無水物が特に好まし 、。  [0046] Among these aromatic acid dianhydrides (1c), pyromellitic acid dianhydride, 2, 2 ', 3, 3,-, from the viewpoint of controlling the linear expansion coefficient within the set range. Biphenyltetracarboxylic dianhydride, 3, 3 ', 4, 4, monobenzophenone tetracarboxylic dianhydride, 2, 2', 3, 3, monobenzophenone tetracarboxylic dianhydride A thing can illustrate more preferably. Furthermore, pyromellitic dianhydride is particularly preferred.
[0047] 前記芳香族酸二無水物( 1 c)の使用量は、全酸二無水物成分を基準として 40〜 85mol%、さらには 50〜70mol%の範囲で用いること力 線膨張係数を設定範囲内 に制御すると 、つた観点から好ま 、。  [0047] The amount of the aromatic dianhydride (1c) used is 40 to 85 mol%, more preferably 50 to 70 mol% based on the total acid dianhydride component. Control within the range is preferable from two viewpoints.
[0048] 本発明は、ポリイミドの前駆体であるポリアミド酸の重合方法に特徴があり、特に(1) 工程にお!、て屈曲性芳香族ジァミン(1— a)と直線性芳香族ジァミン(1—b)と芳香 族酸二無水物(1 c)を用いてブロックを形成することに特徴を有する。例えば、直 線性芳香族ジァミン(1 b)と芳香族酸二無水物(1 c)を重合させてポリアミド酸を 合成した場合、それから得られるポリイミドフィルムの線膨張係数は目標とする値より も高くなりすぎることを抑制できる利点があるものの、この 2成分系だけでは得られる ポリアミド酸の貯蔵安定性が低いという問題がある。し力しながら、本発明者らは、直 線性芳香族ジァミン(1—b)よりも屈曲性の高 ヽジァミンである屈曲性芳香族ジァミン (1 a)を上記系に共重合させることで、フィルムの線膨張係数が目標とする値よりも 高くなりすぎることを抑制でき、且つ貯蔵安定性のよいポリアミド酸を得ることが可能と なるという驚くべき知見を見出したのである。 [0049] 次に、前記(2)工程における屈曲性芳香族ジァミン(2— a)について説明する。屈 曲性芳香族ジァミン(2— a)としては、屈曲性芳香族ジァミン(1— a)として例示したジ ァミン化合物と同様のものが例示できる。これらは適宜 1種または 2種以上を組み合 わせて使用することができる。中でも、 目標とする耐アルカリ性を達成するといつた観 点から、 2, 2 ビス(4 ァミノフエノキシフエ-ル)プロパン、 4, 4,一ジアミノジフエ- ルプロパンがより好ましぐ 2, 2 ビス(4ーァミノフエノキシフエ-ル)プロパンを特に 好ましく使用でさる。 [0048] The present invention is characterized by a method for polymerizing a polyamic acid, which is a polyimide precursor, and in particular in step (1), a flexible aromatic diamine (1-a) and a linear aromatic diamine ( It is characterized by forming blocks using 1-b) and aromatic dianhydride (1c). For example, when polyamic acid is synthesized by polymerizing linear aromatic diamine (1 b) and aromatic dianhydride (1 c), the linear expansion coefficient of the resulting polyimide film is higher than the target value. Although there is an advantage that it is possible to suppress the occurrence of being too much, there is a problem that the storage stability of the polyamic acid obtained with this two-component system alone is low. However, the present inventors copolymerized the flexible aromatic diamine (1a), which is a highly flexible diamine, which is more flexible than the linear aromatic diamine (1-b), into the above system, The inventors have found a surprising finding that it is possible to obtain a polyamic acid that can suppress the linear expansion coefficient of the film from becoming too high than the target value and has good storage stability. [0049] Next, the flexible aromatic diamine (2-a) in the step (2) will be described. Examples of the flexible aromatic diamine (2-a) include the same compounds as the diamine compounds exemplified as the flexible aromatic diamine (1-a). These can be used alone or in combination of two or more. Among these, 2, 2 bis (4 aminophenoxyphenol) propane and 4, 4, 1-diaminodiphenol propane are more preferred from the viewpoint of achieving the target alkali resistance. 4-aminophenol) propane is particularly preferably used.
[0050] なお、前述したように耐アルカリ性を向上するといつた観点から、(2)工程で用いる 屈曲性芳香族ジァミン (2— a)中の屈曲性基の数は、(1)工程で用いる屈曲性芳香 族ジァミン(1 a)中の屈曲性基の数よりも多いことが好ましい。特に屈曲性芳香族ジ ァミン(2— a)中の屈曲性基の数は 2以上であることがより好ましい。  [0050] From the viewpoint of improving the alkali resistance as described above, the number of the flexible groups in the flexible aromatic diamine (2-a) used in the step (2) is used in the step (1). The number is preferably larger than the number of flexible groups in the flexible aromatic diamine (1a). In particular, the number of flexible groups in the flexible aromatic diamine (2-a) is more preferably 2 or more.
[0051] 上記屈曲性芳香族ジァミン(2— a)の使用量としては、フィルム製膜中の破断の抑 制および線膨張係数の観点から、ポリアミド酸の合成に用いる全ジァミン成分を基準 として 10〜40mol%の範囲であることが好ましぐ 20〜30mol%の範囲であることが より好まし 、。  [0051] The amount of the flexible aromatic diamine (2-a) used is 10% on the basis of all diamine components used in the synthesis of polyamic acid from the viewpoint of suppression of breakage during film formation and linear expansion coefficient. Preferably it is in the range of ~ 40 mol%, more preferably in the range of 20-30 mol%.
[0052] また、前記(2)工程における芳香族酸二無水物(2— c)については、前記芳香族酸 二無水物(1 c)として例示した酸二無水物化合物と同様のものが例示できる。これ らは適宜 1種または 2種以上を組み合わせて使用することができる。中でも、 目標とす る線膨張係数を達成するといつた観点から、ピロメリット酸二無水物、 2, 2' , 3, 3 '— ビフエ-ルテトラカルボン酸二無水物、 3, 3 ' , 4, 4,一べンゾフエノンテトラカルボン 酸二無水物、 2, 2' , 3, 3 '—べンゾフエノンテトラカルボン酸二無水物がより好ましく 、特に 3, 3 ' , 4, 4'一べンゾフエノンテトラカルボン酸二無水物を含んだ酸二無水物 を好ましく使用できる。  [0052] The aromatic acid dianhydride (2-c) in the step (2) is exemplified by the same acid dianhydride compounds exemplified as the aromatic acid dianhydride (1c). it can. These can be used singly or in combination of two or more. Among these, pyromellitic dianhydride, 2, 2 ', 3, 3' -biphenyltetracarboxylic dianhydride, 3, 3 ', 4 from the viewpoint of achieving the target linear expansion coefficient , 4, 1-benzozoenone tetracarboxylic dianhydride, 2, 2 ', 3, 3'-benzozoenone tetracarboxylic dianhydride is more preferred, especially 3, 3', 4, 4 ' Acid dianhydrides including benzophenone tetracarboxylic dianhydride can be preferably used.
[0053] 上記芳香族酸二無水物(2— c)の使用量としては、ポリアミド酸の合成に用いる全 酸二無水物成分を基準として、 15〜60mol%であることが好ましぐ 30〜50mol% であることがより好ま 、。芳香族酸二無水物(2— c)の使用量が 15mol%を下回る と高温領域のフィルムの貯蔵弾性率が低くなりすぎてフィルム製膜が困難となる場合 があり、逆に 60mol%を上回るとフィルムの線膨張係数が好ましい範囲を逸脱したり 、飽和吸湿状態までに時間を要してしまう場合がある。 [0053] The amount of the aromatic dianhydride (2-c) used is preferably 15 to 60 mol% based on the total acid dianhydride component used in the synthesis of the polyamic acid. More preferred is 50mol%. If the amount of aromatic dianhydride (2-c) used is less than 15 mol%, the storage modulus of the film in the high temperature region may become too low, making film formation difficult, and conversely exceeding 60 mol%. And the linear expansion coefficient of the film deviates from the preferred range. In some cases, it takes time to reach a saturated moisture absorption state.
[0054] なお、前記(2)工程における屈曲性芳香族ジァミン(2— a)および芳香族酸二無水 物(2— c)は、ポリアミド酸の合成の全工程に用いるジァミン成分と酸二無水物成分 が実質的に等モルとなるように添加して、ブロックを形成する必要がある。ここで、実 質的に等モルとは、全ジァミン成分と全酸二無水物成分の総和に対し、全ジァミン成 分を 49. 5-50. 5mol%の範囲で用いることである。前記全ジァミン成分量が 49. 5 mol%を下回ると安定的に生産することが困難になる場合があり、逆に 50. 5mol% を上回るとポリアミド酸の粘度が高くなりすぎ、ポリイミドフィルムに欠陥を作りやすくな る傾向がある。  [0054] The flexible aromatic diamine (2-a) and the aromatic dianhydride (2-c) in the step (2) are the diamine component and acid dianhydride used in all steps of the polyamic acid synthesis. It is necessary to add the physical components so as to be substantially equimolar to form a block. Here, “substantially equimolar” means that the total diamine component is used in the range of 49.5 to 50.5 mol% with respect to the sum of the total diamine component and the total acid dianhydride component. If the total amount of diamine components is less than 49.5 mol%, it may be difficult to produce stably, and if it exceeds 50.5 mol%, the viscosity of the polyamic acid becomes too high, resulting in defects in the polyimide film. Tend to be easier to make.
[0055] 本発明において、ポリアミド酸の合成において実施する(1)工程及び(2)工程の意 義について説明する。  [0055] In the present invention, the meanings of step (1) and step (2) performed in the synthesis of polyamic acid will be described.
[0056] まず、(1)工程にて屈曲性芳香族ジァミンである(1— a)、直線性芳香族ジァミンで ある(1 b)、芳香族酸二無水物(1 c)を用いて比較的剛直な非熱可塑性ポリイミド ブロックを形成させ、最終的に得られるポリイミドフィルムの線膨張係数が高くなりすぎ ることを抑制している。し力しながら、この非熱可塑性ポリイミドのブロックだけでは線 膨張係数が低すぎるため、続けて (2)工程にて(1)工程で用いた屈曲性芳香族ジァ ミンよりもさらに屈曲する屈曲性芳香族ジァミン(2— a)と芳香族酸二無水物(2— c)と を共重合した比較的柔らか 、ブロックを形成し、これら(1)工程と(2)工程で得られた ブロックが共存することで目的とするポリイミドフィルムの線膨張係数を達成することが できる。  [0056] First, in the step (1), a flexible aromatic diamine (1-a), a linear aromatic diamine (1 b), and an aromatic acid dianhydride (1 c) are compared. A rigid, non-thermoplastic polyimide block is formed to prevent the final polyimide film from having an excessively high linear expansion coefficient. However, since the coefficient of linear expansion is too low with this non-thermoplastic polyimide block alone, bending is further bent in step (2) than in the flexible aromatic diamine used in step (1). Block obtained by copolymerizing the aromatic aromatic diamine (2-a) and aromatic acid dianhydride (2-c) to form a relatively soft block. The coexistence of can achieve the target linear expansion coefficient of the polyimide film.
[0057] 本発明に係るポリアミド酸において、前記(1)工程により得られるブロック力 全ポリ アミド酸を基準として 40〜90mol%の範囲であることが好ましぐ 50〜80mol%の範 囲であることがより好ましい。前記(1)工程により得られるブロックが 40mol%を下回 ると所望の物性を安定して発現することができなくなる場合があり、逆に 90mol%を 上回ると連続生産において、安定的にポリアミド酸を得ることが困難となる場合がある  [0057] In the polyamic acid according to the present invention, the blocking force obtained by the step (1) is preferably in the range of 40 to 90 mol% based on the total polyamic acid, and in the range of 50 to 80 mol%. It is more preferable. If the block obtained by the step (1) is less than 40 mol%, the desired physical properties may not be stably expressed. Conversely, if it exceeds 90 mol%, the polyamic acid is stably produced in continuous production. It may be difficult to get
[0058] 本発明に用いられるポリアミド酸の製造方法としては公知のあらゆる方法を用いるこ とができ、通常、芳香族酸二無水物と芳香族ジァミンを、有機溶媒中に溶解させて、 得られたポリアミド酸溶液を、制御された温度条件下で、上記酸二無水物とジァミン の重合が完了するまで攪拌することによって製造されうる。これらのポリアミド酸溶液 は通常 5〜35重量%、好ましくは 10〜30重量%の濃度で得られる。一般的に、前記 範囲の濃度である場合に、適当な分子量と溶液粘度を有するポリアミド酸溶液を得る ことができる。 [0058] As a method for producing the polyamic acid used in the present invention, any known method can be used. Usually, an aromatic dianhydride and an aromatic diamine are dissolved in an organic solvent, The obtained polyamic acid solution can be produced by stirring under controlled temperature conditions until the polymerization of the acid dianhydride and diamine is completed. These polyamic acid solutions are usually obtained at a concentration of 5 to 35% by weight, preferably 10 to 30% by weight. Generally, when the concentration is in the above range, a polyamic acid solution having an appropriate molecular weight and solution viscosity can be obtained.
[0059] 重合方法としてはあらゆる公知の方法を用いることができる。  [0059] As the polymerization method, any known method can be used.
[0060] 前記ポリアミド酸を合成するための溶媒は、得られるポリアミド酸を溶解する溶媒で あればいかなるものも用いることができる力 中でもアミド系溶媒、すなわち N, N—ジ メチルホルムアミド、 N, N—ジメチルァセトアミド、 N—メチルー 2—ピロリドンなどが好 ましぐ N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミドを特に好ましく用い ることがでさる。 [0060] As the solvent for synthesizing the polyamic acid, any solvent that dissolves the resulting polyamic acid can be used. Among them, amide solvents, that is, N, N-dimethylformamide, N, N N, N-dimethylformamide and N, N-dimethylacetamide are particularly preferably used, such as —dimethylacetamide and N-methyl-2-pyrrolidone.
[0061] また、摺動性、熱伝導性、導電性、耐コロナ性等のフィルムの諸特性を改善する目 的で、ポリアミド酸溶液中にフィラーを添加することもできる。フイラ一としてはいかなる ものを用いても良いが、好ましい例としては、シリカ、酸化チタン、アルミナ、窒化珪素 、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。  [0061] In addition, a filler can be added to the polyamic acid solution for the purpose of improving various properties of the film such as slidability, thermal conductivity, conductivity, and corona resistance. Any material may be used as the filler, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.
[0062] 前記フィラーの粒子径は改質すべきフィルム特性と添加するフイラ一の種類によつ て決定されるため、特に限定されるものではないが、一般的には平均粒径が 0. 05〜 100 μ m、好ましく ίま 0. 1〜75 μ m、更に好ましく ίま 0. 1〜50 μ m、特に好ましく ίま 0 . 1〜25 /ζ πιである。粒子径カこの範囲を下回るとフィルム特性の改質効果が発現し にくくなり、逆にこの範囲を上回ると表面性を大きく損なったり、機械的特性が大きく 低下したりする虞がある。  [0062] The particle diameter of the filler is not particularly limited because it is determined by the film characteristics to be modified and the type of filler to be added, but generally the average particle diameter is 0.05. To 100 μm, preferably 0.1 to 75 μm, more preferably 0.1 to 50 μm, and particularly preferably 0.1 to 25 / ζ πι. If the particle diameter is below this range, the effect of improving the film properties is hardly exhibited. Conversely, if it exceeds this range, the surface properties may be greatly impaired or the mechanical properties may be greatly deteriorated.
[0063] また、フィラーの添加部数についても改質すべきフィルム特性ゃフイラ一粒子径な どにより決定されるため特に限定されるものではない。一般的にフィラーの添加量は ポジイミド 100重量咅に対して 0. 01〜: LOO重量咅、好ましくは 0. 01〜90重量咅^更 に好ましくは 0. 02〜80重量部である。フィラー添加量がこの範囲を下回るとフイラ一 による改質効果が発現しにくくなり、逆にこの範囲を上回るとフィルムの機械的特性が 大きく損なわれる虞がある。  [0063] Further, the number of added parts of the filler is not particularly limited because the film characteristics to be modified are determined by the filler particle size and the like. In general, the amount of filler added is from 0.01 to 100 parts by weight of LEO, preferably from 0.01 to 90 parts by weight, and more preferably from 0.02 to 80 parts by weight per 100 parts by weight of positive imide. If the amount of filler added is below this range, the effect of reforming by the filler becomes difficult to be exhibited. Conversely, if it exceeds this range, the mechanical properties of the film may be greatly impaired.
[0064] フィラーの添加方法としては、(1)ポリアミド酸の重合前または重合途中に反応液に 添加する方法、(2)重合完了後、 3本ロールなどを用いてフィラーを混鍊する方法、( 3)フィラーを含む分散液を用意し、これをポリアミド酸溶液に混合する方法、などいか なる方法を用いてもよいが、フィラーを含む分散液をポリアミド酸溶液に混合する方 法、特に製膜直前に混合する方法が製造ラインのフィラーによる汚染が最も少なくす むため、好ましい。フィラーを含む分散液を用意する場合、ポリアミド酸の重合溶媒と 同じ溶媒を用いるのが好ましい。また、フィラーを良好に分散させ、また分散状態を 安定化させるために分散剤、増粘剤等をフィルム物性に影響を及ぼさない範囲内で 用いることちでさる。 [0064] The filler may be added by (1) adding a reaction solution before or during the polymerization of polyamic acid. How to add, (2) After polymerization is completed, a method of kneading filler using three rolls, etc., (3) A method of preparing a dispersion containing filler and mixing it with a polyamic acid solution, etc. Although a method may be used, the method of mixing the dispersion containing the filler with the polyamic acid solution, particularly the method of mixing just before the film formation is preferable because the contamination by the filler in the production line is minimized. When preparing a dispersion containing a filler, it is preferable to use the same solvent as the polymerization solvent for the polyamic acid. Further, in order to disperse the filler satisfactorily and stabilize the dispersion state, it is possible to use a dispersant, a thickener, etc. within a range that does not affect the film properties.
[0065] (ポリイミドフィルムの製造方法)  [0065] (Method for producing polyimide film)
前記のポリアミド酸溶液を前駆体として用いてポリイミドフィルムを製造する方法に ついては、特に制限されること無ぐ従来公知の方法を用いることができる。この方法 には熱イミドィ匕法と化学イミドィ匕法が挙げられるが、熱的寸法安定性、機械的強度の 面力も化学イミド化法によるイミド化が好ましい。  As a method for producing a polyimide film using the polyamic acid solution as a precursor, a conventionally known method can be used without any particular limitation. Examples of this method include a thermal imidization method and a chemical imidization method, but imidization by a chemical imidation method is preferable in terms of thermal dimensional stability and mechanical strength.
[0066] また、本発明にお 、て特に好ま 、ポリイミドフィルムの製造方法は、以下の工程を 含むものである。  [0066] Further, in the present invention, it is particularly preferable that the method for producing a polyimide film includes the following steps.
a)有機溶剤中で芳香族ジァミンと芳香族酸二無水物を反応させてポリアミド酸溶液 を得る工程  a) A process of obtaining a polyamic acid solution by reacting an aromatic diamine and an aromatic dianhydride in an organic solvent.
b)上記ポリアミド酸溶液を含む製膜ドープを支持体上に流延する工程  b) A step of casting a film-forming dope containing the polyamic acid solution on a support
c)支持体上で加熱した後、支持体力ゝらゲルフィルムを引き剥がす工程  c) After heating on the support, a step of peeling off the gel film from the strength of the support
d)更に加熱して、ゲルフィルム中に残存するポリアミド酸単位をイミド化し、かつ乾燥 させる工程  d) Step of further heating to imidize and dry the polyamic acid unit remaining in the gel film
[0067] 本発明の好ましい一形態を例にとり、ポリイミドフィルムの製造工程を説明する。  [0067] Taking a preferred embodiment of the present invention as an example, a process for producing a polyimide film will be described.
化学イミドィ匕法は、ポリアミド酸溶液に、無水酢酸等の酸無水物に代表される脱水剤 と、イソキノリン、 β—ピコリン、ピリジン等の第三級ァミン類等に代表されるイミドィ匕触 媒とを作用させる方法である。化学イミドィ匕法に熱イミド化法を併用してもよい。加熱 条件は、ポリアミド酸の種類、フィルムの厚さ等により変動し得る。  In the chemical imidization method, a polyamic acid solution is mixed with a dehydrating agent typified by an acid anhydride such as acetic anhydride, and an imidic acid catalyst typified by a tertiary amine such as isoquinoline, β-picoline, and pyridine. It is a method of acting. A thermal imidization method may be used in combination with the chemical imidization method. The heating conditions can vary depending on the type of polyamic acid, the thickness of the film, and the like.
[0068] 前記脱水剤及びイミドィ匕触媒を低温でポリアミド酸溶液中に混合して製膜ドープを 得ることができる。引き続いてこの製膜ドープをガラス板、アルミ箔、エンドレスステン レスベルト、ステンレスドラムなどの支持体上にフィルム状にキャストし、支持体上で 8 0°C〜200°C、好ましくは 100°C〜180°Cの温度領域で加熱することで脱水剤及びィ ミド化触媒を活性化することによって部分的に硬化及び Z又は乾燥した後、支持体 力も剥離してポリアミド酸フィルム(以下、ゲルフィルムと!/、う)を得ることができる。 [0068] A film-forming dope can be obtained by mixing the dehydrating agent and the imido catalyst at a low temperature in a polyamic acid solution. Subsequently, this dope is applied to a glass plate, aluminum foil, endless stainless steel. Casting in the form of a film on a support such as a les belt or stainless drum, and heating on the support in a temperature range of 80 ° C to 200 ° C, preferably 100 ° C to 180 ° C. After partially curing and Z or drying by activating the imidization catalyst, the support force can be peeled off to obtain a polyamic acid film (hereinafter referred to as gel film! /).
[0069] 前記ゲルフィルムは、ポリアミド酸力 ポリイミドへの硬化の中間段階にあり、自己支 持性を有し、(式 1)カゝら算出される揮発分含量は 5〜500%の範囲、好ましくは 5〜1 00%、より好ましくは 10〜80%、最も好ましくは 30〜60%の範囲である。この範囲 のフィルムを用いることが好適であり、外れるとポリイミドフィルムの機械的強度の低下 等を引き起こす場合がある。 [0069] The gel film is in an intermediate stage of curing to polyamic acid polyimide and has a self-supporting property. (Equation 1) The calculated volatile content is in the range of 5 to 500%. Preferably it is 5 to 100%, more preferably 10 to 80%, and most preferably 30 to 60%. It is preferable to use a film in this range, and if it is removed, the mechanical strength of the polyimide film may be lowered.
(A— B) Χ 100ΖΒ· · · · (式 1)  (A— B) Χ 100ΖΒ (Equation 1)
(式 1)中、 A, Bは以下のものを表す。  In (Formula 1), A and B represent the following.
A:ゲルフィルムの重量  A: Gel film weight
B:ゲルフィルムを 450°Cで 20分間加熱した後の重量  B: Weight after heating the gel film at 450 ° C for 20 minutes
[0070] 前記ゲルフィルムの端部を固定して硬化時の収縮を回避して乾燥し、水、残留溶 媒、残存脱水剤及びイミド化触媒を除去し、そして残ったアミド酸単位を完全にイミド 化して、本発明のポリイミドフィルムを得ることができる。  [0070] The end of the gel film is fixed and dried while avoiding shrinkage during curing, water, residual solvent, residual dehydrating agent and imidization catalyst are removed, and the remaining amic acid unit is completely removed. The polyimide film of the present invention can be obtained by imidization.
[0071] この時、ポリアミド酸を完全にイミド化させポリイミドフィルムを得るために、最終的に フィルムを 400〜580°Cの温度で 5〜400秒加熱するのが好まし!/、。この温度より高 い及び Z又は加熱時間が長いとフィルムの熱劣化が起こり、問題が生じる場合があ る。逆にこの温度より低い及び Z又は加熱時間が短いと、得られたポリイミドフィルム の機械的強度が低下するといつた不具合が生じる場合がある。  [0071] At this time, in order to completely imidize the polyamic acid to obtain a polyimide film, it is preferable to finally heat the film at a temperature of 400 to 580 ° C for 5 to 400 seconds! /. Above this temperature and Z or long heating time may cause thermal degradation of the film and cause problems. On the other hand, if the temperature is lower than this temperature and Z or the heating time is short, the resulting polyimide film may be deteriorated in mechanical strength.
[0072] また、フィルム中に残留している内部応力を緩和させるためにフィルムを搬送するの に必要最低限の張力下において加熱処理を行うこともできる。この加熱処理はフィル ム製造工程において行ってもよいし、また別途この工程を設けても良い。加熱条件は フィルムの特性や用いる装置に応じて変動するため一概に決定することはできない 力 一般的には 200°C以上 500°C以下、好ましくは 250°C以上 500°C以下、特に好 ましくは 300°C以上 450°C以下の温度で、 1〜300秒、好ましくは 2〜250秒、特に好 ましくは 5〜200秒程度の熱処理により内部応力を緩和することができる。 [0073] また、ゲルフィルムの固定前後でフィルムを延伸することもできる。この時、好まし!/ヽ 揮発分含有量は 30〜200%、好ましくは 50〜150%である。揮発分含有量がこの 範囲を下回ると延伸しにくくなる場合があり、この範囲を上回るとフィルムの自己支持 性が悪ぐ延伸操作そのものが困難になる場合がある。 [0072] Further, in order to relieve the internal stress remaining in the film, the heat treatment can be performed under the minimum tension necessary for transporting the film. This heat treatment may be performed in the film manufacturing process, or may be provided separately. The heating conditions vary depending on the film characteristics and the equipment used, and therefore cannot be determined in general.Generally 200 ° C to 500 ° C, preferably 250 ° C to 500 ° C, particularly preferred Alternatively, the internal stress can be relieved by heat treatment at a temperature of 300 ° C. or higher and 450 ° C. or lower for 1 to 300 seconds, preferably 2 to 250 seconds, and particularly preferably 5 to 200 seconds. [0073] Further, the film can be stretched before and after fixing the gel film. At this time, preferred! / ヽ The volatile content is 30 to 200%, preferably 50 to 150%. If the volatile content is below this range, it may be difficult to stretch, and if it exceeds this range, the self-supporting property of the film is poor, and the stretching operation itself may be difficult.
[0074] 延伸は、差動ロールを用いる方法、テンターの固定間隔を広げていく方法等公知 の ヽかなる方法を用いてもょ 、。  [0074] Stretching may be performed using a well-known and well-known method such as a method using a differential roll or a method of widening the fixing interval of the tenter.
[0075] (ポリイミドフィルムの物性)  [0075] (Physical properties of polyimide film)
以上のようにして、(1) 100〜200°Cにおける平均線膨張係数力 好ましくは 18〜 25 X 10— 6cm/cm/°Cの範囲、より好ましくは 20〜23 X 10— 6cm/cm/°Cの範囲 であり、(2)弾性率が好ましくは 4. 0-10. OGPa、より好ましくは 4. 5〜7. OGPaで あり、(3)厚み力 10〜125 m、好ましく ίま 35〜: LOO m、更に好ましく ίま 50〜75 m、のポリイミドフィルムを好適に得ることができる。 As described above, (1) the average linear expansion coefficient of force preferably 18~ 25 X 10- 6 cm / cm / ° range C in 100 to 200 ° C, more preferably 20~23 X 10- 6 cm / (2) Elastic modulus is preferably 4.0-10. OGPa, more preferably 4.5-7. OGPa, and (3) Thickness is 10-125 m, preferably ί. A polyimide film of 35 to: LOO m, more preferably 50 to 75 m, can be suitably obtained.
[0076] これら諸特性が上記範囲を満たすことにより、特に TABテープやフレキシブルプリ ント基板の加工工程における前記不具合点を解消することができ、好適に用いること ができる。前記範囲から外れた場合、 CCL (銅張積層板)にした際、カールがきつぐ スプロケットホールにて搬送できなくなってしまう虞がある。  [0076] When these various characteristics satisfy the above range, the above-mentioned problems in the process of processing a TAB tape or a flexible printed circuit board can be solved, and it can be suitably used. If it is out of the range, there is a possibility that curling will not be able to be carried in the sprocket hole when CCL (copper clad laminate) is used.
[0077] 本発明のポリイミドフィルムは非熱可塑性であることが重要である。非熱可塑性であ るとはフィルムを 450〜 500°C程度に加熱した際に熔融し、フィルムの形状を保持し ているものを指す。したがって上記糸且成等により、非熱可塑性となるようにポリイミドフ イルムの設計をすればよ!、。  [0077] It is important that the polyimide film of the present invention is non-thermoplastic. Non-thermoplastic refers to a material that melts and maintains the shape of the film when it is heated to about 450-500 ° C. Therefore, the polyimide film should be designed so that it becomes non-thermoplastic by the above-mentioned yarn formation.
[0078] さらに本発明のポリイミドフィルムは、 TABテープの基材として好適に用いられる。  Furthermore, the polyimide film of the present invention is suitably used as a base material for TAB tape.
本発明により得られたポリイミドフィルムを用いてフレキシブルプリント基板や TABテ ープを作成した場合において、接着剤完全硬化後を絶乾状態とし、湿度 60%RH、 温度 23°Cで調湿しながら反り量が変化しなくなった時点を飽和吸湿状態とすると、絶 乾状態の反り量 Xi力 飽和吸湿状態の反り量 Xeまでの反り変化時間 (XIから Xeに 到達するまでの時間)は 6時間以内、好ましくは 5時間以内、特に好ましくは 4時間以 内であるのが良い。上記反り変化時間が前記範囲を上回ると、加工工程中で反り変 化による寸法変化が原因で、ノターユング時のフォトマスク露光不良、エッチング不 良、半導体実装時の位置あわせ不良等、反り由来の不具合がおきやすい傾向にあ る。 When a flexible printed circuit board or a TAB tape is made using the polyimide film obtained by the present invention, the adhesive is completely dried after being completely cured, and humidity is adjusted at 60% RH and a temperature of 23 ° C. Saturated moisture absorption when the amount of warpage no longer changes If the amount of warpage in the dry state Xi force Warp change time until the amount of warpage Xe in the saturated moisture absorption state (time from XI to Xe) is within 6 hours Preferably, it is within 5 hours, particularly preferably within 4 hours. When the warpage change time exceeds the above range, a photomask exposure failure or etching failure occurs during notching due to a dimensional change due to warpage change during the processing process. There is a tendency for defects due to warping to occur, such as good and poor alignment during semiconductor mounting.
[0079] また、本発明によれば、 20°C INの水酸ィ匕ナトリウム水溶液に 6時間浸漬した際の 厚み変化量が 5%以下であるポリイミドフィルムを得ることができ、 60°C 2Nの水酸化 ナトリウム水溶液に 30分浸漬した際の厚み変化量が 5%以下であるポリイミドフィルム を得ることができる。さらに、 20°C INの水酸ィ匕ナトリウム水溶液に 6時間浸漬した際 の寸法変化率がフィルムの流れ方向(MD方向)、 MD方向と垂直な方向(TD方向) ともに 0. 05%以下であるポリイミドフィルムを得ることができる。これにより、アルカリ性 のめつき液にさらされながらも接着強度の低下や寸法変化などを起こさない効果を発 現できる。  [0079] Also, according to the present invention, a polyimide film having a thickness change of 5% or less when immersed in a 20 ° C IN sodium hydroxide aqueous solution for 6 hours can be obtained. A polyimide film having a thickness change of 5% or less when immersed in an aqueous sodium hydroxide solution for 30 minutes can be obtained. Furthermore, the dimensional change rate when immersed in an aqueous solution of sodium hydroxide and sodium hydroxide at 20 ° C IN for 6 hours is 0.05% or less in both the film flow direction (MD direction) and the MD direction (TD direction). A certain polyimide film can be obtained. As a result, it is possible to achieve an effect that does not cause a decrease in adhesive strength or a dimensional change while being exposed to an alkaline plating solution.
実施例  Example
[0080] 以下、実施例により本発明を具体的に説明する力 本発明はこれら実施例のみに 限定されるものではない。なお、合成例、実施例及び比較例における線膨張係数、 弾性率、反り測定、貯蔵安定性評価法は次の通りである。  Hereinafter, the ability to specifically explain the present invention by way of examples. The present invention is not limited to these examples. The linear expansion coefficient, elastic modulus, warpage measurement, and storage stability evaluation method in the synthesis examples, examples, and comparative examples are as follows.
[0081] (線膨張係数) [0081] (Linear expansion coefficient)
100〜200°Cの線膨張係数の測定は、セイコー電子 (株)社製 TMA120Cを用い て(サンプルサイズ 幅 3mm、長さ 10mm)、荷重 3gで 10°C/minで 10°C〜400°C まで一且昇温させた後、 10°Cまで冷却し、さらに 10°C/minで昇温させて、 2回目の 昇温時の 100°C及び 200°Cにおける熱膨張率から平均値として計算した。  The linear expansion coefficient at 100 to 200 ° C was measured using a TMA120C manufactured by Seiko Electronics Co., Ltd. (sample size width 3 mm, length 10 mm), 10 ° C to 400 ° at 10 ° C / min with a load of 3 g. The temperature is raised to C once, then cooled to 10 ° C, further heated at 10 ° C / min, and the average value is determined from the coefficient of thermal expansion at 100 ° C and 200 ° C during the second temperature increase. As calculated.
[0082] (弾性率) [0082] (Elastic modulus)
弾性率の測定は ASTM D882に準じて行った。  The elastic modulus was measured according to ASTM D882.
[0083] (貯蔵安定性評価) [0083] (Evaluation of storage stability)
得られたポリアミド酸を 15°Cで 4時間放置した後、リーフフィルター (リーフ径: 15イン チ、リーフ数: 100枚、目開き: 3 m)し、 1バッチを 1000kgとして 50バッチ以内で初 期濾過時間より 2倍の濾過時間を要したときの貯蔵安定性を NGとし、それ以外を良 好 (OK)として評価した。  The resulting polyamic acid is allowed to stand at 15 ° C for 4 hours, and then subjected to a leaf filter (leaf diameter: 15 inches, number of leaves: 100 sheets, opening size: 3 m). The storage stability when the filtration time twice as long as the initial filtration time was required was evaluated as NG, and the others were evaluated as good (OK).
[0084] (TABテープ作成及び反り測定) [0084] (TAB tape creation and warpage measurement)
反りの値は、以下の手順で作成した TAB用テープを長さ 40mm X幅 35mm角に 切り出し、真空乾燥 (0. lMPa、 2時間)した状態を絶乾状態とし、平面上に静置して 4隅のうき上がり高さを測定し、 4点のデータの平均値で示した (この際の反り量を Xiと する)。また、真空乾燥したサンプルを湿度 60%RH、温度 23°Cで調湿しながら反り 量を測定し、反り量が変化しなくなった時点を飽和吸湿状態とした (この際の反り量を Xeとする)。 The value of warpage is 40mm in length X 35mm in width for TAB tape created by the following procedure. The cut and vacuum dried (0. lMPa, 2 hours) state was completely dried, left on a flat surface, and the height of the four corners was measured. The amount of warping is Xi). In addition, the amount of warpage was measured while adjusting the humidity of a vacuum-dried sample at a humidity of 60% RH and a temperature of 23 ° C, and the point when the amount of warpage stopped changing was regarded as a saturated moisture absorption state. To do).
[0085] また、以下のようにして TABテープを作成した。  [0085] Further, a TAB tape was prepared as follows.
1.ポリアミド榭脂(日本リルサン社製プラタボンド M1276) 50重量部、ビスフエノール A型エポキシ榭脂(油化シェルエポキシ社製ェピコート 828) 30重量部、クレゾールノ ボラック型エポキシ榭脂 10重量部、トルエン Zイソプロピルアルコールの 1Z1混合 溶液 150重量部を混合した溶液に、ジアミノジフエニルスルホン Zジシアンジアミドが 4Z1の 20重量%メチルセ口ソルブ溶液 45重量部を混合した接着剤溶液を調製した  1. Polyamide resin (Platabond M1276 from Nippon Rilsan) 50 parts by weight, Bisphenol A type epoxy resin (Epicoat 828 from Yuka Shell Epoxy) 30 parts by weight, Cresol novolac epoxy resin 10 parts by weight, toluene An adhesive solution was prepared by mixing 150 parts by weight of a 1Z1 mixed solution of Z isopropyl alcohol with 45 parts by weight of a 20% by weight methylceosolve solution of diaminodiphenylsulfone Z dicyandiamide 4Z1.
2. 25 μ m厚みの PETフィルム上に前記接着剤溶液を、乾燥後 11 m厚みになるよ うに塗布し、 120°Cで 2分間乾燥した。この Bステージ接着剤付き PETフィルムを 26 mm幅にスリットした。 2. The adhesive solution was applied on a 25 μm thick PET film to a thickness of 11 m after drying, and dried at 120 ° C. for 2 minutes. This PET film with B-stage adhesive was slit to a width of 26 mm.
3. 35mm幅のポリイミドフィルムの中央部に Bステージ接着剤付き PETフィルムを張 り合わせ、 90°Cで lkgZcm2の圧力で圧着した。 PETフィルムを剥がし、これを銅箔( 三井金属製、 VLP18 m厚み)と、ロールラミネート法により張り合わせた。この際の 張り合わせの温度は 120°C、圧力は 2kgZcm2であつた。 3. B-stage adhesive PET film with the center portion of the polyimide film of 35mm width combined Zhang is, and pressed at a pressure of LkgZcm 2 at 90 ° C. The PET film was peeled off, and this was bonded to a copper foil (Mitsui Metals, VLP 18 m thickness) by roll lamination. Temperature of bonding at this time is 120 ° C, the pressure was found to be 2kgZcm 2.
4.上記銅張り合わせ品を、 60°Cで 3時間、 80°Cで 3時間、 120°Cで 3時間、 140°C で 3時間、 160°Cで 4時間のステップで加熱後徐冷して接着剤の硬化を行った。  4. The above copper bonded product is heated in steps of 60 ° C for 3 hours, 80 ° C for 3 hours, 120 ° C for 3 hours, 140 ° C for 3 hours, 160 ° C for 4 hours, and then slowly cooled. The adhesive was cured.
[0086] (耐アルカリ性 (厚み変化率) )  [0086] (Alkali resistance (thickness change rate))
5 X 5cmのサンプルを水酸ィ匕ナトリウム水溶液に浸漬した前後の厚みから下記式に より求めた。  The 5 × 5 cm sample was obtained from the following formula from the thickness before and after immersing the sample in a sodium hydroxide aqueous solution.
(厚み変化率) = I T(after)— T(before) | /T(before) X 100  (Thickness change rate) = I T (after) — T (before) | / T (before) X 100
T(after):水酸化ナトリウム水溶液浸漬後のフィルム厚み  T (after): Film thickness after immersion in aqueous sodium hydroxide solution
T(before):水酸化ナトリウム水溶液浸漬前のフィルム厚み  T (before): film thickness before immersion in sodium hydroxide aqueous solution
[0087] (耐アルカリ性 (寸法変化率) ) 20 X 20cmのフィルムサンプルの 4角に穴間がおよそ 15cmとなるように lmmの穴 をあけ、水酸ィ匕ナトリウム水溶液浸漬前後の穴間距離力 下記式により求めた。 (寸法変化率)= I L(after)— L(before) | /L(before) X 100 [0087] (Alkali resistance (dimensional change rate)) A lmm hole was made in each corner of a 20 x 20cm film sample so that the distance between the holes was approximately 15cm, and the distance force between the holes before and after immersion in the aqueous sodium hydroxide solution was determined by the following formula. (Dimensional change rate) = IL (after) — L (before) | / L (before) X 100
L(after):水酸化ナトリウム水溶液浸漬後の穴間距離  L (after): Distance between holes after immersion in aqueous sodium hydroxide solution
L(before):水酸化ナトリウム水溶液浸漬前の穴間距離  L (before): Distance between holes before immersion in aqueous sodium hydroxide solution
なお、 1サンプルにっき MD方向および TD方向の寸法変化率 2点を平均してそれぞ れの方向の寸法変化率とした。  In addition, the dimensional change rate in the MD direction and the TD direction for each sample was averaged to obtain the dimensional change rate in each direction.
[0088] 以下の実施例および比較例において、以下の略称を使用する。 [0088] The following abbreviations are used in the following Examples and Comparative Examples.
ODA:4, 4'ージアミノジフエニルエーテル  ODA: 4,4'-diaminodiphenyl ether
PDA: p—フエ二レンジァミン  PDA: p-Phenylenediamine
BAPP : 2, 2—ビス(4—ァミノフエノキシフエ-ル)プロパン  BAPP: 2, 2-bis (4-aminophenoloxy) propane
BTDA: 3, 3', 4, 4'一べンゾフエノンテトラカルボン酸二無水物  BTDA: 3, 3 ', 4, 4' monobenzophenone tetracarboxylic dianhydride
PMDA:ピロメリット酸二無水物  PMDA: pyromellitic dianhydride
DMF:N, N—ジメチルホルムアミド  DMF: N, N-dimethylformamide
[0089] (実施例 1) [Example 1]
10oC【こ冷去 Pした 225. 6kgの DMF【こ 5. 12kgの ODA、 6. 91kgの PDAを溶解し て、この溶液を 15°Cに保った。ここに、 17. 55kgの PMDAを徐々に添カ卩し、 1時間 撹拌して PMDAを完全に溶解させた。この溶液に 15. 73kgの BAPPを添カ卩して 10 分間撹拌した後、さら〖こ 13. 58kgの BTDAを添加して 30分間攪拌して溶解し、プレ ポリマーを得た。このプレポリマーを 3 μ mのフィルターで濾過後、 PMDAの DMF溶 液(7. 2重量%)を徐々に添カ卩しておよそ 2000ボイズに達したところで添カ卩を止めた 。 30分間均一攪拌して 23°Cにおける溶液粘度 2700ボイズ、固形分濃度 20重量% のポリアミド酸溶液を得た(ODAZPDAZPMDAZBAPPZBTDAZPMDA= 210 ° C. This was chilled. 225.6 kg of DMF [5. 12 kg of ODA and 6.91 kg of PDA were dissolved and the solution was kept at 15 ° C. 17.55 kg of PMDA was gradually added thereto and stirred for 1 hour to completely dissolve the PMDA. 15.73 kg of BAPP was added to this solution and stirred for 10 minutes, and then Sarako 13.58 kg of BTDA was added and stirred for 30 minutes to dissolve to obtain a prepolymer. This prepolymer was filtered through a 3 μm filter, and PMDA DMF solution (7.2% by weight) was gradually added, and when about 2000 boise was reached, the addition was stopped. The solution was uniformly stirred for 30 minutes to obtain a polyamic acid solution with a solution viscosity of 2700 boise at 23 ° C and a solid content of 20% by weight (ODAZPDAZPMDAZBAPPZBTDAZPMDA = 2
0Z50Z65Z33Z33Z2)。 0Z50Z65Z33Z33Z2).
[0090] このポリアミド酸溶液に無水酢酸 130. 40kg、イソキノリン 54. 99kgおよび DMF2 14. 61kg力もなる硬化剤をポリアミド酸溶液に対して重量比 40%ですばやくミキサ 一で攪拌'混合し、 Tダイカゝら押出してダイの下 10mmを 0. 3m/分の速度で走行し ているステンレス製のエンドレスベルト上に流延した。この榭脂膜を 120°C X 900秒 乾燥した後、エンドレスベルトから引き剥がしてテンター炉の把持具に固定し、熱風 循環炉で 130。C X 160秒、 250°C X 180秒、 350°C X 210秒、 450°C X 190秒、引 き続き遠赤外線乾燥炉で 460°C X 200秒、 440°C X 150秒、 300°C X 100秒乾燥' イミドィ匕させ、厚み 75 mのポリイミドフィルムを得た。フィルム物性値等を表 1および 3に示す。その後、参考例に従って TABテープを作成し、評価した。 TABテープの 特性を表 2に示す。 [0090] To this polyamic acid solution, 130.40 kg of acetic anhydride, 54.99 kg of isoquinoline and 14.61 kg of DMF2 were mixed rapidly with a mixer at a weight ratio of 40% with respect to the polyamic acid solution. It was then extruded and cast 10 mm below the die onto a stainless steel endless belt running at a speed of 0.3 m / min. 120 ° CX 900 sec. After drying, peel off from the endless belt and fix to the gripping tool of the tenter furnace, and 130 in the hot air circulating furnace. CX 160 seconds, 250 ° CX 180 seconds, 350 ° CX 210 seconds, 450 ° CX 190 seconds, followed by 460 ° CX 200 seconds, 440 ° CX 150 seconds, 300 ° CX 150 seconds in a far-infrared drying oven A polyimide film having a thickness of 75 m was obtained. Tables 1 and 3 show the film properties. Thereafter, a TAB tape was prepared and evaluated according to a reference example. Table 2 shows the characteristics of TAB tape.
[0091] (実施例 2)  [0091] (Example 2)
10。Cに冷却した 228. 5kgの DMFに 10. 91kgの ODA、 5. 91gの PDAを溶解し て、この溶液を 15°Cに保った。ここに、 17. 88kgの PMDAを徐々に添カ卩し、 1時間 撹拌して PMDAを完全に溶解させた。この溶液〖こ 11. 22kgの BAPPを添カ卩して 10 分間撹拌した後、さらに 6. 60kgの BTDA、 6. 56kgの PMDAを添カロして 30分間攪 拌して溶解し、プレポリマーを得た。このプレポリマーを 3 mのフィルターで濾過後、 PMDAの DMF溶液(7. 2重量0 /0)を徐々に添カ卩しておよそ 2000ボイズに達したと ころで添加を止めた。 30分間均一攪拌して 23°Cにおける溶液粘度 2700ボイズ、固 形分濃度 20重量%のポリアミド酸溶液を得た(ODAZPDAZPMDAZBAPPZB TDA/PMDA/PMDA=40/40/60/20/15/23/2)。 Ten. 10.91 kg of ODA and 5.91 g of PDA were dissolved in 228.5 kg of DMF cooled to C, and this solution was kept at 15 ° C. 17.88 kg of PMDA was gradually added thereto and stirred for 1 hour to completely dissolve the PMDA. 11. Add 22 kg of BAPP and stir for 10 minutes, then add 6.60 kg of BTDA and 6.56 kg of PMDA, stir for 30 minutes and dissolve to dissolve the prepolymer. Obtained. After filtering the prepolymer filter 3 m, it was stopped adding PMDA in DMF solution (7.2 wt 0/0) gradually and rollers reaches添Ka卩to approximately 2000 Boyes. The solution was uniformly stirred for 30 minutes to obtain a polyamic acid solution with a solution viscosity of 2700 boise at 23 ° C and a solid concentration of 20% by weight (ODAZPDAZPMDAZBAPPZB TDA / PMDA / PMDA = 40/40/60/20/15/23/2 ).
[0092] このポリアミド酸溶液に無水酢酸 130. 40kg、イソキノリン 54. 99kgおよび DMF2 14. 61kg力もなる硬化剤をポリアミド酸溶液に対して重量比 40%ですばやくミキサ 一で攪拌'混合し、 Tダイカゝら押出してダイの下 10mmを 0. 3m/分の速度で走行し ているステンレス製のエンドレスベルト上に流延した。この榭脂膜を 120°C X 900秒 乾燥した後、エンドレスベルトから引き剥がしてテンター炉の把持具に固定し、熱風 循環炉で 130。C X 160秒、 250°C X 180秒、 350°C X 210秒、 450°C X 190秒、引 き続き遠赤外線乾燥炉で 460°C X 200秒、 440°C X 150秒、 300°C X 100秒乾燥' イミドィ匕させ、厚み 75 mのポリイミドフィルムを得た。フィルム物性値等を表 1および 3に示す。  [0092] To this polyamic acid solution, 130.40 kg of acetic anhydride, 54.99 kg of isoquinoline and 14.61 kg of DMF2 were mixed rapidly with a mixer at a weight ratio of 40% with respect to the polyamic acid solution. It was then extruded and cast 10 mm below the die onto a stainless steel endless belt running at a speed of 0.3 m / min. The resin film is dried at 120 ° C for 900 seconds, then peeled off from the endless belt and fixed to the gripper of the tenter furnace, and 130 in a hot air circulating furnace. CX 160 seconds, 250 ° CX 180 seconds, 350 ° CX 210 seconds, 450 ° CX 190 seconds, followed by 460 ° CX 200 seconds, 440 ° CX 150 seconds, 300 ° CX 150 seconds in a far-infrared drying oven A polyimide film having a thickness of 75 m was obtained. Tables 1 and 3 show the film properties.
[0093] (比較例 1)  [0093] (Comparative Example 1)
10°C〖こ冷却した 232. 8kgの DMF〖こ 7. 01kgの PDAを溶解して、この溶液を 15 °Cに保った。ここに、徐々に 10. 70kgの PMDAを添加し、 1時間撹拌して PMDAを 完全に溶解させた。この溶液に 9. Olkgの ODA、 7. 92kgの BAPPを添カ卩して 10分 間撹拌した後、さら〖こ 24. 94kgの BTDAを添加して 30分間攪拌して溶解し、プレボ リマーを得た。このプレポリマーを 3 mのフィルターで濾過後、 PMDAの DMF溶液 (7. 2重量%)を徐々に添カ卩しておよそ 2000ボイズに達したところで添カ卩を止めた。 30分間均一攪拌して 23°Cにおける溶液粘度 2700ボイズ、固形分濃度 20重量%の ポリアミド酸溶液を得た(PDAZPMDAZODAZBAPPZBTDAZPMDA= 5023. 8 kg of DMF that had been cooled to 10 ° C and 7.01 kg of PDA were dissolved and the solution was kept at 15 ° C. To this, gradually add 10.70 kg of PMDA, stir for 1 hour and add PMDA. It was completely dissolved. Add 9. Olkg of ODA and 7.92 kg of BAPP to this solution and stir for 10 minutes, then add 24.94 kg of BTDA and stir for 30 minutes to dissolve the prepolymer. Obtained. The prepolymer was filtered through a 3 m filter, PMDA DMF solution (7.2 wt%) was gradually added, and the addition was stopped when it reached about 2000 boise. The solution was uniformly stirred for 30 minutes to obtain a polyamic acid solution with a solution viscosity at 23 ° C of 2700 boise and a solid concentration of 20% by weight (PDAZPMDAZODAZBAPPZBTDAZPMDA = 50
Z38Z35Z15Z60Z2)。 Z38Z35Z15Z60Z2).
[0094] このポリアミド酸溶液に無水酢酸 130. 40kg、イソキノリン 54. 99kgおよび DMF2 14. 61kg力もなる硬化剤をポリアミド酸溶液に対して重量比 40%ですばやくミキサ 一で攪拌'混合し、 Tダイカゝら押出してダイの下 10mmを 0. 3m/分の速度で走行し ているステンレス製のエンドレスベルト上に流延した。この榭脂膜を 120°C X 900秒 乾燥した後、エンドレスベルトから引き剥がしてテンター炉の把持具に固定し、熱風 循環炉で 130。C X 160秒、 250°C X 180秒、 350°C X 210秒、 450°C X 190秒、引 き続き遠赤外線乾燥炉で 460°C X 200秒、 440°C X 150秒、 300°C X 100秒乾燥' イミドィ匕させ、厚み 75 μ mのポリイミドフィルムを得た。  [0094] To this polyamic acid solution, 130.40 kg of acetic anhydride, 54.99 kg of isoquinoline and 14.61 kg of DMF2 were mixed rapidly with a mixer at a weight ratio of 40% with respect to the polyamic acid solution. It was then extruded and cast 10 mm below the die onto a stainless steel endless belt running at a speed of 0.3 m / min. The resin film is dried at 120 ° C for 900 seconds, then peeled off from the endless belt and fixed to the gripper of the tenter furnace, and 130 in a hot air circulating furnace. CX 160 seconds, 250 ° CX 180 seconds, 350 ° CX 210 seconds, 450 ° CX 190 seconds, followed by 460 ° CX 200 seconds, 440 ° CX 150 seconds, 300 ° CX 150 seconds in a far-infrared drying oven A polyimide film having a thickness of 75 μm was obtained.
[0095] フィルム物性および貯蔵安定性を評価した結果を表 1に示す。  [0095] Table 1 shows the results of evaluating film physical properties and storage stability.
[0096] (比較例 2)  [0096] (Comparative Example 2)
10oC【こ冷去 Pした 233. 48kgの DMF【こ 17. 28kgの BAPP、 7. 00kgの ODAを溶 解して、この溶液を 15°Cに保った。ここに、徐々に 11. 2 lkgの BTD Aを添カ卩し溶解 後、 5. 06kgの PMDAを徐々に添カ卩し 1時間撹拌して PMDAを完全に溶解させた。 この溶液に 5. 02kgの PDAを添カロして 10分間撹拌した後、さらに 12. 65kgの PMD Aを添カ卩して 30分間攪拌して溶解し、プレボリマーを得た。このプレボリマーを 3 μ m のフィルターで濾過後、 PMDAの DMF溶液(7. 2重量0 /0)を徐々に添カ卩しておよそ 2000ボイズに達したところで添カ卩を止めた。 30分間均一攪拌して 23°Cにおける溶 液粘度 2700ボイズ、固形分濃度 20重量%のポリアミド酸溶液を得た (BAPPZOD A/BTDA/PMDA/PDA/PMDA/PMDA= 30/30/30/ 18/40/50 Z2)。 10 o C [this cooled P was 233. 48 kg of DMF [this 17. 28 kg of BAPP, and dissolve the ODA of 7. 00kg, keeping this solution 15 ° C. After gradually adding 11.2 lkg of BTD A and dissolving, 5.06 kg of PMDA was gradually added and stirred for 1 hour to completely dissolve PMDA. After adding 5.02 kg of PDA to this solution and stirring for 10 minutes, 12.65 kg of PMDA was further added and stirred for 30 minutes to dissolve, thereby obtaining a prepolymer. After filtration the Pureborima a filter of 3 mu m, was stopped hydrogenated mosquitoes卩Upon reaching PMDA in DMF solution (7.2 wt 0/0) gradually添Ka卩to approximately 2000 Boyes. The solution was uniformly stirred for 30 minutes to obtain a polyamic acid solution having a solution viscosity of 2700 boise at 23 ° C and a solid concentration of 20% by weight (BAPPZOD A / BTDA / PMDA / PDA / PMDA / PMDA = 30/30/30/18 / 40/50 Z2).
[0097] このポリアミド酸溶液に無水酢酸 130. 40kg、イソキノリン 54. 99kgおよび DMF2 14. 61kg力もなる硬化剤をポリアミド酸溶液に対して重量比 40%ですばやくミキサ 一で攪拌'混合し、 Tダイカゝら押出してダイの下 10mmを 0. 3m/分の速度で走行し ているステンレス製のエンドレスベルト上に流延した。この榭脂膜を 120°C X 900秒 乾燥した後、エンドレスベルトから引き剥がしてテンター炉の把持具に固定し、熱風 循環炉で 130。C X 160秒、 250°C X 180秒、 350°C X 210秒、 450°C X 190秒、引 き続き遠赤外線乾燥炉で 460°C X 200秒、 440°C X 150秒、 300°C X 100秒乾燥' イミドィ匕させ、厚み 75 μ mのポリイミドフィルムを得た。 [0097] Acetic anhydride 130.40 kg, isoquinoline 54.99 kg and DMF2 14. 61 kg of hardener is rapidly stirred and mixed with a mixer at a weight ratio of 40% with respect to the polyamic acid solution, extruded from the T-Dieker, and run 10 mm below the die at a speed of 0.3 m / min. Cast on a stainless steel endless belt. The resin film is dried at 120 ° C for 900 seconds, then peeled off from the endless belt and fixed to the gripper of the tenter furnace, and 130 in a hot air circulating furnace. CX 160 seconds, 250 ° CX 180 seconds, 350 ° CX 210 seconds, 450 ° CX 190 seconds, followed by 460 ° CX 200 seconds, 440 ° CX 150 seconds, 300 ° CX 150 seconds in a far-infrared drying oven A polyimide film having a thickness of 75 μm was obtained.
[0098] フィルム物性および貯蔵安定性を評価した結果を表 1に示す。  [0098] Table 1 shows the results of evaluating film physical properties and storage stability.
[0099] (比較例 3)  [0099] (Comparative Example 3)
ユーピレックス 50S (ポリイミドフィルム;宇部興産株式社製)を用いて参考例に従つ て TABテープを作成した。 TABテープの特性を表 2に示す。  Using UPILEX 50S (polyimide film; Ube Industries, Ltd.), a TAB tape was prepared according to the reference example. Table 2 shows the characteristics of TAB tape.
[0100] (実施例 3)  [0100] (Example 3)
227. 8kgの DMFに 14. 55kgの ODA、 6. 28kgの PDAを溶解して、この溶液を 1 5°Cに保った。ここに、 25. 35kgの PMDAを徐々に添カ卩し、 1時間撹拌して PMDA を完全に溶解させた。この溶液に 5. 96kgの BAPPを添加して 10分間撹拌した後、 さら〖こ 4. 68kgの BTDAおよび 2. 22kgの PMDAを添カロして 30分間攪拌した。ここ に PMDAの DMF溶液(7. 2重量0 /0)を徐々に添加して、およそ 2000ボイズに達し たところで添加を止めた。 30分間均一攪拌して 23°Cにおける溶液粘度 2700ボイズ 、固形分濃度 20重量%のポリアミド酸溶液を得た(ODAZPDAZPMDAZBAPP /BTDA/PMDA/PMDA = 50/40/80/ 10/10/8/2)。このポリアミド酸 溶液を用いて実施例 1と同様にして製膜したが、フィルムが脆くテンター炉内で破断 した。フィルム化できた部分で評価したポリイミドフィルムの特性を表 3に示す。 227. 14.55 kg of ODA and 6.28 kg of PDA were dissolved in 8 kg of DMF and the solution was kept at 15 ° C. To this, 25.35 kg of PMDA was gradually added and stirred for 1 hour to completely dissolve the PMDA. To this solution, 5.96 kg of BAPP was added and stirred for 10 minutes. Then, Sarakako 4.68 kg of BTDA and 2.22 kg of PMDA were added and stirred for 30 minutes. Here it was added PMDA in DMF solution (7.2 wt 0/0) gradually stopped added was reached approximately 2000 Boyes. The solution was uniformly stirred for 30 minutes to obtain a polyamic acid solution having a solution viscosity of 2700 boise at 23 ° C and a solid concentration of 20% by weight (ODAZPDAZPMDAZBAPP / BTDA / PMDA / PMDA = 50/40/80 / 10/10/8/2 ). Using this polyamic acid solution, a film was formed in the same manner as in Example 1, but the film was brittle and fractured in the tenter furnace. Table 3 shows the characteristics of the polyimide film evaluated at the part where the film was formed.
[0101] (比較例 4)  [0101] (Comparative Example 4)
227. 9kgの DMFに 23. 68kgの ODAを溶解して、この溶液を 15°Cに保った。ここ に、 36. 84kgの PMDAを徐々に添カ卩し、 1時間撹拌して PMDAを完全に溶解させ た。 4. 75kgの PDAを添カ卩して溶解させた後、 PDAの DMF溶液 (4重量0 /0)を徐々 に添加しておよそ 2000ボイズに達したところで添加を止めた。 30分間均一攪拌して 23°Cにおける溶液粘度 2700ボイズ、固形分濃度 20重量%のポリアミド酸溶液を得 た(ODAZPMDAZPDA= 70/100/30)。このポリアミド酸溶液を用いて実施 例 1と同様にして厚み 75 μ mのポリイミドフィルムを得た。このポリイミドフィルムの特 性を表 3に示す。 227. 23.68 kg of ODA was dissolved in 9 kg of DMF and the solution was kept at 15 ° C. To this, 36.84 kg of PMDA was gradually added and stirred for 1 hour to completely dissolve the PMDA. 4. After dissolving by添Ka卩the PDA of 75 kg, was stopped adding PDA of DMF solution (4 wt 0/0) was reached added to approximately 2000 Boise gradually. Stir uniformly for 30 minutes to obtain a polyamic acid solution with a solution viscosity of 2700 boise at 23 ° C and a solid content of 20 wt% (ODAZPMDAZPDA = 70/100/30). Using this polyamic acid solution, a polyimide film having a thickness of 75 μm was obtained in the same manner as in Example 1. Table 3 shows the properties of this polyimide film.
[表 1] [table 1]
Figure imgf000024_0001
Figure imgf000024_0001
[0103] [表 2] [0103] [Table 2]
Figure imgf000025_0001
Figure imgf000025_0001
[0104] [表 3] [0104] [Table 3]
Figure imgf000026_0001
Figure imgf000026_0001

Claims

請求の範囲 [1] ポリアミド酸溶液を前駆体として用いて得られるポリイミドフィルムであって、 前記ポリアミド酸が、 Claims [1] A polyimide film obtained using a polyamic acid solution as a precursor, wherein the polyamic acid is
(1)少なくとも一種類の屈曲性芳香族ジァミン(1 a)および少なくとも一種類の直線 性芳香族ジァミン(1 b)並びに少なくとも一種類の芳香族酸二無水物(1 c)を用 V、て構成されるブロックを形成した後、  (1) Use at least one flexible aromatic diamine (1 a), at least one linear aromatic diamine (1 b) and at least one aromatic dianhydride (1 c). After forming the block composed,
(2)少なくとも一種類の屈曲性芳香族ジァミン (2— a)並びに少なくとも一種類の芳香 族酸二無水物(2— c)を、全工程におけるジァミン成分と酸二無水物成分が実質的 に等モルとなるように添加してブロックを形成して得られることを特徴とする、 ポリイミドフィルム。  (2) At least one type of flexible aromatic diamine (2-a) and at least one type of aromatic dianhydride (2-c) are substantially divided into diamine component and acid dianhydride component in all steps. A polyimide film, which is obtained by adding an equimolar amount to form a block.
[2] 前記屈曲性芳香族ジァミン(1 a)中に含まれる屈曲性基の数が、屈曲性芳香族 ジァミン(2— a)中に含まれる屈曲性基の数よりも少ないことを特徴とする、請求の範 囲 1記載のポリイミドフィルム。  [2] The number of the flexible groups contained in the flexible aromatic diamine (1a) is smaller than the number of the flexible groups contained in the flexible aromatic diamine (2-a). The polyimide film according to claim 1.
[3] 前記屈曲性芳香族ジァミン(1 a)が屈曲性基を一つ有し、屈曲性芳香族ジァミン [3] The flexible aromatic diamine (1a) has one flexible group, and is a flexible aromatic diamine.
(2— a)が屈曲性基を二以上有することを特徴とする、請求の範囲 2記載のポリイミド フイノレム。  3. The polyimide phenolic according to claim 2, wherein (2-a) has two or more flexible groups.
[4] 前記屈曲性芳香族ジァミン(1— a) 1S 4, 4 'ージアミノジフエ-ルエーテルを含む ことを特徴とする、請求の範囲 1記載のポリイミドフィルム。  [4] The polyimide film according to claim 1, comprising the flexible aromatic diamine (1-a) 1S 4,4′-diaminodiphenyl ether.
[5] 前記屈曲性芳香族ジァミン(1— a)力 全ジァミン成分を基準として 10〜50mol% の範囲であることを特徴とする、請求の範囲 1記載のポリイミドフィルム。 [5] The polyimide film according to claim 1, wherein the flexible aromatic diamine (1-a) force is in the range of 10 to 50 mol% based on the total diamine component.
[6] 前記屈曲性芳香族ジァミン(2— a)力 2, 2 ビス (4ーァミノフエノキシフエ-ル)プ 口パンを含むことを特徴とする、請求の範囲 1記載のポリイミドフィルム。 [6] The polyimide film according to [1], which comprises the flexible aromatic diamine (2-a) force 2, 2 bis (4-aminophenoxyphenol) plug pan.
[7] 前記屈曲性芳香族ジァミン(2— a)力 全ジァミン成分を基準として 10〜40mol% の範囲であることを特徴とする、請求の範囲 1記載のポリイミドフィルム。 [7] The polyimide film as described in [1], which is in the range of 10 to 40 mol% based on the total diamine component, wherein the flexible aromatic diamine (2-a) force is used.
[8] 前記芳香族酸二無水物(2— c)が、 3, 3 ' , 4, 4'—ベンゾフエノンテトラカルボン酸 二無水物を含むことを特徴とする、請求の範囲 1記載のポリイミドフィルム。 [8] The aromatic acid dianhydride (2-c) includes 3, 3 ′, 4, 4′-benzophenone tetracarboxylic dianhydride, according to claim 1, Polyimide film.
[9] 前記芳香族酸二無水物(2— c)力 全酸二無水物成分を基準として 15〜60mol% の範囲であることを特徴とする、請求の範囲 1記載のポリイミドフィルム。 [9] The polyimide film according to claim 1, wherein the aromatic acid dianhydride (2-c) force is in the range of 15 to 60 mol% based on the total acid dianhydride component.
[10] 前記(1)により得られるブロック力 全ポリアミド酸を基準として 40〜90mol%の範 囲であることを特徴とする、請求の範囲 1記載のポリイミドフィルム。 [10] The polyimide film according to claim 1, wherein the blocking force obtained by (1) is in the range of 40 to 90 mol% based on the total polyamic acid.
[11] TABテープの基材として用いられることを特徴とする、請求の範囲 1記載のポリイミ ドフィルム。  [11] The polyimide film according to claim 1, wherein the polyimide film is used as a base material for a TAB tape.
[12] ポリアミド酸をィ匕学的に転ィ匕して得られることを特徴とする、請求の範囲 1記載のポリ イミドフィルム。  [12] The polyimide film according to [1], which is obtained by chemically converting polyamic acid.
[13] 100〜200°Cにおける平均線膨張係数が 18〜25 X 10— 6cm/cm/°Cであること を特徴とする、請求の範囲 11記載のポリイミドフィルム。 [13] The average linear expansion coefficient at 100 to 200 ° C is characterized in that it is a 18~25 X 10- 6 cm / cm / ° C, a polyimide film in the range 11 according claims.
[14] 弾性率が 4. OGPa以上であることを特徴とする、請求の範囲 11記載のポリイミドフィ ノレム。 [14] The polyimide phenol of claim 11, wherein the elastic modulus is 4. OGPa or more.
[15] 20°C INの水酸ィ匕ナトリウム水溶液に 6時間浸漬した際の厚み変化量が 5%以下 であることを特徴とする、請求の範囲 11記載のポリイミドフィルム。  [15] The polyimide film according to claim 11, wherein the thickness change when immersed in a 20 ° C. IN aqueous solution of sodium hydroxide and sodium hydroxide for 6 hours is 5% or less.
[16] 60°C 2Nの水酸ィ匕ナトリウム水溶液に 30分浸漬した際の厚み変化量が 5%以下 であることを特徴とする、請求の範囲 11記載のポリイミドフィルム。  [16] The polyimide film according to claim 11, wherein the thickness change when immersed in an aqueous solution of sodium hydroxide and sodium hydroxide at 60 ° C. for 30 minutes is 5% or less.
[17] 20°C INの水酸ィ匕ナトリウム水溶液に 6時間浸漬した際の寸法変化率力 フィル ムの流れ方向(MD方向)、 MD方向と垂直な方向(TD方向)ともに 0. 05%以下で あることを特徴とする、請求の範囲 11記載のポリイミドフィルム。  [17] Dimensional change rate power when immersed in an aqueous solution of sodium hydroxide and sodium hydroxide at 20 ° C IN for 0.05 hours in both the film flow direction (MD direction) and MD direction (TD direction) The polyimide film according to claim 11, wherein:
PCT/JP2007/063272 2006-07-18 2007-07-03 Polyimide film WO2008010409A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-196029 2006-07-18
JP2006-196261 2006-07-18
JP2006196029 2006-07-18
JP2006196261 2006-07-18

Publications (1)

Publication Number Publication Date
WO2008010409A1 true WO2008010409A1 (en) 2008-01-24

Family

ID=38956743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063272 WO2008010409A1 (en) 2006-07-18 2007-07-03 Polyimide film

Country Status (2)

Country Link
TW (1) TW200827387A (en)
WO (1) WO2008010409A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444793A (en) * 2023-03-22 2023-07-18 青岛达亿星电子化工新材料研究院有限公司 High-performance polyimide flexible copper-clad plate and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471180B (en) * 2012-06-04 2015-02-01 Triumphant Gate Ltd Surface treatment of wet process cleaning fluid in the gold and cyanide recycling system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161428A (en) * 1990-10-24 1992-06-04 Kanegafuchi Chem Ind Co Ltd Polyimide film
JPH0525273A (en) * 1991-07-18 1993-02-02 Kanegafuchi Chem Ind Co Ltd Polyimide film and its production
JPH0570591A (en) * 1991-09-13 1993-03-23 Kanegafuchi Chem Ind Co Ltd Polyamic acid copolymer and polyimide film formed from the same
JPH10298286A (en) * 1997-02-25 1998-11-10 Du Pont Toray Co Ltd Copolyimide film having block component, production thereof, and metal wiring circuit board prepared by using the same as substrate
JPH1180390A (en) * 1997-07-18 1999-03-26 Du Pont Toray Co Ltd Polyimide film, its production and metallic laminate comprising the same as substrate
JPH11152331A (en) * 1997-11-20 1999-06-08 Kanegafuchi Chem Ind Co Ltd Production of polyamic acid and polyimide film
JP2002155140A (en) * 2000-08-24 2002-05-28 Du Pont Toray Co Ltd Polyimide film, its manufacturing method and metallic wiring plate using the same as base
JP2004124091A (en) * 2002-09-13 2004-04-22 Kanegafuchi Chem Ind Co Ltd Polyimide film, its manufacturing method and its use

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161428A (en) * 1990-10-24 1992-06-04 Kanegafuchi Chem Ind Co Ltd Polyimide film
JPH0525273A (en) * 1991-07-18 1993-02-02 Kanegafuchi Chem Ind Co Ltd Polyimide film and its production
JPH0570591A (en) * 1991-09-13 1993-03-23 Kanegafuchi Chem Ind Co Ltd Polyamic acid copolymer and polyimide film formed from the same
JPH10298286A (en) * 1997-02-25 1998-11-10 Du Pont Toray Co Ltd Copolyimide film having block component, production thereof, and metal wiring circuit board prepared by using the same as substrate
JPH1180390A (en) * 1997-07-18 1999-03-26 Du Pont Toray Co Ltd Polyimide film, its production and metallic laminate comprising the same as substrate
JPH11152331A (en) * 1997-11-20 1999-06-08 Kanegafuchi Chem Ind Co Ltd Production of polyamic acid and polyimide film
JP2002155140A (en) * 2000-08-24 2002-05-28 Du Pont Toray Co Ltd Polyimide film, its manufacturing method and metallic wiring plate using the same as base
JP2004124091A (en) * 2002-09-13 2004-04-22 Kanegafuchi Chem Ind Co Ltd Polyimide film, its manufacturing method and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444793A (en) * 2023-03-22 2023-07-18 青岛达亿星电子化工新材料研究院有限公司 High-performance polyimide flexible copper-clad plate and preparation method thereof

Also Published As

Publication number Publication date
TW200827387A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
JP5037168B2 (en) Electroless plating materials, laminates and printed wiring boards
JP2008265069A (en) Insulating adhesion sheet, laminate, and printed wiring board
KR20200036770A (en) Metal-clad laminate and circuit board
KR101077405B1 (en) Laminate for wiring board
JP2007208087A (en) High turnable flexible printed wiring board
TWI771500B (en) Polyimide film, metal-clad laminate and circuit substrate
JPWO2007083526A1 (en) Polyimide film and use thereof
JP5167712B2 (en) Method for producing polyimide laminate, polyimide laminate
JP4318111B2 (en) Polyimide film and method for producing the same
JP2004124091A (en) Polyimide film, its manufacturing method and its use
JP7212518B2 (en) METAL-CLAD LAMINATE, METHOD FOR MANUFACTURING SAME AND CIRCUIT BOARD
JP7248394B2 (en) Polyimide film and metal-clad laminate
JP2019186534A (en) Metal-clad laminate sheet and circuit board
KR20230004322A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit
WO2008010409A1 (en) Polyimide film
JP7405644B2 (en) Metal-clad laminates and circuit boards
JP7465058B2 (en) Metal-clad laminates and circuit boards
JP6767751B2 (en) Polyamic acid, polyimide, resin film and metal-clad laminate
JP5297573B2 (en) Polyimide film with high adhesiveness
JP7465060B2 (en) Metal-clad laminates and circuit boards
JP2004315601A (en) Polyimide film with improved adhesiveness, its preparation method, and its laminate
JP7465059B2 (en) Metal-clad laminates and circuit boards
KR102543928B1 (en) Metal-clad laminate and circuit board
JP5329163B2 (en) Method for producing polyimide film and polyimide film
JP5069844B2 (en) Method for producing insulating film for printed wiring board, polyimide / copper laminate and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07768046

Country of ref document: EP

Kind code of ref document: A1