JP2005340464A - 太陽電池アレイ診断装置およびそれを用いた太陽光発電システム - Google Patents

太陽電池アレイ診断装置およびそれを用いた太陽光発電システム Download PDF

Info

Publication number
JP2005340464A
JP2005340464A JP2004156442A JP2004156442A JP2005340464A JP 2005340464 A JP2005340464 A JP 2005340464A JP 2004156442 A JP2004156442 A JP 2004156442A JP 2004156442 A JP2004156442 A JP 2004156442A JP 2005340464 A JP2005340464 A JP 2005340464A
Authority
JP
Japan
Prior art keywords
solar cell
array
power generation
generation system
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004156442A
Other languages
English (en)
Inventor
Yukihiro Shimizu
幸浩 清水
Takuji Tanigami
拓司 谷上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004156442A priority Critical patent/JP2005340464A/ja
Publication of JP2005340464A publication Critical patent/JP2005340464A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】太陽電池アレイの出力の正常・異常を簡単に判定する。
【解決手段】複数の太陽電池アレイについて所定の日照時刻に対する各標準出力電力値を予め記憶する記憶部と、前記日照時刻における各アレイの実際の出力電力値の前記標準出力電力値に対する比を算出する演算部と、算出された比をアレイ間で比較してアレイの出力の正常・異常を判定する判定部とを備える太陽電池アレイ診断装置。
【選択図】図2

Description

この発明は、住宅等に設置された太陽光発電システムに関し、特に、複数のアレイを有する太陽光発電システムの異常検出技術に関する。
近年、地球環境対策の観点から各種エネルギー利用の見直しが図られ、特に太陽エネルギーを利用する太陽電池においては、クリーンなエネルギー供給源の代表として期待されている。一般的に太陽電池発電システムは分散型電源として商用電源と連系し、分散型電源だけでは必要な消費電力が賄えない場合に、その電力を系統側の商用電源から供給するように設計されている。
また、太陽電池により発電された電力が余剰した場合は連系された商用電源に電力を供給すること、つまり、売電を行うことができる。
上記連系システムにて発電された電力を効率よく安定して利用していくためには、太陽光発電システムの発電量の低下や、異常などによる発電停止を消費者(ユーザー)は知る必要がある。そこで、太陽電池の発電電力量を運転時のリモートモニターなどの表示機能で確認することが知られている(例えば、特許文献1参照)。しかし、消費者にとっては天候や周囲の環境まで加味して判断することは難しく、電力停止状態もしくは極端な出力低下が生じている場合以外は、発電電力の出力異常が発生したとしても消費者がそれを判断することは容易ではない。これに対し、太陽光発電アレイの出力値と日照条件が同じ地域の住宅の太陽光発電アレイと比較することで異常であるかどうか判定する発電システムが提案されている(例えば、特許文献2参照)。
また、基準となる太陽光発電モジュールを新たに設置し出力特性モデル(P−Vカーブ)を抽出し、発電システムの出力特性曲線を出力特性モデルと比較することにより異常を診断する手法や、発電システム自身に出力特性(P−Vカーブ)の偏曲点があるかどうか判断して異常を診断する手法が提案されている(例えば、特許文献3参照)。
特開2002−101554号公報 特開2002−272017号公報 特開平8−64653号公報
しかしながら、特許文献2に開示された太陽光発電装置では、近隣に比較対象の住宅が存在しない場合や診断する発電システムの周囲にビルなどの陰が一時的に存在する等のような場合には判定基準が適切でなく対応できなかった。また、特許文献3に開示された太陽光発電装置では比較対象用のパイロットモジュールを別途設置しているが都市部など狭小な屋根や屋根の形状の多様化などにより太陽電池モジュールの設置に制約が生じ、パイロットモジュールを必ずしも設置できるとは限らない。
また、一般的な太陽光発電システムでは、図21に示すように複数の太陽電池モジュール6によって構成される太陽電池アレイ11、12が、逆流防止用ダイオード21、22および系統連系インバータ回路を備えたパワーコンディショナー装置3を介して家庭用負荷4および商用電源5に接続されている。そこで、影や故障などにより一つのモジュール6が開放状態(発電しない状態)になった場合、上記開放状態のモジュール6を含む太陽電池アレイ全体が開放状態にならぬよう、各モジュール6では図22に示すように太陽電池セルに並列にバイパスダイオード7が接続されている。また、図23、図24に示す家屋の場合のように、周囲の建築物の状況や庭木8などで一時的に太陽電池アレイに陰S1が生じることが事前に分かっているような場合では、通常、図23、図24に示すように電圧値の低下をできる限り避けるように太陽電池アレイ11及び太陽電池アレイ12の構成モジュール6を配列する。このような太陽光発電システムに、特許文献3のように出力特性(P−V特性)の遍曲点の有無により太陽電池アレイ11の異常を検出する方法を適用した場合は、図24のように陰S1が生じてもアレイ11は図25のように最大電力点の電圧位置が他の太陽電池アレイと変わらず、最大電力点の電流低下が起こっていることが判別できない。異常が判別できるのは図26、図27に示すような陰S2が生じて、図28のように最大電力点の電圧位置が他のアレイとズレが生じる場合のみである。従って、遍曲点の有無による太陽電池モジュールの異常検知は、確実性を欠き、異常検出システムとしては好ましくない。なお、上記では、陰の影響による出力低下を異常として説明したが、モジュール自体の能力低下などの異常も同様なケースが存在するので、モジュールの出力特性の異常も見落とす可能性がある。さらに、太陽電池アレイが地絡して全く出力が無い場合は当然、図29に示すように出力特性(P−V特性)の遍曲点は存在せず、図30に示す晴天での正常運転時の出力特性(P−V特性)と比べて、「単純な天候による電力量の低下」なのか「アレイの出力異常」なのかを単純に見分けることが難しい。
また、図20のように多様な形状の屋根に対して複数の太陽電池アレイ104、105、106を分割して設置する場合、時刻に対する各アレイの出力特性が相互に異なるため、電力低下異常の見極めが容易でなく、さらに時刻のみならず天候不良や季節の影響も加わるため一概に出力異常を判断することは困難である。
また、太陽光発電システム設置後の発電能力検査行う場合は、できるだけ天候の変動による影響を避けるために、天空全体が薄い雲で覆われた日時を選んで発電量の測定を行うなど工夫がなされているが、この方法では一義的に測定できず、設置後に正常に動作しているかどうか不明瞭である。
この発明は、このような事情を考慮してなされたもので、太陽電池アレイの設置状況が診断でき、さらに太陽電池アレイの異常を簡単に把握することが可能な太陽電池アレイ診断装置とそれを用いた太陽光発電システムを提供するものである。
この発明は、複数の太陽電池アレイについて所定の日照時刻における各標準出力電力値を予め記憶する記憶部と、前記日照時刻の各アレイの実際の出力電力値の前記標準出力電力値に対する比を算出する演算部と、算出された比をアレイ間で比較してアレイの出力の正常・異常を判定する判定部とを備える太陽電池アレイ診断装置を提供するものである。
この発明によれば、所定の時刻における複数の太陽電池アレイの出力電力値の標準出力電力値に対する比がアレイ間で比較されて各アレイの出力の正常・異常が判定される。
つまり、算出された比がアレイ間でほぼ同じであれば、各アレイの出力は正常と判定され、異なる場合には、比の小さいアレイの出力が異常と判定される。
従って、各アレイの出力の正常・異常を簡単に精度よく診断することができる。
この発明による太陽電池アレイ診断装置は、複数の太陽電池アレイについて所定の日照時刻における各標準出力電力値を予め記憶する記憶部と、前記日照時刻の各アレイの実際の出力電力値の前記標準出力電力値に対する比を算出する演算部と、算出された比をアレイ間で比較してアレイの出力の正常・異常を判定する判定部とを備えることを特徴とする。
記憶部、演算部および判定部は、CPU、ROM、RAMからなるマイクロコンピュータやパーソナルコンピュータにより一体的に構成できる。
記憶部は、複数日にわたって前記日照時刻毎にくり返し実測した各太陽電池アレイ出力電力値の最大値を各日照時刻の標準出力電力値として記憶してもよい。
判定部は、演算部によって算出される比に基づいて各太陽電池アレイから見た天候を決定し、決定した天候を比較して太陽電池アレイ出力の正常・異常を判定する機能を備えてもよい。
また、別の観点から、この発明は、複数の太陽電池アレイと、各太陽電池アレイの出力電力値を検出する検出部と、上記太陽電池アレイ診断装置とを備えた太陽光発電システムを提供するものである。
複数の太陽電池アレイが各々異なる平面上に設置され、各太陽電池アレイは同一平面に配列された複数の太陽電池モジュールからなってもよい。
以下、図面に示す実施例に基づき、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。
図1は、本発明の実施の形態に係る太陽光発電システムの太陽電池アレイの設置例を示す斜視図である。
図1は寄棟屋根の家屋の場合で三面の屋根に東面太陽電池アレイ101、南面太陽電池アレイ102、西面太陽電池アレイ103が設置される。
図2は図1の太陽光発電システムの構成を示すブロック図であり、東面太陽電池アレイ101、南面太陽電池アレイ102、西面太陽電池アレイ103は、それぞれ最大出力100Wのモジュール600が直列に8個接続されることにより最大出力800Wの太陽電池アレイとして構成される。これらがパワーコンディショナー装置300に並列に接続されることで単純に計算すれば最大出力が2.4KWのシステムが構成される。ただし、本実施例の場合は東面、南面、西面というように、それぞれ異なる方位に太陽電池アレイが向いているため、その分、最大出力が低下し、この実施例の場合は最大出力が2KWのシステムとなる。
図2に示すように太陽電池アレイ101、102、103はそれぞれ逆流防止ダイオード201、202、203と電力検出センサ204、205、206とを介して、系統連系インバータ回路を備えたパワーコンディショナー装置300に接続されている。電力検出センサ204、205、206は、太陽電池アレイ101、102、103の出力電力をそれぞれ検出する。パワーコンディショナー装置300は家庭用の負荷400および商用電源500に接続されており、発電手段である太陽電池アレイ101、102、103によって出力される直流電力は、パワーコンディショナー装置300によって交流電力に変換され、電力を出力する。
ここで、太陽電池アレイ101、102、103からの発電電力が負荷で消費される電力を上回った場合は商用電源500に電力を売電し、逆に太陽電池アレイ101、102、103からの発電電力が不足した場合は商用電源500から電力を買電することになる。また、太陽電池アレイ101、102、103を構成する太陽電池モジュール600は陰になった状態で無出力状態となっても太陽電池アレイ全体が無出力状態とならないよう図22に示すようにモジュールごとにバイパスダイオードを備えている。
また、太陽電池アレイ診断装置700は、記憶部701、演算部702、判定部703を備え、電力検出センサ204、205、206の出力を受けて太陽電池アレイ101、102、103の異常の有無を診断する。
以上、本発明の発電システムの構成を述べたが続いて発電システムの診断方法について述べる。
発電システムの診断には、
(1)太陽光発電システム導入時に太陽電池アレイが対象物(例えば屋根)に適切に設置されたかどうかを判定する発電電力量の診断と、
(2)経時変化による発電能力の劣化や故障についての診断
の2つに大きく分けられる。
まず(1)の診断について図31のフロー図を用いて説明する。
太陽光発電システムの施工管理者がスイッチ(図示しない)等によって診断装置700に診断開始の指示を出し、日中の例えば朝7時から夕方17時までの発電電力量を各太陽電池アレイ101、102、103に対してサンプリングする(サンプリングI)。サンプリング間隔は、例えば10分おきに約1分間の平均値を測定し、記憶部701に順次記録し、予め設定したM日、例えば6日繰り返しデータを蓄積する。M日間のデータサンプリング後、各時刻に対して最も大きい電力量のみの抽出を行う。それらの値をPmaxとして記憶部701に記憶し、演算部702が、予め記憶部701に記憶されていた基データAと比較し、判断部703は正常にアレイ101、102、103の設置が完了したかどうか判断する。この際の判断は、Pmaxが太陽光発電システムの仕様で決まる範囲(スペック)を逸脱しているか否かによって行う。スペックを逸脱する、つまり満たさない場合は判定部703は異常と診断して、施工管理者に図示しない表示部を介して表示通報を行う。スペックを満たしている場合はシステムの設置完了となり、上記で得られたPmaxは以後の上記(2)の診断の時に用いる初期データとして使うために記憶部701に記憶保持される。
このように設置初期における診断方法は、太陽電池アレイの設置面の面方位及び傾斜角度、システム設置家屋の位置する経度および緯度、季節情報(日付)、時刻および気温などより求められた晴天時の時刻に対する発電電力量のデータを基データAとして記憶部701に予め準備しておき、そのデータに対して数日間以上にわたって測定された実際の測定データを演算部702で比べることで判定部703が判断する。
つづいて、上記診断方法を他の実施例を用いてさらに詳述する。図1に示す太陽光発電システムは周囲に日照の障害が無い場合であり、時刻に対する発電電力量特性は以下のように診断される。
図3の出力線1(実線)は、或る測定日(1日目)の時刻(横軸)に対するシステム全体の発電出力量(縦軸)の実測値を示し、出力線a(破線)は日中の天候が晴天であり出力が最大に得られる場合の理想特性を示し、出力線b(一点鎖線)は日中の天候が曇りであり直射日光が太陽光発電に届かない場合の理想特性を示す。
基本的に出力線1は出力線aより上回ることは無く図3に示すように時間に対して刻々と変化する。図4、図5は図3と異なる測定日(2日目、3日目)について同様に測定した特性を表したものであり、図3、4、5の3日分の特性を重ね合わせたものを図6に示す。図6の出力線1、2、3の最大出力値をつなげていくと図7のように出力線aに近づき、正常に発電されていることが分かる。さらに測定する日を増やせば増やすほど、対象の太陽光発電システムの特性がより詳しく測定できデータの蓄積ができる。
つづいて、図8に示す太陽光発電システムにおいて東南方向に日照の障害物として、例えば背の高い庭木800がある場合の時刻に対する発電電力量特性について詳細に説明する。
図6と同様に測定3日分の特性を重ね合わせたものを図9に示す。図9からも分かるように各線の最大出力値をつなげていくと、図10のようになり、午前8時頃から午後1時頃まで木陰Sによる発電障害が発生していることが測定結果に出現している。さらに測定する日を増やせば増やすほど、対象の太陽光発電システムの特性がより詳しくデータが測定および蓄積でき、発電障害かどうかの判定の精度が向上する。
つまり、このようにして太陽光発電システムの時刻に対する最大発電出力特性を得た後、予め入力された基データAによる出力線aと実測データを比較することで設置された太陽光発電システムが問題なく設定されているかどうか、あるいは、設置された太陽光発電システムに日照障害が無いかどうかが把握できる。このときの基データAは各太陽電池アレイの設定面方位および傾斜角度、経度及び緯度を考慮に入れた季節情報を含み、天候が晴天の各太陽電池アレイでの理想状態のデータを理論的に合成したデータである。
同様に、図1に示す太陽光発電システムにおいて、ある1日の各アレイについて時刻に対する発電電力量特性を測定した例(日照障害が無い場合)を図11に示し、図8に示す太陽光発電システムにおいて、ある1日の各アレイについて時刻に対する発電電力量特性を測定した例(日照障害がある場合)を図12に示す。図11、図12に示す各太陽電池アレイのデータの蓄積も可能であり、演算部702により個別に基データAと比較することが可能で、判定部703により各太陽電池アレイ単位で適切に設置されたかどうかを判定することが可能である。
つづいて、上記(2)の診断方法、つまり、経時変化による発電能力の劣化や故障についての診断方法について図32のフロー図を用いて詳細に説明する。
先ず、太陽光発電システムの消費者がスイッチ等によって診断装置700に診断開始の指示を出すと、診断装置700は各太陽電池アレイに対して日中の任意の時刻、例えば朝11時から正午までの発電電力量をサンプリングを行う(サンプリングII)。サンプリングは例えば10分おきに約1分間の平均値を測定し、記憶部701に順次記録し、事前に計算された天候区分に天候を判定していく。その後、例えば3つの太陽電池アレイを有する場合はそれぞれの天候を比較して、すべてが同じであれば正常と判断して診断を終了させる。一つでも一致しない場合は、異常の可能性があるとして、消費者に注意などの表示で知らせ、追加サンプルの抽出(サンプリングIII)を行う。サンプリングIIIは通常、少なくとも1日以上の日照時間分のデータを取得するのが好ましい。サンプリングは例えば10分おきに約1分間の平均値を測定し、記憶部701に順次記録し、それぞれの時刻に対し、各々の太陽電池アレイの天候区分の判定を行う。それらの天候データを事前に準備したモデルと照合することで、異常の内容を判断し消費者に警告表示を行う。モデルと照合の結果、当然正常と判断される場合もあり、この際は消費者にその旨を伝える。異常の場合は消費者から施工管理者に連絡してよいし、保守契約など行っている場合は管理会社にインターネットなど通じて自動的に連絡されてもよい。この場合、診断システムで得られた情報も同時に配信されてもよい。
上記で得られたデータは診断履歴として記憶部701に記憶保持される。
つづいて上記診断方法をさらに詳細に説明する。
天候は刻々と変化するため、先ずは天候情報を見極める必要がある。天候の判定方法は発電電力量より行い、例えば天候が曇りで太陽光発電システムに直射日光が照射しないときは、本発明のシステム導入時の晴天時に相当する初期データおよび各アレイの設置面の方位角、設置角度、経度、緯度、日時等から計算により求められた基準値と各アレイの発電電力量との比が演算部702で演算され、判定部703により曇りと判定される。例えば図1に示す東面アレイ101、南面アレイ102、西面アレイ103で構成されている太陽光発電システムの晴天時と曇りの特性は図13、図14に示す。図13は日中が晴天続きであった場合(初期データ)であり図14は日中が曇り続きであった場合の図13の初期データを基に計算されたデータである。説明の簡略化の為、各アレイの時刻に対する電力特性は簡略的に示す。図13に示す晴天時は直射日光による発電が主となるため、配置された東面、南面、西面に分割されたアレイの場合で南面がほぼ真南に配置される場合、図13に示すように南面は正午付近に、東面の出力のピーク位置は午前中のおおよそ10時に、西面のピーク位置は午後のおおよそ2時に存在することとなる。
これに対し、図14に示すように、直射日光が照射しない曇りの天候が一日中安定して続いた場合には、主に散乱光によって発電されるため、方位依存性が少なくなり、それぞれピーク値が正午付近に近づき各時刻における発電量の晴天時に比べて太陽電池アレイ間の差分も小さくなる。このようなデータを予め算出しておき記憶部701に記憶しておけば、判定部703による天候の判定が容易になる。さらに天候の具合を日照強度別に対して細分化すれば曇りと晴れの間の中間度合いの天候も判定できる。そして、図1に示す3つの太陽電池アレイ101、102、103で構成される太陽電池発電システムの場合、図13に示す各データに対するそれぞれの太陽電池アレイ101、102、103から出力される発電電力量の比が演算部702で算出され、判定部703がその比から、それぞれの天候を判定する。例えば、図13のデータの70%以上のとき晴れ、70%より少ないとき曇りと判定される。つまり、その時の発電電力量と上述の初期データを比較することで天候の判定を行い、判定部703は、太陽電池アレイ101、102、103から見た天候がすべて一致した場合は異常なしとの判定を下す。天候の不一致が生じた場合は何らかの不具合が発生している可能性があると判断し、消費者に異常の可能性がある旨を図示しない表示部を通じてアナウンスする。
この場合、天候の判定を行わず、図13に示すデータに対する各アレイの発電電力量の比を直接アレイ間で比較し、それによって各アレイの異常の有無を判定することもできる。異常の可能性があると判断した場合は、つづけて詳細なデータの取得を開始する。つまり前述の説明で行ったように時刻に対する発電電力量特性を測定する。時刻に対する発電電力量特性データが取得できたら各時間に対する太陽電池アレイの出力とシステム導入時の初期(晴天時に相当するデータ)データと各アレイの設置面の方位角、設置角度、経度、緯度、日時等から求まる予測発電量とを時間軸に対して比較分析することで異常の診断を行う。
以下、単純に模式化したグラフを用いていくつかの診断ケースについて説明する。
図8に示す3つの太陽電池アレイ101、102、103で構成される発電システムで午前中は晴天で午後曇りになった場合についての時刻に対する各太陽電池アレイの発電電力量特性について述べる。図15に示す診断例での判定は日中の1時間単位で行われ、8時台と9時台で天候判定が不一致である。
他の時間帯において天候判定が一致しているため、東面、南面の太陽電池アレイの異常ではなく、図8に示す庭木が成長して東面と南面の太陽電池アレイ上に日陰を生じさせたと診断される。
つづいて、複数の太陽電池アレイのうち一つの太陽電池アレイが開放した場合の診断ケースについて以下に述べる。
図1に示す3つの太陽電池アレイ101、102、103で構成される太陽電池発電システムで午前中は晴天で午後曇りになった場合において、図19に示すように東面の太陽電池アレイ101が開放した場合の発電電力量特性を図16に示す。東面の太陽電池アレイ101の気候判定が曇りのまま変化しないため、開放もしくは出力低下異常と診断される。
図1に示す3つの太陽電池アレイ101、102、103で構成される太陽電池発電システムで午前中は晴天で午後曇りになった場合において、南面の太陽電池アレイ102が開放した場合の発電電力量特性を図17に示す。南面の太陽電池アレイ102の気候判定が曇りのまま変化しないため、開放もしくは出力低下異常と診断される。
図1に示す3つの太陽電池アレイ101、102、103で構成される太陽電池発電システムで午前中は晴天で午後曇りになった場合において、西面の太陽電池アレイ103が開放した場合の発電電力量特性を図18に示す。西面の太陽電池アレイ103の気候判定が曇りのまま変化しないため、開放もしくは出力低下異常と診断される。
上記例では説明を簡略にするために日中が晴天の太陽光発電にとって理想状態の場合について述べたが、実際の天候はさまざまである。したがって、前述のように太陽光発電システムのサンプリング蓄積された晴天時のデータより算出された各天候でのデータベースと各太陽電池アレイの発電量を照合することで計算値とのズレを把握し、時刻情報をもった異常情報を得ることが可能になり、隣接する建物による日射障害なのか太陽電池アレイもしくはモジュールの出力低下不良なのか太陽電池アレイの開放なのかが判定できる。
また、診断の間隔は定期的に行ってもよいし、任意に設定してもよい。例えば、消費者がリモコン等に備えているスイッチにより診断開始の命令が与えられ、最初の診断で異常が確認された場合にのみ、時刻に対する発電電力量を基にした詳細な診断を開始してもよいし、あるいは、スイッチにより予め設定された期間(例えば一日分)のデータを取得して詳細な診断を行ってもよく、また、スイッチに関係なく常に診断を行っていてもよい。また、天候判定は日中の1時間単位でなく設定時間は任意に行うことができ、また、天候の判定基準及び判定クラスの数も自由に設定できる。
また、これらの発電電力情報もしくは天候情報および解析結果は太陽光発電システムに蓄えてもよい。発電電力情報もしくは天候情報がネットワークを介して転送され、パーソナルコンピュータまたはワークステーションなど、コンピュータ上で実行されるソフトウェアにより解析されてもよい。また、解析結果を操作部(リモートコントローラ)等の表示部に表示すれば屋内で異常を知りえることも可能であり、ネットワークを介して管理会社等に通報してもよい。
また、経時的に得られたデータより例えば時間単位あるいは日にち単位の気象情報データを記憶する事も可能である。また、天候の判定クラスを細分化することで太陽電池アレイもしくはモジュールの劣化などの判定もしやすくなる。また、必要に応じて季節毎もしくは月毎の初期データを蓄積しておいてもよく、初期データもしくは基データAから計算される各種データベースの補完もしくは修正を行ってもよい。あるいは毎日データを蓄積してもよく、たとえば、太陽光発電システムの設置完了の日が9月1日の場合で9月1日から9月14日までの14日間の太陽光発電システムの特性を測定することにより設置初期における発電電力量の診断を行った場合、その翌日から定常診断になるわけであるが、9月15日のデータに対しては9月1日から9月14日のデータを基礎データとし診断を行い、翌日の9月16日のデータに対しては9月2日から9月15日までのデータを基礎データとして用いる。このように基礎データとなる対象の期間を測定日の前日までの一定期間とすることで、比較する基礎データが常に最新のデータに更新されていくので季節による日射量変動の影響を抑えることができる。
この発明による太陽光発電システムの設置例の斜視図である。 この発明による太陽光発電システムのブロック図である。 この発明による太陽光発電システムの時間−発電電力特性図である。 この発明による太陽光発電システムの時間−発電電力特性図である。 この発明による太陽光発電システムの時間−発電電力特性図である。 この発明による太陽光発電システムの時間−発電電力特性図である。 この発明による太陽光発電システムの時間−発電電力特性図である。 この発明による太陽光発電システムの設置例の斜視図である。
この発明による太陽光発電システムの時間−発電電力特性図である。 この発明による太陽光発電システムの時間−発電電力特性図である。 この発明による太陽光発電システムの時間−発電電力特性図である。 この発明による太陽光発電システムの時間−発電電力特性図である。 この発明による太陽光発電システムの時間−発電電力特性図である。 この発明による太陽光発電システムの時間−発電電力特性図である。 この発明による太陽光発電システムの時間−発電電力特性図である。
この発明による太陽光発電システムの時間−発電電力特性図である。 この発明による太陽光発電システムの時間−発電電力特性図である。 この発明による太陽光発電システムの時間−発電電力特性図である。 図2に示す太陽光発電システムの一部が開放した場合を示すブロック図である。 太陽光発電システムの設置例の斜視図である。 従来例の太陽光発電システムのブロック図である。 太陽電池モジュールの構成図である。 従来例の太陽光発電システムの設置例の斜視図である。
従来例の太陽光発電システムのブロック図である。 従来例の太陽光発電システムの出力電圧−発電電力特性図である。 従来例の太陽光発電システムの設置例の斜視図である。 従来例の太陽光発電システムのブロック図である。 従来例の太陽光発電システムの出力電圧−発電電力特性図である。 従来例の太陽光発電システムの出力電圧−発電電力特性図である。 従来例の太陽光発電システムの出力電圧−発電電力特性図である。 この発明による太陽光発電システムの設置後の診断方法を説明するフローチャートである。 この発明による太陽光発電システムの定期診断方法を説明するフローチャートである。
符号の説明
101、102、103、104:太陽電池アレイ
204:電力検出センサ
205:電力検出センサ
206:電力検出センサ
300:パワーコンディショナー
400:負荷
500:商用電源
600:太陽電池モジュール
700:太陽電池アレイ診断装置
701:記憶部
702:演算部
703:判定部

Claims (5)

  1. 複数の太陽電池アレイについて所定の日照時刻における各標準出力電力値を予め記憶する記憶部と、前記日照時刻の各アレイの実際の出力電力値の前記標準出力電力値に対する比を算出する演算部と、算出された比をアレイ間で比較してアレイの出力の正常・異常を判定する判定部とを備える太陽電池アレイ診断装置。
  2. 記憶部は、複数日にわたって前記日照時刻毎にくり返し実測した各アレイ出力電力値の最大値を各日照時刻の標準出力電力値として記憶する請求項1記載の太陽電池アレイ診断装置。
  3. 判定部は、演算部によって算出される比に基づいて各アレイから見た天候を決定し、決定した天候をアレイ間で比較してアレイ出力の正常・異常を判定する機能を備える請求項1又は2記載の太陽電池アレイ診断装置。
  4. 複数の太陽電池アレイと、各アレイの出力電力値を検出する検出部と、請求項1記載の太陽電池アレイ診断装置とを備えた太陽光発電システム。
  5. 複数の太陽電池アレイが各々異なる平面上に設置され、各アレイは同一平面に配列された複数の太陽電池モジュールからなる請求項4記載の太陽光発電システム。
JP2004156442A 2004-05-26 2004-05-26 太陽電池アレイ診断装置およびそれを用いた太陽光発電システム Pending JP2005340464A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004156442A JP2005340464A (ja) 2004-05-26 2004-05-26 太陽電池アレイ診断装置およびそれを用いた太陽光発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156442A JP2005340464A (ja) 2004-05-26 2004-05-26 太陽電池アレイ診断装置およびそれを用いた太陽光発電システム

Publications (1)

Publication Number Publication Date
JP2005340464A true JP2005340464A (ja) 2005-12-08

Family

ID=35493684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156442A Pending JP2005340464A (ja) 2004-05-26 2004-05-26 太陽電池アレイ診断装置およびそれを用いた太陽光発電システム

Country Status (1)

Country Link
JP (1) JP2005340464A (ja)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916049A1 (fr) * 2007-05-11 2008-11-14 Commissariat Energie Atomique Procede de diagnostic d'elements defectueux dans un systeme autonome, alimente par une source d'alimentation intermittente
JP2009065164A (ja) * 2007-09-06 2009-03-26 Enphase Energy Inc 太陽電池アレイの劣化を検出するための方法及び装置
JP2010010543A (ja) * 2008-06-30 2010-01-14 Fuji Pureamu Kk 太陽光発電装置のトラッキングシステム
JP2011035000A (ja) * 2009-07-29 2011-02-17 System Jd:Kk 故障診断システム、故障診断装置、故障診断方法、プログラム及び記憶媒体
WO2011022340A2 (en) * 2009-08-17 2011-02-24 Paceco Corp Photovoltaic panel monitoring apparatus
JP2011134862A (ja) * 2009-12-24 2011-07-07 Tokai Ec Kk 太陽光発電システム
KR101049786B1 (ko) * 2011-04-01 2011-07-19 주식회사 대방기업 태양광발전장치의 통합관리시스템
WO2011041819A3 (de) * 2009-10-09 2011-07-28 Fronius International Gmbh Verfahren und vorrichtung zur fehlererkennung in einer photovoltaik-anlage
WO2011101916A1 (ja) * 2010-02-19 2011-08-25 オーナンバ株式会社 太陽光発電システムの故障検出方法
WO2011104931A1 (ja) 2010-02-26 2011-09-01 株式会社 東芝 異常診断装置および異常診断方法
JP2011181614A (ja) * 2010-02-26 2011-09-15 Toshiba Corp 異常診断装置および方法
WO2011111252A1 (ja) * 2010-03-10 2011-09-15 株式会社 東芝 太陽光発電システム
KR101066064B1 (ko) 2010-11-22 2011-09-20 (주)대은 태양광 모듈의 원격 모니터링 장치 및 방법
US20110241720A1 (en) * 2009-10-08 2011-10-06 Adensis Gmbh Dc test point for locating defective pv modules in a pv system
JP2011233584A (ja) * 2010-04-23 2011-11-17 Toshiba Corp 太陽光発電システムの異常診断装置
JP2012069949A (ja) * 2010-09-24 2012-04-05 Alta Devices Inc 遮光ロバスト性のための混合配線方式
JP2012084809A (ja) * 2010-10-14 2012-04-26 Mitsubishi Electric Corp 太陽電池モジュールの故障診断装置および方法
EP2473861A2 (en) * 2009-09-02 2012-07-11 SMA Solar Technology AG String failure monitoring
CN102570912A (zh) * 2010-12-27 2012-07-11 索尼公司 太阳能光伏发电模块和检查方法
WO2012102028A1 (ja) * 2011-01-27 2012-08-02 株式会社日立製作所 太陽光発電システム、異常検出方法、及び異常検出システム
JP2013004974A (ja) * 2011-06-15 2013-01-07 General Electric Co <Ge> 光ファイバを用いたソーラー発電プラント用影検出装置
JP2013069974A (ja) * 2011-09-26 2013-04-18 System Jd:Kk 太陽電池アレイの検査装置
JP5335151B2 (ja) * 2010-12-16 2013-11-06 三菱電機株式会社 太陽光発電システム
EP2664939A1 (de) * 2012-05-18 2013-11-20 Skytron Energy GmbH Verfahren zur Validierung sonnenstandsabhängiger Messwerte mehrerer Messkanäle
JP2014117156A (ja) * 2010-02-26 2014-06-26 Toshiba Mitsubishi-Electric Industrial System Corp 太陽光発電システム
KR101448989B1 (ko) 2014-05-21 2014-10-14 쏠라이앤에스(주) 태양전지모듈 고장 진단 방법 및 태양광 발전 시스템
JP2014216501A (ja) * 2013-04-25 2014-11-17 京セラ株式会社 太陽光発電システムの異常検出装置、異常検出方法、及び太陽光発電システム
JP2015106625A (ja) * 2013-11-29 2015-06-08 泗水電機株式会社 太陽光パネル監視装置、太陽光発電システム、太陽光パネル監視方法、及び、プログラム
US9141122B2 (en) 2010-02-26 2015-09-22 Toshiba Mitsubishi-Electric Industrial Systems Corporation Photovoltaic power generation system
WO2016034931A1 (ja) * 2014-09-04 2016-03-10 パナソニックIpマネジメント株式会社 太陽電池の管理装置、太陽光発電システム、及び太陽電池の管理方法
WO2016103666A1 (ja) * 2014-12-24 2016-06-30 パナソニックIpマネジメント株式会社 監視装置、太陽光発電装置、監視システムおよび監視方法
EP3057228A1 (en) 2015-02-10 2016-08-17 Hitachi, Ltd. Solar power generation system and failure diagnosis method therefor
WO2016166992A1 (ja) * 2015-04-17 2016-10-20 パナソニックIpマネジメント株式会社 異常監視システムおよびプログラム
US9506971B2 (en) 2012-08-27 2016-11-29 Hitachi, Ltd. Failure diagnosis method for photovoltaic power generation system
KR101862872B1 (ko) * 2010-12-17 2018-05-31 제너럴 일렉트릭 캄파니 전력 생산 시스템 내의 장애 센서를 식별하는 시스템 및 방법
JP2018084421A (ja) * 2016-11-21 2018-05-31 濱田重工株式会社 太陽光発電監視装置及び太陽光発電監視方法
JPWO2019130718A1 (ja) * 2017-12-28 2020-12-24 住友電気工業株式会社 判定装置、太陽光発電システム、判定方法および判定プログラム
JP2021040451A (ja) * 2019-09-04 2021-03-11 春禾科技股▲分▼有限公司 ソーラー装置の発電エフィシェンシーの異常の判断方法
JP7318291B2 (ja) 2019-04-18 2023-08-01 中国電力株式会社 屋外構造物表面浄化装置及び屋外構造物表面浄化装置の遠隔制御システム

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916049A1 (fr) * 2007-05-11 2008-11-14 Commissariat Energie Atomique Procede de diagnostic d'elements defectueux dans un systeme autonome, alimente par une source d'alimentation intermittente
WO2008152238A2 (fr) * 2007-05-11 2008-12-18 Commissariat A L'energie Atomique Procédé de diagnostic d'éléments défectueux dans un système autonome, alimenté par une source d'alimentation intermittente
WO2008152238A3 (fr) * 2007-05-11 2009-02-12 Commissariat Energie Atomique Procédé de diagnostic d'éléments défectueux dans un système autonome, alimenté par une source d'alimentation intermittente
US8476870B2 (en) 2007-05-11 2013-07-02 Commissariat A L'energie Atomique Method of diagnosing defective elements in a standalone system, powered by an intermittent power source
JP2009065164A (ja) * 2007-09-06 2009-03-26 Enphase Energy Inc 太陽電池アレイの劣化を検出するための方法及び装置
EP2034323A3 (en) * 2007-09-06 2014-01-15 Enphase Energy, Inc. Method and apparatus for detecting impairment of a solar array
US9048693B2 (en) 2007-09-06 2015-06-02 Enphase Energy, Inc. Method and apparatus for detecting impairment of a solar array
JP2010010543A (ja) * 2008-06-30 2010-01-14 Fuji Pureamu Kk 太陽光発電装置のトラッキングシステム
JP2011035000A (ja) * 2009-07-29 2011-02-17 System Jd:Kk 故障診断システム、故障診断装置、故障診断方法、プログラム及び記憶媒体
WO2011022340A2 (en) * 2009-08-17 2011-02-24 Paceco Corp Photovoltaic panel monitoring apparatus
WO2011022340A3 (en) * 2009-08-17 2011-06-16 Paceco Corp Photovoltaic panel monitoring apparatus
EP2473861A2 (en) * 2009-09-02 2012-07-11 SMA Solar Technology AG String failure monitoring
EP2317329A3 (de) * 2009-10-08 2013-04-03 Adensis GmbH Gleichstrommessstelle zum Auffinden defekter PV-Module in einer PV-Anlage
US20110241720A1 (en) * 2009-10-08 2011-10-06 Adensis Gmbh Dc test point for locating defective pv modules in a pv system
US9553215B2 (en) 2009-10-09 2017-01-24 Fronius International Gmbh Method and device for recognizing faults in a photovoltaic system
WO2011041819A3 (de) * 2009-10-09 2011-07-28 Fronius International Gmbh Verfahren und vorrichtung zur fehlererkennung in einer photovoltaik-anlage
JP2011134862A (ja) * 2009-12-24 2011-07-07 Tokai Ec Kk 太陽光発電システム
JP5584622B2 (ja) * 2010-02-19 2014-09-03 オーナンバ株式会社 太陽光発電システムの故障検出方法
US8482309B2 (en) 2010-02-19 2013-07-09 Onamba Co., Ltd. Failure detecting method for a solar power generation system
WO2011101916A1 (ja) * 2010-02-19 2011-08-25 オーナンバ株式会社 太陽光発電システムの故障検出方法
US9141122B2 (en) 2010-02-26 2015-09-22 Toshiba Mitsubishi-Electric Industrial Systems Corporation Photovoltaic power generation system
US9209743B2 (en) 2010-02-26 2015-12-08 Kabushiki Kaisha Toshiba Fault detection apparatus and fault detection method
JP2014117156A (ja) * 2010-02-26 2014-06-26 Toshiba Mitsubishi-Electric Industrial System Corp 太陽光発電システム
JP2011181614A (ja) * 2010-02-26 2011-09-15 Toshiba Corp 異常診断装置および方法
WO2011104931A1 (ja) 2010-02-26 2011-09-01 株式会社 東芝 異常診断装置および異常診断方法
AU2010346725B2 (en) * 2010-02-26 2013-11-28 Kabushiki Kaisha Toshiba Fault diagnosis device and fault diagnosis method
CN102640297A (zh) * 2010-02-26 2012-08-15 株式会社东芝 异常诊断装置和异常诊断方法
JP2011187808A (ja) * 2010-03-10 2011-09-22 Toshiba Corp 太陽光発電システム
WO2011111252A1 (ja) * 2010-03-10 2011-09-15 株式会社 東芝 太陽光発電システム
JP2011233584A (ja) * 2010-04-23 2011-11-17 Toshiba Corp 太陽光発電システムの異常診断装置
JP2012069949A (ja) * 2010-09-24 2012-04-05 Alta Devices Inc 遮光ロバスト性のための混合配線方式
JP2012084809A (ja) * 2010-10-14 2012-04-26 Mitsubishi Electric Corp 太陽電池モジュールの故障診断装置および方法
WO2012070754A1 (ko) * 2010-11-22 2012-05-31 (주)대은 태양광 모듈의 원격 모니터링 장치 및 방법
KR101066064B1 (ko) 2010-11-22 2011-09-20 (주)대은 태양광 모듈의 원격 모니터링 장치 및 방법
JP5335151B2 (ja) * 2010-12-16 2013-11-06 三菱電機株式会社 太陽光発電システム
KR101862872B1 (ko) * 2010-12-17 2018-05-31 제너럴 일렉트릭 캄파니 전력 생산 시스템 내의 장애 센서를 식별하는 시스템 및 방법
CN102570912A (zh) * 2010-12-27 2012-07-11 索尼公司 太阳能光伏发电模块和检查方法
WO2012102028A1 (ja) * 2011-01-27 2012-08-02 株式会社日立製作所 太陽光発電システム、異常検出方法、及び異常検出システム
JP2012156343A (ja) * 2011-01-27 2012-08-16 Hitachi Ltd 太陽光発電システム、異常検出方法、及び異常検出システム
US9304161B2 (en) 2011-01-27 2016-04-05 Hitachi, Ltd. Solar power generation system, abnormality detection method, and abnormality detection system
KR101049786B1 (ko) * 2011-04-01 2011-07-19 주식회사 대방기업 태양광발전장치의 통합관리시스템
JP2013004974A (ja) * 2011-06-15 2013-01-07 General Electric Co <Ge> 光ファイバを用いたソーラー発電プラント用影検出装置
JP2013069974A (ja) * 2011-09-26 2013-04-18 System Jd:Kk 太陽電池アレイの検査装置
US9644958B2 (en) 2012-03-18 2017-05-09 Skytron Energy Gmbh Method for the validation of solar altitude-dependent measured values of several measurement channels
EP2664939A1 (de) * 2012-05-18 2013-11-20 Skytron Energy GmbH Verfahren zur Validierung sonnenstandsabhängiger Messwerte mehrerer Messkanäle
US9506971B2 (en) 2012-08-27 2016-11-29 Hitachi, Ltd. Failure diagnosis method for photovoltaic power generation system
JP2014216501A (ja) * 2013-04-25 2014-11-17 京セラ株式会社 太陽光発電システムの異常検出装置、異常検出方法、及び太陽光発電システム
JP2015106625A (ja) * 2013-11-29 2015-06-08 泗水電機株式会社 太陽光パネル監視装置、太陽光発電システム、太陽光パネル監視方法、及び、プログラム
KR101448989B1 (ko) 2014-05-21 2014-10-14 쏠라이앤에스(주) 태양전지모듈 고장 진단 방법 및 태양광 발전 시스템
WO2016034931A1 (ja) * 2014-09-04 2016-03-10 パナソニックIpマネジメント株式会社 太陽電池の管理装置、太陽光発電システム、及び太陽電池の管理方法
CN106605364A (zh) * 2014-09-04 2017-04-26 松下知识产权经营株式会社 太阳能电池的管理装置、太阳光发电系统以及太阳能电池的管理方法
JP2016054632A (ja) * 2014-09-04 2016-04-14 パナソニックIpマネジメント株式会社 太陽電池の管理装置、太陽光発電システム、プログラム
JPWO2016103666A1 (ja) * 2014-12-24 2019-08-22 パナソニックIpマネジメント株式会社 監視装置、太陽光発電装置、監視システムおよび監視方法
WO2016103666A1 (ja) * 2014-12-24 2016-06-30 パナソニックIpマネジメント株式会社 監視装置、太陽光発電装置、監視システムおよび監視方法
CN107112945A (zh) * 2014-12-24 2017-08-29 松下知识产权经营株式会社 监视装置、太阳光发电装置、监视系统以及监视方法
EP3057228A1 (en) 2015-02-10 2016-08-17 Hitachi, Ltd. Solar power generation system and failure diagnosis method therefor
US10312858B2 (en) 2015-02-10 2019-06-04 Hitachi, Ltd. Solar power generation system and failure diagnosis method therefor
WO2016166992A1 (ja) * 2015-04-17 2016-10-20 パナソニックIpマネジメント株式会社 異常監視システムおよびプログラム
JP2018084421A (ja) * 2016-11-21 2018-05-31 濱田重工株式会社 太陽光発電監視装置及び太陽光発電監視方法
JPWO2019130718A1 (ja) * 2017-12-28 2020-12-24 住友電気工業株式会社 判定装置、太陽光発電システム、判定方法および判定プログラム
JP7188399B2 (ja) 2017-12-28 2022-12-13 住友電気工業株式会社 判定装置、太陽光発電システム、判定方法および判定プログラム
JP7318291B2 (ja) 2019-04-18 2023-08-01 中国電力株式会社 屋外構造物表面浄化装置及び屋外構造物表面浄化装置の遠隔制御システム
JP2021040451A (ja) * 2019-09-04 2021-03-11 春禾科技股▲分▼有限公司 ソーラー装置の発電エフィシェンシーの異常の判断方法

Similar Documents

Publication Publication Date Title
JP2005340464A (ja) 太陽電池アレイ診断装置およびそれを用いた太陽光発電システム
US6892165B2 (en) Diagnosis method and diagnosis apparatus of photovoltaic power system
US8471408B2 (en) Photovoltaic array systems, methods, and devices with bidirectional converter
JP5524769B2 (ja) 太陽光発電診断装置
KR101862872B1 (ko) 전력 생산 시스템 내의 장애 센서를 식별하는 시스템 및 방법
US20110066401A1 (en) System for and method of monitoring and diagnosing the performance of photovoltaic or other renewable power plants
US20140188410A1 (en) Methods for Photovoltaic Performance Disaggregation
US20060085167A1 (en) Performance monitor for a photovoltaic supply
JP6093465B1 (ja) 太陽光発電システムの発電診断方法、及び発電診断装置
JP6087200B2 (ja) 太陽光発電システムの異常検出装置、異常検出方法、及び太陽光発電システム
Ventura et al. Development of models for on-line diagnostic and energy assessment analysis of PV power plants: The study case of 1 MW Sicilian PV plant
US11121670B2 (en) Smart shingles
JP6823499B2 (ja) 情報処理装置及び情報処理装置の制御方法
Leva et al. Failures and defects in PV systems
US20210305936A1 (en) Method, computer-implemented tool and power plant control device for detecting power production degradation of solar power plants and solar power plant system
Choi et al. An experimental performance analysis of a cold region stationary photovoltaic system
Paudyal et al. Performance assessment of field deployed multi-crystalline PV modules in Nordic conditions
Borza et al. An embedded microcontroller unit for PV module monitoring and fault detection
JP2015169484A (ja) 気象予測装置、気象予測システム
JP6300148B2 (ja) 太陽光発電装置の管理装置
Bouzerdoum et al. Performance prediction of a grid-connected photovoltaic plant
Perers System modelling and simulation
JP2024024953A (ja) 太陽光発電システムの検査装置、検査方法及びコンピュータプログラム
Liu et al. Using Inverter MPPT Voltage to Detect Vegetation Shading in Solar Farms
Bing Document Issue Control Sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623