JP2005344688A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2005344688A
JP2005344688A JP2004168766A JP2004168766A JP2005344688A JP 2005344688 A JP2005344688 A JP 2005344688A JP 2004168766 A JP2004168766 A JP 2004168766A JP 2004168766 A JP2004168766 A JP 2004168766A JP 2005344688 A JP2005344688 A JP 2005344688A
Authority
JP
Japan
Prior art keywords
discharge
exhaust
internal combustion
combustion engine
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004168766A
Other languages
English (en)
Inventor
Miyao Arakawa
宮男 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004168766A priority Critical patent/JP2005344688A/ja
Publication of JP2005344688A publication Critical patent/JP2005344688A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/24

Abstract

【課題】 NOx吸蔵還元触媒を備える内燃機関の排気浄化装置において、低温域でのNOx吸蔵・還元を促進する。
【解決手段】 エンジン1の排気管2途中にNOx吸蔵還元触媒4を設置し、その上流側に放電部3とH2 インジェクタ6を配置する。NOx吸蔵時には、放電部3の電極間に放電を発生させることで、両電極間を通過する排気ガス中のNOをNO2 に酸化し、低温でのNOx吸蔵を促進する。還元時には、H2 インジェクタ6から水素を還元剤として供給し、低温でのNOx浄化率を高める。
【選択図】 図1

Description

本発明は、内燃機関の排気ガスに含まれる窒素酸化物(NOx)を浄化するための排気浄化装置に関する。
内燃機関の排気ガスに含まれる窒素酸化物(NOx)を浄化するために、NOx吸蔵還元触媒を備えた排気浄化装置が提案されている。従来例として、特許文献1には、内燃機関のリーン空燃比燃焼時にNOxを硝酸塩の形で吸蔵し、定期的にリッチ空燃比として酸素濃度を低下させることによりNOxを放出させて還元する吸蔵還元触媒が開示されている。この時、NOxを還元する還元物質としては、通常、炭化水素(HC)や一酸化炭素(CO)が用いられる。
特許第3158444号公報
しかしながら、NOx吸蔵還元触媒の動作には排気温度が高いことが必要であり、低温域では、触媒の活性が低いために良好な浄化性能が得られない。特に、ディーゼルエンジンのように比較的排気温度が低い内燃機関に使用された場合、低温域においてNOxの吸蔵能が低下し、還元反応が抑制される結果、十分なNOx浄化性能が期待できないという欠点があった。また、還元剤として供給されるHCやCOがNOxと反応せずに放出されると、大気を汚染するおそれがあった。
本発明の目的は、NOx吸蔵還元触媒を備える内燃機関の排気浄化装置において、低温域でのNOx吸蔵を促進すること、また、低温域からNOxを還元可能とすることにより、NOx浄化率を向上させて、排気浄化性能を向上させることにある。
請求項1の排気浄化装置は、内燃機関の排気管の途中にNOx吸蔵還元触媒を設置し、このNOx吸蔵還元触媒の上流側に放電手段および水素供給手段を配置してなる。放電手段の電極間に放電を発生させると、両電極間を通過する排気ガス中のNOがNO2 に酸化され下流のNOx吸蔵還元触媒に吸蔵される。また、水素供給手段によって水素を還元剤として排気管に供給することで、NOx吸蔵還元触媒から放出されるNO2 を還元浄化する。
従来、NOx吸蔵還元触媒の動作には内燃機関の排気温度が高いことが必要とされていたが、上記装置によれば、排気温度が低い状態でも上記放電手段を作動させてNOを酸化し、吸蔵しやすいNO2 に変換することで、低温でのNOxの吸蔵を促進することができる。また、貯蔵されたNOxの還元時に、上記水素供給手段から還元剤として反応性の高い水素を添加することで、低温でのNOx浄化を可能とする。従って、比較的排気温度が低いディーゼルエンジンにおいても、低温域から高いNOx浄化率を実現することができ、広い温度領域で優れた排気浄化性能を実現する。
請求項2の発明において、上記放電手段は、平行配設した複数の電極間に複数の排気通路を形成した放電部を備える。各排気通路を挟んで対向する一対の電極間に交流高電圧を印加して放電を発生させると、放電によるエネルギーで一対の電極間に酸素ラジカルやオゾンが発生し、これらがNOと反応してNO2 が生成する。よって、内燃機関の排気温度が低い状態においても、放電部に排気を通過させることで、NOの酸化を進行させ、NOx吸蔵還元触媒へ吸蔵させることができる。
請求項3の発明のように、具体的には、上記放電部の複数の電極は、それぞれ誘電体基板内に埋設され、各排気通路を挟んで対向する一対の電極は、一方が高電圧電源に接続する放電電極、他方が接地電極となる。誘電体内に電極を埋設して平行配設することで放電部を容易に構成でき、また、放電部内に効率よく放電を発生させてNOの酸化を促進することができる。
請求項4の発明において、上記水素供給手段は、上記放電手段と上記NOx吸蔵還元触媒の間に設置される水素インジェクタを備え、この水素インジェクタに水素貯蔵部を接続して、水素を供給可能としている。放電手段とNOx吸蔵還元触媒の間の排気管内に、水素インジェクタから水素を噴射することで、効率よく下流のNOx吸蔵還元触媒に還元剤を供給することができる。また、排気管内の酸素と反応して酸素濃度を低下させることで、NOx吸蔵還元触媒をより還元しやすい雰囲気とすることができる。
請求項5の発明では、内燃機関の排気温度が所定の温度以下である時に、上記放電手段を作動させる。例えば排気温度をモニタして、NOx吸蔵還元触媒の吸蔵能、浄化性能が低下する低温域のみ放電を発生させるように制御すれば、エネルギーロスを抑制し、効率よくNOxを浄化するとができる。
以下、本発明の第1の実施の形態を図面に基づいて説明する。図1はディーゼルエンジンの排気浄化装置の全体構成を示すもので、エンジン1の排気管2の途中には大径部が設けられており、その内部に、放電手段を構成する放電部3と、NOx吸蔵還元触媒4が設置されている。放電部3は、NOx吸蔵還元触媒4の上流側に間隔をおいて配設され、外部の高電圧電源5から所定の交流高電圧が供給されるようになっている。放電部3とNOx吸蔵還元触媒4の間の排気管2壁には、水素供給手段を構成する水素インジェクタ(H2 インジェクタ)6が固定されて、排気管2内に水素(H2 )を噴射可能となっている。
放電部3の構成を図1、図2を用いて説明する。図において、放電部3は、所定間隔で平行配設した複数の誘電体基板としてのアルミナ基板31を有し、これら基板31間に、排気ガスの流れ方向に延びる複数の排気通路33を形成している。各基板31は、種々の誘電体セラミックスで形成することができるが、本実施形態では、安価な汎用材であり、耐熱性、絶縁性に優れるアルミナを用いて形成している。
図2のように、各基板31内には、それぞれ電極32a、32bが埋設されている。これら電極32a、32bは、例えば、基板31材となるアルミナシートに導体を印刷または積層することによって形成することができる。複数の電極32a、32bは、図示しない接続端子によって交互に高電圧電源5に接続あるいは接地を施され、排気通路33を挟んで対向する一対の電極32a、32bのうち、一方が高電圧電源5側の放電電極32aとなり、他方が接地電極32bとなるように配置される。この時、高電圧電源5から対向する一対の電極32間に高周波の高圧交流電圧(例えばAC10kV)を印加することで、排気通路33内に放電を発生させることができる。図3は、高電圧電源5による印加電圧波形図の一例を示す特性図である。
この放電によって発生する加速電子が排気ガス中の酸素分子(O2 )と反応して、酸素ラジカル(O*)またはオゾン(O3 )が生成する。この酸素ラジカル(O*)またはオゾン(O3 )は、放電部3に流入する排気ガス中の一酸化窒素(NO)と容易に反応し、二酸化窒素(NO2 )となって、下流のNOx吸蔵還元触媒4に流入する。
放電部3の構成は、必ずしも上述した通りである必要はなく、基板31や電極32a、32b形状、配置等を変更したり、排気通路33内に補助電極を配置することもできる。放電部3で発生する加速電子のエネルギーは、高電圧電源5の印加電圧や、電極32a、32bの間隙、基板31材やサイズ等によって決定されるので、排気通路33内に発生する放電が安定し、排気ガス中の一酸化窒素(NO)を酸化するのに十分な酸素ラジカル(O*)が生成するように、適宜設定変更可能である。
NOx吸蔵還元触媒4は、通常、多孔質セラミックス構造体よりなる担体に触媒成分を担持させて構成される。多孔質セラミックスとしては、例えば、高温使用時の構造安定性が高く、比較的入手が容易なコーディエライト等が用いられ、排気ガスの流れ方向に多数の通路を有するハニカム状に成形される。この担体表面に、図4、5のように、Pt等の貴金属触媒成分およびバリウム(Ba)等のNOx吸蔵成分を担持させてNOx吸蔵還元触媒4とする。NOx吸蔵成分としては、Ba以外のアルカリ土類金属またはアルカリ金属を使用することもできる。
一般には、NOx吸蔵還元触媒4の吸蔵時動作は、図4に示すようになり、リーン空燃比の時に、白金(Pt)等の貴金属触媒成分によって、排気ガス中のNOとO2 とが反応して、NO2 を生成する。このNO2 は、さらに、Ba等のNOx吸蔵成分と反応して、硝酸塩(Ba(NO3 2 ) として吸蔵される。ただし、低温時には、NOの酸化反応が十分進行せず、その結果、NOx吸蔵能も低下することになる。そこで、本発明では、低温時にこれを放電部3によって代行する。すなわち、排気ガスに放電を加えることによって、予めNOをNO2 に酸化してから、NOx吸蔵還元触媒4に導入する。これにより、NOx吸蔵能が改善される。
酸素ラジカル(O*)とNOの反応で生成したNO2 は、下流のNOx吸蔵還元触媒4において、Ba等のNOx吸蔵成分と容易に反応し、硝酸塩(Ba(NO3 2 ) として吸蔵される(図4)。このように、放電部3を設けてNOをNO2 に酸化することで、低温時のNOx吸蔵能を向上させることができる。
一方、NOx吸蔵還元触媒4の還元時動作は、一般には、図5に示すようになり、理論空燃比〜リッチ空燃比の時に、硝酸塩から脱離したNO2 が、Pt等の貴金属触媒成分によって、排気ガス中の炭化水素(HC)または一酸化炭素(CO)等の還元剤と反応して、窒素(N2 )と二酸化炭素(CO2 )、水(H2 O)に分解される。ただし、低温時には、これら還元剤との反応性が低下し、その結果、NOx浄化性能が低下することになる。そこで、本発明では、H2 インジェクタ6を用いてより反応性の高いH2 を還元剤として添加する。これにより、還元反応が促進され、NOx浄化性能が向上する。
2 インジェクタ6は、先端ノズル部が排気管2内に突出するように、排気管2壁に固定される。水素インジェクタ6の基端側は、外部に設置した水素貯蔵部としての水素タンク(H2 タンク)7に接続される。
上記構成の排気浄化装置の作動について、以下に説明する。図1においてエンジン1が運転を開始すると、NOx等の有害成分を含んだ排気ガスが排気管2に排出される。NOx吸蔵還元触媒4は、リーン空燃比においてNOxの吸蔵を行なうが、排気ガス温度が十分高くない状態では、上述したようにNOx吸蔵還元触媒4のNOx吸蔵能が低い。このため、低温時には放電部3を作動させて排気通路33に放電を発生させる。この放電により排気通路33を通過する排気ガス中のO2 から酸素ラジカル(O*)が生成し、NOの酸化が促進される(図2)。
酸素ラジカル(O*)とNOの反応で生成したNO2 は、下流のNOx吸蔵還元触媒4において、Ba等のNOx吸蔵成分と容易に反応し、硝酸塩(Ba(NO3 2 ) として吸蔵される(図4)。このように、放電部3を設けてNOをNO2 に酸化することで、低温時のNOx吸蔵能を向上させることができる。
図6は、放電部3によるNO酸化特性をPt触媒と比較して示したものである。図示されるように、Pt触媒の場合は、200℃前後ないしそれ以下の低温域ではNO2 生成率が低く、約200℃で50%以下、約170℃で10%程度と、温度が低下するほどNO2 生成率が低くなっている。これに対し、放電による酸化の場合は、200℃前後ないしそれ以下の低温域においても、NO2 生成率が90〜100%近傍と極めて高い。従って、Pt触媒の活性が低い低温域で、高いNO酸化能力を維持できることがわかる。
なお、Pt触媒は、250℃前後ないしそれ以上の領域では、放電部3とほぼ同等のNO酸化特性を示すので、温度に応じて放電部3を動作させるようにすれば効率的である。例えば、排気管2内に温度を検出する手段を設けて排気温度をモニタし、検出結果が所定温度以下の場合のみ放電部3に高電圧を印加して、排気ガスに放電を加えるようにしてもよい。これにより、消費電力量の増大を抑え、効率よく排気浄化を行うことができる。
ディーゼルエンジンは、通常はリーン空燃比となるので、例えば、定期的にまたは所定のタイミングでリッチ空燃比となるように制御して、NOx吸蔵還元触媒4からNO2 を放出させる。また、H2 インジェクタ6を用いて、還元剤としてのH2 を、NOx吸蔵還元触媒4上流の排気管2内に噴射する。噴射されたH2 は、雰囲気中のO2 と反応して酸素濃度を低下させ、さらにNOx吸蔵還元触媒4内を通過する間に、NO2 と次式に示すように反応し、排気ガスを無害化する(図5)。
2NO2 +4H2 →N2 +4H2
この時、還元剤としてH2 を用いることで、排気ガス温度が十分高くない状態においても、NO2 の還元反応を良好に行うことができる。よって、従来の還元剤であるHCやCOのように、未反応のまま放出されるおそれが小さく、低温での浄化率を大きく向上させる。また、H2 インジェクタ6により供給量の制御が容易で、NO2 の還元に必要なH2 を効率よく噴射供給することができる。
ここで、還元剤としてH2 を用いた場合に、低温域での還元反応が良好に進行する理由は、次のように推定される。テイラーの説によれば、Pt触媒上でガスを解離することで反応が進行するとされており、図7に示すように、Pt触媒上で還元剤としてのHCとH2 が解離する場合について検討すると、分子の小さいH2 の解離エネルギーは小さく、低温において容易に解離することがわかる。これに比べて、分子の大きい炭化水素(ここではC3 6)の解離に要するエネルギーが大きいために、低温では容易に解離せず、還元反応が進行しにくくなるものと考えられる。
図8は、本発明の効果を示す図で、吸蔵時の放電部3による放電と還元剤としてのH2 添加を組み合わせた場合のNOx浄化率(図中に実線で示す)を、放電を行なわず還元剤としてC3 6 を添加した場合のNOx浄化率(図中に一点鎖線で示す)を比較して示す。図に明らかなように、放電OFFと還元剤(C3 6)の組み合わせでは、180℃においてもNOx浄化率はせいぜい60%程度であり、温度低下とともにNOx浄化率は低下して、100℃以下ではNOx浄化率はほぼ0%となる。これに対して、放電ONとH2 を組み合わせた本発明では、100℃以上の領域ではNOx浄化率が90%を超え、100℃以下でも90%近傍と、極めて高い浄化性能を示している。
以上のように、本発明によれば、広い温度領域で優れたNOx浄化性能を示す排気浄化装置を実現することができる。
本発明の第1実施の形態を示す内燃機関の排気浄化装置の全体概略構成図である。 第1の実施形態における排気浄化装置の放電部の概略構成を示す模式的な図である。 高電圧電源から放電部に印加する電圧波形図である。 NOx吸蔵還元触媒の吸蔵動作時の状態を説明するための模式的な概略構成図である。 NOx吸蔵還元触媒の還元動作時の状態を説明するための模式的な概略構成図である。 放電部とPt触媒によるNO酸化特性を比較して示す図である。 水素の低温還元のメカニズムを説明するためのPt触媒表面の模式的な図である。 本発明の効果を説明するための図で、温度とNOx浄化率の関係を従来手法と比較して示す図である。
符号の説明
1 エンジン(内燃機関)
2 排気管
3 放電部(放電手段)
31 アルミナ基板(誘電体基板)
32a 放電電極
32b 接地電極
33 排気通路
4 NOx吸蔵還元触媒
5 高電圧電源(放電手段)
6 H2 インジェクタ(水素供給手段)
7 H2 タンク(水素供給手段)

Claims (5)

  1. 内燃機関の排気ガス中に含まれる窒素酸化物を浄化するための装置であって、排気管の途中に設置された吸蔵還元触媒と、この吸蔵還元触媒の上流側に配置される放電手段および水素供給手段を備え、上記放電手段の電極間に放電を発生させることにより、上記電極間を通過する排気ガス中の一酸化窒素を二酸化窒素に酸化して上記吸蔵還元触媒に吸蔵し、上記水素供給手段から供給される水素を還元剤として、上記吸蔵還元触媒から放出される二酸化窒素を還元浄化することを特徴とする内燃機関の排気浄化装置。
  2. 上記放電手段が、平行配設した複数の電極間に形成される複数の排気通路を有し、各排気通路を挟んで対向する一対の電極間に交流高電圧を印加することにより放電を発生させる放電部を備えており、放電によって発生する酸素ラジカルまたはオゾンにより一酸化窒素を二酸化窒素に酸化する請求項1記載の内燃機関の排気浄化装置。
  3. 上記放電部の複数の電極が誘電体基板内に埋設してあり、各排気通路を挟んで対向する一対の電極の一方を高電圧電源に接続して放電電極とし、他方を接地電極とする請求項2記載の内燃機関の排気浄化装置。
  4. 上記水素供給手段が、上記放電手段と上記吸蔵還元触媒の間に設置される水素インジェクタと、この水素インジェクタに接続される水素貯蔵部を備える請求項1ないし3のいずれか記載の内燃機関の排気浄化装置。
  5. 内燃機関の排気温度が所定の温度以下である時に、上記放電手段を作動させる請求項1ないし4のいずれか記載の内燃機関の排気浄化装置。
JP2004168766A 2004-06-07 2004-06-07 内燃機関の排気浄化装置 Pending JP2005344688A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168766A JP2005344688A (ja) 2004-06-07 2004-06-07 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168766A JP2005344688A (ja) 2004-06-07 2004-06-07 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
JP2005344688A true JP2005344688A (ja) 2005-12-15

Family

ID=35497287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168766A Pending JP2005344688A (ja) 2004-06-07 2004-06-07 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP2005344688A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031928A (ja) * 2006-07-28 2008-02-14 Mazda Motor Corp 排気ガス浄化用装置
JP2008031926A (ja) * 2006-07-28 2008-02-14 Mazda Motor Corp 排気ガス浄化用装置
JP2008075638A (ja) * 2006-09-25 2008-04-03 Mazda Motor Corp エンジンの排気ガス浄化装置
JP2008163886A (ja) * 2006-12-28 2008-07-17 Toyota Motor Corp 内燃機関の排気ガス浄化装置
JP2008163881A (ja) * 2006-12-28 2008-07-17 Toyota Motor Corp 内燃機関の排気ガス浄化装置
WO2008096655A1 (ja) * 2007-02-06 2008-08-14 Toyota Jidosha Kabushiki Kaisha ハイブリッド車両の排気浄化装置
JP2012057602A (ja) * 2010-09-13 2012-03-22 Nissan Motor Co Ltd 排気ガス浄化システム
JP2013136949A (ja) * 2011-12-28 2013-07-11 Nissan Motor Co Ltd 排気ガス浄化装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031928A (ja) * 2006-07-28 2008-02-14 Mazda Motor Corp 排気ガス浄化用装置
JP2008031926A (ja) * 2006-07-28 2008-02-14 Mazda Motor Corp 排気ガス浄化用装置
JP2008075638A (ja) * 2006-09-25 2008-04-03 Mazda Motor Corp エンジンの排気ガス浄化装置
JP2008163886A (ja) * 2006-12-28 2008-07-17 Toyota Motor Corp 内燃機関の排気ガス浄化装置
JP2008163881A (ja) * 2006-12-28 2008-07-17 Toyota Motor Corp 内燃機関の排気ガス浄化装置
WO2008096655A1 (ja) * 2007-02-06 2008-08-14 Toyota Jidosha Kabushiki Kaisha ハイブリッド車両の排気浄化装置
JP2012057602A (ja) * 2010-09-13 2012-03-22 Nissan Motor Co Ltd 排気ガス浄化システム
JP2013136949A (ja) * 2011-12-28 2013-07-11 Nissan Motor Co Ltd 排気ガス浄化装置

Similar Documents

Publication Publication Date Title
JP4628505B2 (ja) 酸素を含有する排ガス中の酸化有害物質を除去するための方法および装置ならびにこれにより駆動されるエンジン
JP5045629B2 (ja) 排気ガス浄化装置
US6374595B1 (en) Plasma-assisted catalytic storage reduction system
KR100910038B1 (ko) 내연기관의 배기정화장치
EP2098699B1 (en) Exhaust gas purifying apparatus for internal combustion engine
US6119455A (en) Process and device for purifying exhaust gases containing nitrogen oxides
JP2009275555A (ja) プラズマ処理装置
JP4189337B2 (ja) 排ガス浄化システム
JP2005344688A (ja) 内燃機関の排気浄化装置
US20050079112A1 (en) Surface discharge non-thermal plasma reactor and method
JPH0866621A (ja) 窒素酸化物の除去方法
JP2002011325A (ja) 酸素含有の煙道ガス流からの窒素酸化物の除去法
JP2004344719A (ja) 排気浄化装置
JP2007009839A (ja) 排ガス浄化装置
JP2006132483A (ja) 排気浄化装置及び排気浄化方法並びに制御方法
JP2002256851A (ja) 内燃機関の排気浄化装置
ES2242017T3 (es) Procedimiento para la reduccion catalitica selectiva de oxidos de nitrogeno con amoniaco en el gas de escape magro de un proceso de combustion.
JPH0691138A (ja) 排気ガス処理装置および方法
WO2006038579A1 (ja) 燃料改質器
JP4114581B2 (ja) 排気浄化装置
Rajanikanth et al. Pulsed electrical discharges assisted by dielectric pellets/catalysts for diesel engine exhaust treatment
JP2011185161A (ja) 排ガス浄化装置
JPH10266831A (ja) 排ガス浄化システム
JP7231578B2 (ja) 排気浄化システムおよび排気浄化方法
KR20010105140A (ko) 내연기관의 배출가스 정화장치