JP2005302987A - 受動素子内蔵配線基板およびその製造方法 - Google Patents

受動素子内蔵配線基板およびその製造方法 Download PDF

Info

Publication number
JP2005302987A
JP2005302987A JP2004116612A JP2004116612A JP2005302987A JP 2005302987 A JP2005302987 A JP 2005302987A JP 2004116612 A JP2004116612 A JP 2004116612A JP 2004116612 A JP2004116612 A JP 2004116612A JP 2005302987 A JP2005302987 A JP 2005302987A
Authority
JP
Japan
Prior art keywords
wiring
thin film
capacitor
passive element
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004116612A
Other languages
English (en)
Other versions
JP4394999B2 (ja
Inventor
Satoru Kuramochi
悟 倉持
Yoshitaka Fukuoka
義孝 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004116612A priority Critical patent/JP4394999B2/ja
Publication of JP2005302987A publication Critical patent/JP2005302987A/ja
Application granted granted Critical
Publication of JP4394999B2 publication Critical patent/JP4394999B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】受動素子を内蔵しながらも小型化が可能で、かつ、受動素子の位置、大きさ等の変更に容易に対応できる受動素子内蔵配線基板と、このような受動素子内蔵配線基板を簡便に製造するための製造方法を提供する。
【解決手段】受動素子内蔵配線基板を、コア基板と、このコア基板上に電気絶縁層を介して形成された配線と、電気絶縁層の薄膜部位を介して一対の電極が対向するように構成されたキャパシタと、を備えるものとし、このような受動素子内蔵配線基板を製造する方法は、コア基板上に下部電極と配線を形成する工程と、下部電極と配線を覆うように電気絶縁薄膜を形成する工程と、下部電極上に位置する電気絶縁薄膜が露出して薄膜部位となるように上記の電気絶縁薄膜上に電気絶縁層を形成する工程と、薄膜部位を被覆するように上部電極を形成してキャパシタとするとともに、電気絶縁層上に配線を形成する工程と、を有するものとした。
【選択図】 図1

Description

本発明は、キャパシタ、抵抗、インダクタンス等の受動素子を内蔵した配線基板と、このような配線基板を製造するための製造方法に関する。
近年、半導体チップでは、IC、LSI等の集積回路素子の高密度化が進むとともに、動作速度が年々上昇している。このような集積回路素子の動作速度が上昇すると、半導体チップ内部で発生するスイッチングノイズが集積回路素子を誤動作させる要因になるという問題があった。スイッチングノイズを低減させるためには、電源バスラインと接地バスラインとの間にキャパシタを配置することが有効である。
このようなキャパシタやインダクター等の受動素子が必要な場合、半導体チップと同様に、多層配線基板に外付けで実装することが行なわれている。しかし、キャパシタを外付け部品として配線基板上に配置すると、キャパシタと半導体チップの間の接続距離が長くなって配線インダクタンスが大きくなるため、キャパシタの効果が不充分となってしまう。このため、キャパシタ等の受動素子はできるだけ集積回路素子に近いことが求められており、半導体チップに直接形成することが望ましい。しかし、この場合、半導体チップの面積が増大してコスト高となり、また、製造工程が複雑で長くなるため、キャパシタの不良によって半導体チップ自体の製造歩留まりが低下してしまうという問題があった。
これらの問題に対応するために、半導体チップを配線基板に実装する場合に用いられる中間基板(インターポーザ、あるいは半導体チップキャリア)に、キャパシタを内蔵させることが提案されている(特許文献1、2)。
また、コア基板上に積層した多層配線層にキャパシタを内蔵する方法が提案されている(特許文献3)。
特開平8−148595号公報 特開2001−326298号公報 特開平7−30258号公報
しかしながら、特許文献1に示される半導体装置は、ベース基板上に厚膜キャパシタを有するガラスセラミックスからなるチップキャリアが接続される構造を有し、誘電体層を薄くすることが困難であるため、キャパシタの特性に限界があった。また、特許文献2には、キャパシタをもつセラミックスからなるインターポーザを備えた構成が開示されているが、インターポーザを用いる方法では、キャパシタの誘電体層の材料、厚さ、キャパシタの位置、大きさ等を予め決めておかなければならないという問題があった。
また、特許文献3に記載されるキャパシタを内蔵した回路基板は、多層配線層に内蔵されたキャパシタが埋め込みになるため、電極の大きさも固定され、キャパシタの位置、大きさ等を予め決める必要があり、仕様変更に柔軟に対応できないという問題があった。さらに、ガラスやチタン酸バリウム等の誘電体材料を使用したキャパシタを内蔵する多層配線基板は、製造工程に高温焼成を必要としたり、工程が複雑で長いものであり、製造歩留まりの向上に支障を来たしていた。
本発明は、上記のような実情に鑑みてなされたものであり、受動素子を内蔵しながらも小型化が可能で、かつ、受動素子の位置、大きさ等の変更に容易に対応できる受動素子内蔵配線基板と、このような受動素子内蔵配線基板を簡便に製造するための製造方法を提供することを目的とする。
このような目的を達成するために、本発明の受動素子内蔵配線基板は、コア基板と、該コア基板上に電気絶縁層を介して形成された配線と、該電気絶縁層の薄膜部位を介して一対の電極が対向するように構成されたキャパシタと、を備えるような構成とした。
本発明の他の態様として、前記キャパシタを構成する電気絶縁層の薄膜部位の厚みは、0.2〜10μmの範囲であるような構成とした。
本発明の他の態様として、前記キャパシタを構成する一対の電極の一方が、抵抗配線を介して配線に接続しているような構成とし、また、前記抵抗配線は、クロム、チタン、窒化チタン、ニッケル、バナジウムの少なくとも1種を含有するような構成とした。
本発明の他の態様として、前記電気絶縁層は、ベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂、エポキシ樹脂の少なくとも1種からなるような構成とした。
本発明の他の態様として、前記コア基板は、導電材料により表裏の導通がなされた複数のスルーホールを備え、XY方向の熱膨張係数が2〜20ppmの範囲内であるような構成とした。
本発明の他の態様として、前記抵抗配線を介してキャパシタに接続されている前記配線が、前記コア基板のスルーホール内の前記導電材料に接続されているような構成とした。
本発明の他の態様として、配線はパターンコイルからなるインダクタを含むような構成とした。
本発明の他の態様として、キャパシタとインダクタからなるフィルタ回路、あるいは、キャパシタと抵抗配線からなるフィルタ回路を具備するような構成とした。
本発明の他の態様として、前記キャパシタは、前記電気絶縁層の薄膜部位を介して交互に積層された複数対の電極からなるような構成とした。
本発明の他の態様として、前記キャパシタを構成する複数の前記薄膜部位の厚みが異なるような構成、前記キャパシタを構成する複数対の電極からの配線引出し方向は、前記薄膜部位を介して対向する電極において異なる方向であるような構成とした。
本発明の受動素子内蔵配線基板の製造方法は、コア基板上に下部電極と配線を形成する工程と、該下部電極と配線を覆うように電気絶縁薄膜を形成する工程と、前記下部電極上に位置する電気絶縁薄膜が露出して薄膜部位となるように前記電気絶縁薄膜上に電気絶縁層を形成する工程と、前記薄膜部位を被覆するように上部電極を形成してキャパシタとするとともに、前記電気絶縁層上に配線を形成する工程と、を有するような構成とした。
本発明の他の態様として、下部電極と配線を覆うように電気絶縁薄膜を形成する前記工程において、前記下部電極上に位置し、かつ、前記下部電極を含む電極数が奇数となるように、複数の電極を電気絶縁薄膜を介して積層するような構成とした。
本発明の他の態様として、キャパシタを構成する複数の前記電気絶縁薄膜を異なる厚みで形成するような構成とし、キャパシタを構成する前記電極からの配線を、前記電気絶縁薄膜を介して対向する電極において異なる方向へ引き出すような構成とした。
また、本発明の受動素子内蔵配線基板の製造方法は、コア基板上に下部電極と配線を形成する工程と、該下部電極と配線を覆い、かつ、下部電極上に薄膜部位を設けるように電気絶縁層を積層する工程と、前記薄膜部位を被覆するように上部電極を形成してキャパシタとするとともに、前記電気絶縁層上に配線を形成する工程と、を有するような構成とした。
本発明の他の態様として、下部電極と配線を覆い、かつ、下部電極上に薄膜部位を設けるように電気絶縁層を積層する前記工程において、電気絶縁層の形成と電極の形成を繰り返すことにより、前記下部電極上に位置し、かつ、前記下部電極を含む電極数が奇数となるように、複数の電極を前記薄膜部位を介して積層するような構成とした。
本発明の他の態様として、キャパシタを構成する複数の前記薄膜部位を異なる厚みで形成するような構成とし、キャパシタを構成する前記電極からの配線を、前記薄膜部位を介して対向する電極において異なる方向へ引き出すような構成とした。
本発明の他の態様として、前記薄膜部位の形成が、電気絶縁層をエッチングすることにより行なわれるような構成、あるいは、前記薄膜部位の形成が、電気絶縁層形成時の露光量制御により行なわれるような構成とした。
本発明の他の態様として、キャパシタを構成する上部電極と配線が形成された電気絶縁層上に、さらに電気絶縁層を介して配線を形成するような構成とした。
本発明の他の態様として、キャパシタを構成する電極と配線の形成は、クロム、チタン、窒化チタン、ニッケル、バナジウムの少なくとも1種を含有する下地導電薄膜を給電層として電解めっきにより行い、その後、電極と配線とを接続するための抵抗配線として前記下地導電薄膜の所望部位を残し、不要の下地導電薄膜を除去することにより、前記キャパシタと前記抵抗配線とからなるフィルタ回路を形成するような構成とした。
本発明の他の態様として、前記キャパシタに接続する配線にパターンコイルからなるインダクタを形成し、該インダクタとキャパシタとでフィルタ回路を形成するような構成とした。
本発明の受動素子内蔵配線基板では、キャパシタが一対の電極と電気絶縁層により構成され、誘電体材料(例えば、誘電率が12以上である材料)を使用していないため、従来の多層配線基板の製造装置をそのまま使用することができ、製造が容易であるとともに小型化が可能であり、また、抵抗配線を介してキャパシタと配線を接続したり、配線にインダクターを設ける場合には、フィルター回路等を構成することも可能であり、さらに、キャパシタを構成する電気絶縁層の薄膜部位の厚みや位置、電極面積を変更することが容易であり、受動部品の位置、大きさ等の変更に容易に対応することができる。
以下、本発明の実施の形態について図面を参照して説明する。
[受動素子内蔵配線基板]
図1は、本発明の受動素子内蔵配線基板の一実施形態を示す部分縦断面図である。図1において、本発明の受動素子内蔵配線基板1は、コア基板2と、このコア基板2の一方の面に形成された配線12a,12b,12c,12dと、キャパシタ10、抵抗配線13とを備えている。
受動素子内蔵配線基板1を構成するコア基板2は、コア材2′に複数のスルーホール7が形成されたものであり、配線やキャパシタ、抵抗配線が形成されたコア材2′の面には電気絶縁層3が形成されている。また、各スルーホール7の内壁面には電気絶縁層3、下地導電薄膜4が形成され、スルーホール7内には導電材料5が充填され、この導電材料5によりスルーホール7を介した表裏の導通がなされている。スルーホール7は内径が略同一であるストレート形状、一端の開口径が他端の開口径よりも大きいテーパー形状、中央部の内径が両端の開口径と異なる形状等、いずれであってもよい。
受動素子内蔵配線基板1を構成するコア基板2の電気絶縁層3上には、抵抗配線13が配設され、この抵抗配線13上に、キャパシタ10を構成する下部電極11aと配線12aが形成されており、配線12aは所望のスルーホール7の導電材料5に接続されている。また、電気絶縁層14の薄膜部位14aを介して上部電極11bが下部電極11aと対向する位置に配設され、キャパシタ10が構成されているとともに、電気絶縁層14上には配線12bが形成されている。電気絶縁層14は、電気絶縁薄膜15と電気絶縁層16との積層であり、電気絶縁層16は、下部電極11a上に位置する電気絶縁薄膜15上には積層されておらず、電気絶縁薄膜15が電気絶縁層14の薄膜部位14aをなしている。また、上部電極11bは、ビア部18aにて所定のスルーホール7の導電材料5に接続されている。
上記のキャパシタ10、配線12b上には、電気絶縁層17を介しビア部18bにて所望の配線12bに接続されるように形成された配線12cと、この配線12c上に更に電気絶縁層17を介しビア部18cにて所望の配線12cに接続されるように形成された配線12dを備えている。
上述のような本発明の受動素子内蔵配線基板1では、コア基板2上に受動素子であるキャパシタ10と抵抗配線13を備えるので、外付けで受動素子を実装する場合に比べて、半導体装置の小型化が可能となる。また、キャパシタ10と抵抗配線13とによりフィルタ回路が形成されている。尚、抵抗配線13は、スルーホール7の内壁面に形成されている下地導電薄膜4と同じ材料からなるものであってよい。また、図示例では、受動素子としてキャパシタ10と抵抗配線13を備えているが、受動素子の種類、個数には特に制限はない。例えば、受動素子として、パターンコイルからなるインダクタを配線中に備えてもよく、この場合、キャパシタとインダクタからなるフィルタ回路を形成することができる。
本発明では、コア基板2のXY方向(コア基板2の表面に平行な平面)の熱膨張係数が2〜20ppm、好ましくは2.5〜17ppmの範囲内であることが望ましい。このようなコア基板2は、例えば、シリコン、セラミック、ガラス、ガラス−エポキシ複合材料等のコア材2′を用いて作製することができる。尚、本発明では、熱膨張係数はTMA(サーマルメカニカルアナリシス)により測定するものである。
電気絶縁層3は、二酸化珪素、窒化珪素等の電気絶縁膜とすることができ、例えば、コア材2′の材質がシリコンである場合、コア材2′を熱酸化することにより電気絶縁膜3としてもよい。尚、コア材2′が酸化ケイ素、ガラス等の電気絶縁材料からなる場合、電気絶縁層3はなくてもよい。
下地導電薄膜4は、クロム、チタン、窒化チタン、ニッケル、バナジウム等の1種、または2種以上を含有する薄膜とすることができる。また、スルーホール7内に充填される導電材料5は、銀ペースト、銅ペースト等の公知の導電性ペーストであってよく、また、銅、銀、金、ニッケル等の導電材料であってもよい。
コア基板2上に設けられたキャパシタ10を構成する電極11a,11b、配線12aa,12b,12c,12dの材質、および、ビア部18a,18b,18cの材質は、銅、銀、金、クロム、アルミニウム等の導電材料とすることができる。
また、キャパシタ10を構成する電気絶縁層14の薄膜部位14a(電気絶縁薄膜15)の材質は、ベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂、エポキシ樹脂等であってよく、薄膜部位14aの厚みは、電極11a,11bの面積、電気絶縁薄膜15の誘電率とともに、キャパシタ10の容量を決定するものであり、適宜設定することができるが、例えば、0.2〜10μmの範囲で設定することが好ましい。
また、抵抗配線13は、クロム、チタン、窒化チタン、ニッケル、バナジウム等の1種、または2種以上を含有するものとすることができ、要求される抵抗特性に応じて、材質、線幅等を設定することができる。
また、電気絶縁層15,17の材質は、エポキシ樹脂、ベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂等の有機絶縁性材料、これらの有機材料とガラス繊維等を組み合わせたもの等の絶縁材料とすることができる。
図2は、本発明の受動素子内蔵配線基板の他の実施形態を示す部分縦断面図である。図2において、本発明の受動素子内蔵配線基板21は、コア基板22と、このコア基板22の一方の面に電気絶縁層を介して形成された配線32a,32b,32c,32dと、キャパシタ30、抵抗配線33とを備えている。
受動素子内蔵配線基板21を構成するコア基板22は、上述の受動素子内蔵配線基板1を構成するコア基板2と同様のものであり、コア材22′に複数のスルーホール27が形成されたものであり、配線やキャパシタ、抵抗配線が形成されたコア材22′の面には電気絶縁層23が形成されている。また、各スルーホール27の内壁面には電気絶縁層23、下地導電薄膜24が形成され、スルーホール27内には導電材料25が充填されている。
また、コア基板22の電気絶縁層23上には、抵抗配線33が配設され、この抵抗配線33上に、キャパシタ30を構成する下部電極31aと配線32aが形成されており、配線32aは所望のスルーホール27の導電材料25に接続されている。また、電気絶縁層34の薄膜部位34aを介して上部電極31bが下部電極31aと対向する位置に配設され、キャパシタ30が構成されている。この上部電極31bは、ビア部38aにて所望のスルーホール27の導電材料25に接続されており、また、電気絶縁層34上には配線32bが形成されている。
上記のキャパシタ30、配線32b上には、電気絶縁層37を介しビア部38bにて所望の配線32bに接続されるように形成された配線32cと、この配線32c上に更に電気絶縁層37を介しビア部38cにて所望の配線32cに接続されるように形成された配線32dを備えている。
上述のような本発明の受動素子内蔵配線基板21では、コア基板22上に受動素子であるキャパシタ30と抵抗配線33を備えるので、外付けで受動素子を実装する場合に比べて、半導体装置の小型化が可能となる。また、キャパシタ30と抵抗配線33とによりフィルタ回路が形成されている。
このような受動素子内蔵配線基板21を構成する電気絶縁層34は、キャパシタ30を構成する薄膜部位34aを有するものであり、その材質は、ベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂等であってよく、薄膜部位34aの厚みは、例えば、0.2〜10μmの範囲で適宜設定することが好ましい。
尚、受動素子内蔵配線基板21を構成するコア基板22の材質、電気絶縁層23の材質、下地導電薄膜24の材質、電極31a,31bの材質、配線32a,32b,32c,32dの材質、抵抗配線33の材質、ビア部38a,38b,38cの材質、電気絶縁層37の材質は、それぞれ、上述の受動素子内蔵配線基板1を構成する該当部材の材質と同様とすることができる。
本発明の受動素子内蔵配線基板は、上述の実施形態に示されるものに限定されるものではない。上述の実施形態では、コア基板2,22を構成する電気絶縁層3,23上にキャパシタ10,30、抵抗配線13,33等の受動素子が配設されているが、その配設位置には特に限定はなく、例えば、コア基板と受動素子との間に多層配線が配設されたものであってもよく、また、多層配線の所望の配線層の中に受動素子を配設したものであってもよい。
また、上述の実施形態では、キャパシタ10,30を構成する下部電極11a,31aが抵抗配線13,33に直接接続されているが、配線を介して下部電極11a,31aが抵抗配線13,33に接続されたものであってもよい。
図3は、コア基板と受動素子との間に配線が配設された本発明の受動素子内蔵配線基板の実施形態の一例を示す部分縦断面図である。図3において、本発明の受動素子内蔵配線基板4は、コア基板42と、このコア基板42の一方の面に形成された配線52a,52b,52c,52dと、キャパシタ50、抵抗配線53とを備えている。
受動素子内蔵配線基板41を構成するコア基板42は、上述の受動素子内蔵配線基板1を構成するコア基板2と同様のものであり、コア材42′に複数のスルーホール47が形成されたものであり、配線やキャパシタ、抵抗配線が形成されたコア材42′の面には電気絶縁層43が形成されている。また、各スルーホール47の内壁面には電気絶縁層43、下地導電薄膜44が形成され、スルーホール47内には導電材料45が充填されている。
また、コア基板42の電気絶縁層43上には、抵抗配線53が配設され、この抵抗配線53上に配線52aが形成されており、配線52aは所望のスルーホール47の導電材料45に接続されている。また、抵抗配線53、配線52a上には、電気絶縁層57を介しビア部58aにて抵抗配線53に接続されるように形成された下部電極51aと、所望のスルーホール47の導電材料45に接続されるように形成された配線52bとを備えている。また、電気絶縁層54の薄膜部位54aを介して上部電極51bが下部電極51aと対向する位置に配設され、キャパシタ50が構成されているとともに、電気絶縁層54上には配線52cが形成されている。電気絶縁層54は、電気絶縁薄膜55と電気絶縁層56との積層であり、電気絶縁層56は、下部電極51a上に位置する電気絶縁薄膜55上には積層されておらず、電気絶縁薄膜55が電気絶縁層54の薄膜部位54aをなしている。
上記のキャパシタ50、配線52c上には、電気絶縁層57を介しビア部58cにて所望の配線52c、上部電極51bに接続されるように形成された配線52dを備えている。
上記の受動素子内蔵配線基板41のキャパシタ50の構造は、図1に示されるキャパシタ10と同様の構造であるが、図2に示されるキャパシタ30のような構造であってもよいことは勿論である。
また、本発明の受動素子内蔵配線基板は、キャパシタを構成する電極数を2対以上にして静電容量を増大したものであってもよい。図4、図5は、このようなキャパシタを備えた本発明の受動素子内蔵配線基板の実施形態を示す部分縦断面図である。図4には、図1に示される本発明の受動素子内蔵配線基板のキャパシタ10を基本構造とするキャパシタ60を拡大して示しており、図5には、図2に示される本発明の受動素子内蔵配線基板のキャパシタ30を基本構造とするキャパシタ80を拡大して示している。
図4に示されるキャパシタ60は、コア基板(図示せず)上に配設された抵抗配線13上に設けられた下部電極11aと、この下部電極11a上に電気絶縁薄膜15a,15b,15cを介してそれぞれ積層された上部電極11b、下部電極11a、上部電極11bとで構成されている。下部電極11aと上部電極11b間に介在する電気絶縁薄膜15a,15b,15cは、それぞれ薄膜部位14a,14b,14cをなしている。但し、最上部の上部電極11bは、薄膜部位14cを残すように形成された電気絶縁層16上にも所望のパターンで形成されている。そして、電気絶縁薄膜15a,15b,15cと電気絶縁層16との積層が電気絶縁層14を構成している。上記の2枚の下部電極11aは、ビア部19aで導通され、また、2枚の上部電極11bもビア部19bで導通されている。このようなキャパシタ60の静電容量は、上述のキャパシタ10の約4倍となる。
尚、上記のキャパシタ60では、2枚の下部電極11aの配線引出し方向と、2枚の上部電極11bの配線引き出し方向は、異なることが好ましく、例えば、両者の方向が90°の角度をなすように設定することができる。また、電気絶縁薄膜15a,15b,15cの厚み(薄膜部位14a,14b,14cの厚み)は同一でも、また、それぞれ異なる厚みであってもよい。
図5に示されるキャパシタ80は、コア基板(図示せず)上に配設された抵抗配線33上に設けられた下部電極31aと、この下部電極31a上に電気絶縁層34Aの薄膜部位34a、電気絶縁層34Bの薄膜部位34b、電気絶縁層34Cの薄膜部位34cを介してそれぞれ積層された上部電極31b、下部電極31a、上部電極31bとで構成されている。但し、最上部の上部電極31bは、電気絶縁層34C上にも所望のパターンで形成されている。そして、電気絶縁層34A,34B,34Cの積層が電気絶縁層34を構成している。また、上記の2枚の下部電極31aはビア部39aで導通され、2枚の上部電極31bもビア部39bで導通されている。このようなキャパシタ80の静電容量は、上述のキャパシタ30の約4倍となる。
尚、上記のキャパシタ80においても、2枚の下部電極31aの配線引出し方向と、2枚の上部電極31bの配線引き出し方向は、異なることが好ましく、例えば、両者の方向が90°の角度をなすように設定することができる。また、薄膜部位34a,34b,34cの厚みは同一でも、また、それぞれ異なる厚みであってもよい。
[受動素子内蔵配線基板の製造方法]
次に、本発明の受動素子内蔵配線基板の製造方法を図面を参照しながら説明する。
図6〜図8は、本発明の受動素子内蔵配線基板の製造方法の一実施形態を示す工程図であり、図1に示される受動素子内蔵配線基板1を例としたものである。
本発明の受動素子内蔵配線基板の製造方法では、まず、コア基板用のコア材2′の一方の面2′aに所定のマスクパターン8を形成し、このマスクパターン8をマスクとしてサンドブラストによりコア材2′に所定の大きさで微細孔7′を穿設する(図6(A))。
コア材2′は、上述の受動素子内蔵配線基板1の説明で挙げた材料を使用することができる。微細孔7′の穿設は、ICP−RIE(Inductively Coupled Plasma-Reactive Ion Etching:誘導結合プラズマ−反応性イオンエッチング)法によるドライエッチング加工により行なうことができる。また、サンドブラストにより微細孔7′を穿設してもよい。微細孔7′の開口径は、例えば、5〜200μm、好ましくは10〜175μmの範囲内で適宜設定することができ、マスクパターン8の開口径により調整することができる。また、微細孔7′の深さは、作製するコア基板の厚み(例えば、50〜300μmの範囲)を考慮して適宜設定することができる。
次に、マスクパターン8を除去し、電気絶縁層3をコア材2′の表面および微細孔7′内壁面に成膜する(図6(B))。この電気絶縁層3は、プラズマCVD法等の真空成膜法を用いて二酸化珪素膜、窒化珪素等の絶縁膜として形成することができる。また、塗布方法により珪素酸化物の懸濁液、あるいはベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂等の絶縁性樹脂をコア材面に塗布し熱硬化させて形成することができる。さらに、例えば、コア材2′の材質がシリコンである場合、熱酸化によりコア材2′の表面に二酸化珪素膜を形成して電気絶縁層3とすることができる。
尚、上記のマスクパターン8が窒化シリコン等の電気絶縁性の膜である場合、マスクパターン8を除去することなく、電気絶縁層3を構成するものとして使用し、さらに、コア材2′の表面および微細孔7′内壁面に電気絶縁層3を成膜してもよい。
次に、微細孔7′が形成された面の電気絶縁層3上に下地導電薄膜4を形成し(図6(C))、次いで、微細孔7′内に導電材料5を充填する(図6(D))。下地導電薄膜4は、無電解めっきによりクロム、チタン、窒化チタン、ニッケル、バナジウム等の薄膜、あるいは、これらを含有する薄膜(例えば、銅とクロムからなる薄膜)として形成することができ、また、スパッタリング法や蒸着法等の真空成膜法により下地導電薄膜4を形成してもよい。微細孔7′内に充填する導電材料5としては、銀ペースト、銅ペースト等の導電性ペーストを用いることができ、微細孔7′内への充填方法は、スクリーン印刷等により行い、次いで熱処理することにより導電性を付与することができる。また、下地導電薄膜4を給電層として電解めっきにより銅、銀、金、ニッケル等の導電材料で埋め込みめっきを行なって微細孔7′内に導電材料5を充填してもよい。
次に、コア材2′の表面2′aに形成された下地導電薄膜4上に所望のレジストパターンを形成し、下地導電薄膜4を給電層として電解めっきにより銅、銀、金、ニッケル等により下部電極11aと配線12aを形成する。その後、下部電極11aと配線12aとを接続するための抵抗配線13としての下地導電薄膜4を残すように、下地導電薄膜4を所望のパターンでパターニングする(図7(A))。
次に、下部電極11aと配線12a、および抵抗配線13を覆うように電気絶縁薄膜15を形成する(図7(B))。この電気絶縁薄膜15は、塗布方法によりベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂、エポキシ樹脂等の絶縁性樹脂を塗布し熱硬化させて形成することができる。本発明の製造方法では、下部電極11a上に形成される電気絶縁薄膜15の膜厚が、キャパシタの電極間距離を決定するものであり、電気絶縁薄膜15の膜厚は0.8〜10μmの範囲で適宜設定することが好ましい。
その後、下部電極11a上に位置する電気絶縁薄膜15を露出させるように電気絶縁層16を形成して、電気絶縁薄膜15と電気絶縁層16の積層体である電気絶縁層14を形成する。この電気絶縁層14は、薄膜部位14aを下部電極11a上に有するものである。次いで、上部電極11b、配線12b、ビア部18aを形成する(図7(C))。これにより、キャパシタ10が形成される。
電気絶縁層16の形成は、例えば、塗布方法によりベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂、エポキシ樹脂等の感光性の絶縁性樹脂を塗布し、その後、フォトリソグラフィーにより下部電極11a上に位置する電気絶縁薄膜15が露出するようにパターニングして形成することができる。また、上部電極11b、配線12b、ビア部18aの形成は、例えば、以下のようにして行なうことができる。まず、電気絶縁層14に、ウエットエッチング、あるいは、炭酸ガスレーザー、UV−YAGレーザー等を用いて所望の微細孔7′内の導電材料5が露出するように小径の穴部を形成する。そして、洗浄後、穴部内および電気絶縁層14上に無電解めっきにより導電層を形成し、この導電層上にドライフィルムレジストをラミネートして所望のパターン露光、現像を行うことにより絶縁パターンを形成する。次に、この絶縁パターンをマスクとして、上記の穴部を含む露出部に電解めっきにより導電材料を析出させてビア部18aと上部電極11b、配線12bを形成し、その後、絶縁パターンと導電層を除去する。また、スパッタリング法等の真空成膜法により、上記の穴部内および電気絶縁層14上に導電層を形成し、この導電層上にマスクパターンを形成し、導電層をエッチングしてビア部18aと上部電極11b、配線12bを形成し、その後、マスクパターンを除去してもよい。
次いで、受動素子としてのキャパシタ10を覆うように電気絶縁層を介して配線を形成する(図8(A))。この配線形成は、例えば、キャパシタ10を覆うように電気絶縁層17を形成し、ウエットエッチング、あるいは、炭酸ガスレーザー、UV−YAGレーザー等を用いて配線12b、あるいは上部電極11bの所望の箇所が露出するように小径の穴部を電気絶縁層17の所定位置に形成する。そして、洗浄後、穴部内および電気絶縁層17上に無電解めっきにより導電層を形成し、この導電層上にドライフィルムレジストをラミネートして所望のパターン露光、現像を行うことにより絶縁パターンを形成する。その後、この絶縁パターンをマスクとして、上記の穴部を含む露出部に電解めっきにより導電材料を析出させてビア部18bと配線12cを形成し、絶縁パターンと導電層を除去する。また、スパッタリング法等の真空成膜法により、上記の穴部内および電気絶縁層17上に導電層を形成し、この導電層上にマスクパターンを形成し、導電層をエッチングしてビア部18bと配線12cを形成し、その後、マスクパターンを除去してもよい。この操作を繰り返すことにより、電気絶縁層17を介して配線12d、ビア部18cを形成する。
次に、コア材2′の裏面2′b側を研磨して微細孔7′を裏面に露出させてスルーホール7を形成する。これにより受動素子内蔵配線基板1が得られる(図8(B))。コア材2′の研磨は、ダイヤモンドグラインダーのような研磨装置等により行うことができる。
尚、図3に示されるような、コア基板と受動素子との間に配線が配設された本発明の受動素子内蔵配線基板を上述の方法により製造する場合には、キャパシタ50を形成する前に、コア基板42に電気配線層57、ビア部58aを形成し、その後、下部電極51a、配線層52bを形成する。
また、図4に示されるような多層構成のキャパシタ60は、上述の電極形成と電気絶縁薄膜の形成を繰り返すことにより形成することができる。
図9は、本発明の受動素子内蔵配線基板の製造方法の他の実施形態を示す工程図であり、図2に示される受動素子内蔵配線基板21を例としたものである。
本発明の受動素子内蔵配線基板の製造方法では、まず、コア基板用のコア材22′を用いて、上述の製造方法の図6(A)〜図7(A)と同様の操作を行なって、コア材22′に形成された電気絶縁層33上に、下部電極31a、配線32aと、これらを接続するための抵抗配線33を形成する(図9(A))。
次に、下部電極31aと配線32a、および抵抗配線33を覆うように電気絶縁層34を形成し、次いで、上部電極31b、配線32b、ビア部38aを形成する(図9(B))。これにより、キャパシタ30が形成される。
電気絶縁層34は、例えば、塗布方法によりベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂、エポキシ樹脂等の感光性の絶縁性樹脂を塗布し、その後、フォトリソグラフィー工程にて、下部電極31a上に薄膜部位34aを残すように露光量を制御してパターニングすることにより形成できる。また、塗布方法によりベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂、エポキシ樹脂等の絶縁性樹脂を塗布し熱硬化させた後、所望のマスクを形成してエッチングにより下部電極31a上に薄膜部位34aを残すようにパターニングして電気絶縁層34を形成してもよい。本発明の製造方法では、下部電極31a上に形成される電気絶縁層34の薄膜部位34aの膜厚が、キャパシタの電極間距離を決定するものであり、薄膜部位34aの膜厚は0.2〜10μmの範囲で適宜設定することが好ましい。
尚、上部電極31b、配線32b、ビア部38aの形成は、上述の製造方法における上部電極11b、配線12b、ビア部18aの形成と同様に行なうことができる。
次いで、受動素子としてのキャパシタ30を覆うように電気絶縁層37を介して配線32c、ビア部38b、および、電気絶縁層37を介して配線32d、ビア部38cを形成し、その後、コア材22′の裏面を研磨してスルーホール27を形成する。これにより受動素子内蔵配線基板21が得られる(図9(C))。
尚、図3に示されるような、コア基板と受動素子との間に配線が配設された本発明の受動素子内蔵配線基板を上述の方法により製造する場合には、コア材22′上に所望の配線を形成し、その後に、キャパシタ30を形成する。
また、図5に示されるような多層構成のキャパシタ80は、上述の電極形成と、電気絶縁層への薄膜部位の形成を繰り返すことにより形成することができる。但し、図5に示されるように、電気絶縁層34A,34Bを、それぞれ薄膜部位34a,34bが形成された状態で略平坦とするには、上述の露光量の制御、エッチング量の制御で同様に対応することができる。
上述の本発明の製造方法では、従来からキャパシタに使用されている誘電体材料(例えば、誘電率が12以上のもの)を使用することなく、電気絶縁材料を用いてキャパシタ10、30を形成するので、従来の多層配線基板製造用の装置を使用することができるとともに、製造工程に高温焼成が不要である。また、キャパシタを構成する電気絶縁層の薄膜部位の厚みや位置、電極面積を変更することが容易であり、受動素子の位置、大きさ等の変更に容易に対応することができる。
次に、具体的実施例を挙げて本発明を更に詳細に説明する。
[実施例1]
コア材として、厚み300μmのシリコンウエハを準備し、このコア材の一方の面にプラズマCVD法で窒化シリコン膜(厚み5μm)を形成した。次に、窒化シリコン膜上に、ポジ型フォトレジスト(東京応化工業(株)製 OFPR−800)を塗布し、スルーホール形成用のフォトマスクを介して露光、現像することによりレジストパターンを形成した。次いで、CF4をエッチングガスとして、レジストパターンから露出している窒化シリコンをドライエッチングし、その後、レジストを剥離して、窒化シリコンからなるマスクパターンを形成した。このマスクパターンは直径が100μmである円形開口を150〜500μmピッチで有するものであった。
次に、ICP−RIE装置により窒化シリコン膜をマスクとしてコア材をトレンチエッチングして、深さ250μmの微細孔を形成した。トレンチエッチングは、CF6をエッチングガスとして使用した。
次いで、微細孔が形成されたコア材に熱酸化処理(1050℃、20分間)を施し、微細孔内壁面を含むコア材表面に酸化シリコン膜および窒化シリコン膜からなる電気絶縁層を形成した。
次に、電気絶縁層上にスパッタリング法によりクロムと銅からなる下地導電薄膜(厚み0.5μm)を形成し、次いで、銅粒子を含有する導電性ペーストをスクリーン印刷により微細孔内に充填し、硬化処理(170℃、20分間)を施した。その後、コア材の表面に硬化突出した導電性ペーストを研磨して、スルーホール内に充填された導電性ペーストの表面とコア材の表面とが同一面となるようにしてコア基板を得た。このコア基板は、微細孔の開口径が100μmで、導電材料により微細孔内部が充填されたものとなった。
次に、微細孔の開口部が存在する面の下地導電薄膜上に、めっき用の液状レジスト(東京応化工業(株)製 LA900)をスピンコート法により塗布し、フォトマスクを介して露光、現像して厚み5μmのレジストパターンを形成した。その後、下地導電薄膜を給電層として電解めっきにより、レジストパターンから露出している下地導電薄膜上に銅めっきを行なって、厚み4μmの下部電極と配線を形成した。
次いで、レジストパターンを除去し、露出した下地導電薄膜上に、ネガ型フォトレジスト(JSR(株)製 THB)を塗布し、抵抗配線形成用のフォトマスクを介して露光、現像することによりレジストパターンを形成した。次いで、過マンガン酸水溶液を用いてエッチングにより不要な下地導電薄膜を除去して、下部電極と配線を接続するクロムと銅からなる抵抗配線を形成した。
次に、下部電極、配線および抵抗配線を覆うように、コア基板上にベンゾシクロブテン樹脂組成物(ダウ・ケミカル社製サイクロテン4024)をスピンコーターにより塗布し、光硬化を行なって厚み1μmの電気絶縁薄膜を形成した。次いで、この電気絶縁薄膜上に、ベンゾシクロブテン樹脂組成物(ダウ・ケミカル社製サイクロテン4024)をスピンコーターにより塗布し乾燥し、その後、露光、現像を行い、下部電極上の電気絶縁薄膜が露出するように電気絶縁層(厚み7μm)を形成した。これにより、上記の電気絶縁薄膜と電気絶縁層との積層であり、下部電極上に厚み1μmの薄膜部位を有する電気絶縁層を形成した。
次に、現像液を用いてウエットエッチングを行うことにより所定のスルーホール内の導電材料が露出するように小径の穴部(内径25μm)を上記の積層構造の電気絶縁層に形成した。そして、洗浄後、穴部内および電気絶縁層上にスパッタリング法によりアルミニウムからなる導電層を形成し、この導電層上にドライフィルムレジスト(旭化成(株)製APR)をラミネートした。次いで、フォトマスクを介し露光、現像して電極形成用のマスクパターンを導電層上に形成し、このマスクパターンをマスクとして導電層をアルカリ溶液によりエッチングし、その後、マスクパターンをアセトンにより除去した。これにより、上部電極と配線を電気絶縁層上に形成した。この上部電極は、電気絶縁層の薄膜部位を介して上記の下部電極と対向するものであり、また、穴部に形成されたビア部により所定のスルーホール内の導電性ペーストに接続されたものであった。
上述のようにして、キャパシタを形成した。
次に、上記のキャパシタを覆うようにコア基板上にベンゾシクロブテン樹脂組成物(ダウ・ケミカル社製サイクロテン4024)をスピンコーターにより塗布、乾燥して厚み7μmの電気絶縁層を形成した。次に、露光、現像を行って、キャパシタの上部電極、配線の所定の箇所が露出するように小径の穴部(内径25μm)を電気絶縁層の所定位置に形成した。そして、洗浄後、穴部内および電気絶縁層上にスパッタリング法によりクロムと銅からなる導電層を形成し、この導電層上に液状レジスト(東京応化工業(株)製LA900)を塗布した。次いで、配線形成用のフォトマスクを介し露光、現像して配線形成用の絶縁パターンを形成した。この絶縁パターンをマスクとして電解銅めっき(厚み4μm)を行い、その後、絶縁パターンと導電層を除去した。これにより、電気絶縁層を介して配線をコア基板上に形成した。上記の配線はビア部(径25μm)により下層の配線と接続されたものであった。
更に、同様の操作を行い、電気絶縁層を介して配線を形成した。これにより多層配線を形成した。
次いで、多層配線を形成した面に粘着テープを貼り、ダイヤモンドグラインダーによりシリコンウエハを200μmの厚みまで研磨して、微細孔を露出させてスルーホールとした。
これにより、図1に示されるような本発明の受動素子内蔵配線基板を得た。この受動素子内蔵配線基板が備えるキャパシタの静電容量を測定した結果、0.1μF/cm2であり、十分な静電容量をもつことが確認された。また、このキャパシタは、クロムと銅からなる抵抗配線を介して配線に接続されてフィルタ回路を構成するものであった。
[実施例2]
まず、実施例1と同様にして、コア基板上に下部電極、配線および抵抗配線を形成した。
次に、下部電極、配線および抵抗配線を覆うように、コア基板上にベンゾシクロブテン樹脂組成物(ダウ・ケミカル社製サイクロテン4024)をスピンコーターにより塗布し乾燥した。その後、フォトマスクを介して露光、現像を行って電気絶縁層を形成した。この露光工程では、露光時間を調整して、現像後に、下部電極上に厚み0.5μmの電気絶縁層が形成されて薄膜部位となるとともに、他の部位の厚みは7μmとなるようにした。
次いで、実施例1と同様に、上部電極、配線を形成し、さらに多層配線を形成し、その後、シリコンウエハを研磨して、図2に示されるような本発明の受動素子内蔵配線基板を得た。この受動素子内蔵配線基板が備えるキャパシタの静電容量を測定した結果、1μF/cm2であり、十分な静電容量をもつことが確認された。また、このキャパシタは、クロムと銅からなる抵抗配線を介して配線に接続されてフィルタ回路を構成するものであった。
小型で高信頼性が要求される半導体装置や各種電子機器への用途にも適用できる。
本発明の受動素子内蔵配線基板の一実施形態を示す概略縦断面図である。 本発明の受動素子内蔵配線基板の他の実施形態を示す概略縦断面図である。 本発明の受動素子内蔵配線基板の他の実施形態を示す概略縦断面図である。 本発明の受動素子内蔵配線基板の他の実施形態を示すキャパシタ部位の拡大縦断面図である。 本発明の受動素子内蔵配線基板の他の実施形態を示すキャパシタ部位の拡大縦断面図である。 本発明の受動素子内蔵配線基板の製造方法の一実施形態を示す工程図である。 本発明の受動素子内蔵配線基板の製造方法の一実施形態を示す工程図である。 本発明の受動素子内蔵配線基板の製造方法の一実施形態を示す工程図である。 本発明の受動素子内蔵配線基板の製造方法の他の実施形態を示す工程図である。
符号の説明
1,21,41…受動素子内蔵配線基板
2,22,42…コア基板
3,23,43…電気絶縁層
4,24,44…下地導電薄膜
5,25,45…導電材料
7,27,47…スルーホール
10,30,50,60,80…キャパシタ
11a,31a,51a…下部電極
11b、31b,51b…上部電極
12a,12b,12c,12d,32a,32b,32c,32d,52a,52b,52c,52d…配線
13,33,53…抵抗配線
14,34,54…電気絶縁層
14a,34a,54a…薄膜部位
15,55…電気絶縁薄膜
16,17,37,56…電気絶縁層
18a,18b,18c,38a,38b,38c,58a,58b,58c…ビア部

Claims (25)

  1. コア基板と、該コア基板上に電気絶縁層を介して形成された配線と、該電気絶縁層の薄膜部位を介して一対の電極が対向するように構成されたキャパシタと、を備えることを特徴とした受動素子内蔵配線基板。
  2. 前記キャパシタを構成する電気絶縁層の薄膜部位の厚みは、0.2〜10μmの範囲であることを特徴とする請求項1に記載の受動素子内蔵配線基板。
  3. 前記キャパシタを構成する一対の電極の一方が、抵抗配線を介して配線に接続していることを特徴とする請求項1または請求項2に記載の受動素子内蔵配線基板。
  4. 前記抵抗配線は、クロム、チタン、窒化チタン、ニッケル、バナジウムの少なくとも1種を含有することを特徴とする請求項1乃至請求項3のいずれかに記載の受動素子内蔵配線基板。
  5. 前記電気絶縁層は、ベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂、エポキシ樹脂の少なくとも1種からなることを特徴とする請求項1乃至請求項4のいずれかに記載の受動素子内蔵配線基板。
  6. 前記コア基板は、導電材料により表裏の導通がなされた複数のスルーホールを備えるとともに、XY方向の熱膨張係数が2〜20ppmの範囲内であることを特徴とする請求項1乃至請求項5のいずれかに記載の受動素子内蔵配線基板。
  7. 前記抵抗配線を介してキャパシタに接続されている前記配線が、前記コア基板のスルーホール内の前記導電材料に接続されていることを特徴とする請求項6に記載の受動素子内蔵配線基板。
  8. 配線はパターンコイルからなるインダクタを含むことを特徴とする請求項1乃至請求項7のいずれかに記載の受動素子内蔵配線基板。
  9. キャパシタとインダクタからなるフィルタ回路、あるいは、キャパシタと抵抗配線からなるフィルタ回路を具備することを特徴とする請求項3乃至請求項8のいずれかに記載の受動素子内蔵配線基板。
  10. 前記キャパシタは、前記電気絶縁層の薄膜部位を介して交互に積層された複数対の電極からなることを特徴とする請求項1乃至請求項9のいずれかに記載の受動素子内蔵配線基板。
  11. 前記キャパシタを構成する複数の前記薄膜部位の厚みが異なることを特徴とする請求項10に記載の受動素子内蔵配線基板。
  12. 前記キャパシタを構成する複数対の電極からの配線引出し方向は、前記薄膜部位を介して対向する電極において異なる方向であることを特徴とする請求項10または請求項11に記載の受動素子内蔵配線基板。
  13. コア基板上に下部電極と配線を形成する工程と、
    該下部電極と配線を覆うように電気絶縁薄膜を形成する工程と、
    前記下部電極上に位置する電気絶縁薄膜が露出して薄膜部位となるように前記電気絶縁薄膜上に電気絶縁層を形成する工程と、
    前記薄膜部位を被覆するように上部電極を形成してキャパシタとするとともに、前記電気絶縁層上に配線を形成する工程と、を有することを特徴とした受動素子内蔵配線基板の製造方法。
  14. 下部電極と配線を覆うように電気絶縁薄膜を形成する前記工程において、前記下部電極上に位置し、かつ、前記下部電極を含む電極数が奇数となるように、複数の電極を電気絶縁薄膜を介して積層することを特徴とした請求項13に記載の受動素子内蔵配線基板の製造方法。
  15. キャパシタを構成する複数の前記電気絶縁薄膜を異なる厚みで形成することを特徴とした請求項14に記載の受動素子内蔵配線基板の製造方法。
  16. キャパシタを構成する前記電極からの配線を、前記電気絶縁薄膜を介して対向する電極において異なる方向へ引き出すことを特徴とした請求項14または請求項15に記載の受動素子内蔵配線基板の製造方法。
  17. コア基板上に下部電極と配線を形成する工程と、
    該下部電極と配線を覆い、かつ、下部電極上に薄膜部位を設けるように電気絶縁層を積層する工程と、
    前記薄膜部位を被覆するように上部電極を形成してキャパシタとするとともに、前記電気絶縁層上に配線を形成する工程と、を有することを特徴とした受動素子内蔵配線基板の製造方法。
  18. 下部電極と配線を覆い、かつ、下部電極上に薄膜部位を設けるように電気絶縁層を積層する前記工程において、電気絶縁層の形成と電極の形成を繰り返すことにより、前記下部電極上に位置し、かつ、前記下部電極を含む電極数が奇数となるように、複数の電極を前記薄膜部位を介して積層することを特徴とした請求項17に記載の受動素子内蔵配線基板の製造方法。
  19. キャパシタを構成する複数の前記薄膜部位を異なる厚みで形成することを特徴とした請求項18に記載の受動素子内蔵配線基板の製造方法。
  20. キャパシタを構成する前記電極からの配線を、前記薄膜部位を介して対向する電極において異なる方向へ引き出すことを特徴とした請求項18または請求項19に記載の受動素子内蔵配線基板の製造方法。
  21. 前記薄膜部位の形成は、電気絶縁層をエッチングすることにより行なうことを特徴とする請求項17乃至請求項20のいずれかに記載の受動素子内蔵配線基板の製造方法。
  22. 前記薄膜部位の形成は、電気絶縁層形成時の露光量制御により行なうことを特徴とする請求項17乃至請求項20のいずれかに記載の受動素子内蔵配線基板の製造方法。
  23. キャパシタを構成する上部電極と配線が形成された電気絶縁層上に、さらに電気絶縁層を介して配線を形成することを特徴とする請求項13乃至請求項22のいずれかに記載の受動素子内蔵配線基板の製造方法。
  24. キャパシタを構成する電極と配線の形成は、クロム、チタン、窒化チタン、ニッケル、バナジウムの少なくとも1種を含有する下地導電薄膜を給電層として電解めっきにより行い、その後、電極と配線とを接続するための抵抗配線として前記下地導電薄膜の所望部位を残し、不要の下地導電薄膜を除去することにより、前記キャパシタと前記抵抗配線とからなるフィルタ回路を形成することを特徴とする請求項13乃至請求項23のいずれかに記載の受動素子内蔵配線基板の製造方法。
  25. 前記キャパシタに接続する配線にパターンコイルからなるインダクタを形成し、該インダクタとキャパシタとでフィルタ回路を形成することを特徴とする請求項13乃至請求項23のいずれかに記載の受動素子内蔵配線基板の製造方法。
JP2004116612A 2004-04-12 2004-04-12 受動素子内蔵配線基板およびその製造方法 Expired - Fee Related JP4394999B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116612A JP4394999B2 (ja) 2004-04-12 2004-04-12 受動素子内蔵配線基板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116612A JP4394999B2 (ja) 2004-04-12 2004-04-12 受動素子内蔵配線基板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2005302987A true JP2005302987A (ja) 2005-10-27
JP4394999B2 JP4394999B2 (ja) 2010-01-06

Family

ID=35334132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116612A Expired - Fee Related JP4394999B2 (ja) 2004-04-12 2004-04-12 受動素子内蔵配線基板およびその製造方法

Country Status (1)

Country Link
JP (1) JP4394999B2 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084933A (ja) * 2006-09-26 2008-04-10 Fujitsu Ltd インターポーザ及びその製造方法
JP2012134432A (ja) * 2010-12-24 2012-07-12 Dainippon Printing Co Ltd 部品内蔵配線板
JP2013141045A (ja) * 2013-04-24 2013-07-18 Nec Corp キャパシタ構造体の製造方法
JP2014241365A (ja) * 2013-06-12 2014-12-25 株式会社デンソー 貫通型コンデンサ
JP2016063114A (ja) * 2014-09-19 2016-04-25 大日本印刷株式会社 貫通電極基板及びその製造方法
US20200243248A1 (en) * 2014-05-05 2020-07-30 3D Glass Solutions, Inc. 2D and 3D Inductors Antenna and Transformers Fabricating Photoactive Substrates
US11101532B2 (en) 2017-04-28 2021-08-24 3D Glass Solutions, Inc. RF circulator
US11139582B2 (en) 2018-09-17 2021-10-05 3D Glass Solutions, Inc. High efficiency compact slotted antenna with a ground plane
US11161773B2 (en) 2016-04-08 2021-11-02 3D Glass Solutions, Inc. Methods of fabricating photosensitive substrates suitable for optical coupler
US11264167B2 (en) 2016-02-25 2022-03-01 3D Glass Solutions, Inc. 3D capacitor and capacitor array fabricating photoactive substrates
US11270843B2 (en) 2018-12-28 2022-03-08 3D Glass Solutions, Inc. Annular capacitor RF, microwave and MM wave systems
US11342896B2 (en) 2017-07-07 2022-05-24 3D Glass Solutions, Inc. 2D and 3D RF lumped element devices for RF system in a package photoactive glass substrates
US11367939B2 (en) 2017-12-15 2022-06-21 3D Glass Solutions, Inc. Coupled transmission line resonate RF filter
US11373908B2 (en) 2019-04-18 2022-06-28 3D Glass Solutions, Inc. High efficiency die dicing and release
US11594457B2 (en) 2018-12-28 2023-02-28 3D Glass Solutions, Inc. Heterogenous integration for RF, microwave and MM wave systems in photoactive glass substrates
US11677373B2 (en) 2018-01-04 2023-06-13 3D Glass Solutions, Inc. Impedence matching conductive structure for high efficiency RF circuits
US11908617B2 (en) 2020-04-17 2024-02-20 3D Glass Solutions, Inc. Broadband induction
US11962057B2 (en) 2019-04-05 2024-04-16 3D Glass Solutions, Inc. Glass based empty substrate integrated waveguide devices

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084933A (ja) * 2006-09-26 2008-04-10 Fujitsu Ltd インターポーザ及びその製造方法
US8479386B2 (en) 2006-09-26 2013-07-09 Fujitsu Limited Method for manufacturing interposer
JP2012134432A (ja) * 2010-12-24 2012-07-12 Dainippon Printing Co Ltd 部品内蔵配線板
JP2013141045A (ja) * 2013-04-24 2013-07-18 Nec Corp キャパシタ構造体の製造方法
JP2014241365A (ja) * 2013-06-12 2014-12-25 株式会社デンソー 貫通型コンデンサ
US20200243248A1 (en) * 2014-05-05 2020-07-30 3D Glass Solutions, Inc. 2D and 3D Inductors Antenna and Transformers Fabricating Photoactive Substrates
US11929199B2 (en) 2014-05-05 2024-03-12 3D Glass Solutions, Inc. 2D and 3D inductors fabricating photoactive substrates
JP2016063114A (ja) * 2014-09-19 2016-04-25 大日本印刷株式会社 貫通電極基板及びその製造方法
US11264167B2 (en) 2016-02-25 2022-03-01 3D Glass Solutions, Inc. 3D capacitor and capacitor array fabricating photoactive substrates
US11161773B2 (en) 2016-04-08 2021-11-02 3D Glass Solutions, Inc. Methods of fabricating photosensitive substrates suitable for optical coupler
US11101532B2 (en) 2017-04-28 2021-08-24 3D Glass Solutions, Inc. RF circulator
US11342896B2 (en) 2017-07-07 2022-05-24 3D Glass Solutions, Inc. 2D and 3D RF lumped element devices for RF system in a package photoactive glass substrates
US11367939B2 (en) 2017-12-15 2022-06-21 3D Glass Solutions, Inc. Coupled transmission line resonate RF filter
US11894594B2 (en) 2017-12-15 2024-02-06 3D Glass Solutions, Inc. Coupled transmission line resonate RF filter
US11677373B2 (en) 2018-01-04 2023-06-13 3D Glass Solutions, Inc. Impedence matching conductive structure for high efficiency RF circuits
US11139582B2 (en) 2018-09-17 2021-10-05 3D Glass Solutions, Inc. High efficiency compact slotted antenna with a ground plane
US11270843B2 (en) 2018-12-28 2022-03-08 3D Glass Solutions, Inc. Annular capacitor RF, microwave and MM wave systems
US11594457B2 (en) 2018-12-28 2023-02-28 3D Glass Solutions, Inc. Heterogenous integration for RF, microwave and MM wave systems in photoactive glass substrates
US11962057B2 (en) 2019-04-05 2024-04-16 3D Glass Solutions, Inc. Glass based empty substrate integrated waveguide devices
US11373908B2 (en) 2019-04-18 2022-06-28 3D Glass Solutions, Inc. High efficiency die dicing and release
US11908617B2 (en) 2020-04-17 2024-02-20 3D Glass Solutions, Inc. Broadband induction

Also Published As

Publication number Publication date
JP4394999B2 (ja) 2010-01-06

Similar Documents

Publication Publication Date Title
JP4394999B2 (ja) 受動素子内蔵配線基板およびその製造方法
US20220028602A1 (en) Inductor component
US7091589B2 (en) Multilayer wiring board and manufacture method thereof
JP5080144B2 (ja) コンデンサ内蔵配線基板
JP4332533B2 (ja) キャパシタ内蔵型プリント回路基板およびその製造方法
KR101412258B1 (ko) 프린트 배선판의 배선 구조 및 그 형성 방법
JP2006253631A (ja) 半導体装置及びその製造方法、キャパシタ構造体及びその製造方法
JP5249132B2 (ja) 配線基板
JP4584700B2 (ja) 配線基板の製造方法
JP4043873B2 (ja) 多層配線基板の製造方法
JP4793014B2 (ja) 受動素子内蔵配線基板およびその製造方法
JP2005064446A (ja) 積層用モジュールの製造方法
JP2005123250A (ja) インターポーザ及びその製造方法並びに電子装置
JP2006134914A (ja) 電子部品内蔵モジュール
JP5082253B2 (ja) 受動素子内蔵配線基板およびその製造方法
JP2006237446A (ja) 多層配線基板およびその製造方法
JP2002124415A (ja) 高周波用基板及びその製造方法
JP4343777B2 (ja) 電子部品内蔵ウエハ
JP4504774B2 (ja) 配線基板の製造方法
JP4529614B2 (ja) プリント配線板の製造方法
JPH114080A (ja) 多層配線基板
JPH1126939A (ja) 多層配線基板
JP2004079605A (ja) 部品内蔵多層配線回路基板及びその製造方法
JPH114079A (ja) 多層配線基板
JP2004006516A (ja) インダクタ素子及びそれを内蔵した多層回路板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091016

R150 Certificate of patent or registration of utility model

Ref document number: 4394999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees