JP2005282481A - キャニスタ - Google Patents

キャニスタ Download PDF

Info

Publication number
JP2005282481A
JP2005282481A JP2004098381A JP2004098381A JP2005282481A JP 2005282481 A JP2005282481 A JP 2005282481A JP 2004098381 A JP2004098381 A JP 2004098381A JP 2004098381 A JP2004098381 A JP 2004098381A JP 2005282481 A JP2005282481 A JP 2005282481A
Authority
JP
Japan
Prior art keywords
heat storage
storage agent
canister
temperature
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004098381A
Other languages
English (en)
Inventor
Hiroyuki Yoshida
博行 吉田
Koji Yamazaki
弘二 山碕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Mahle Filter Systems Japan Corp
Original Assignee
Osaka Gas Co Ltd
Tennex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tennex Corp filed Critical Osaka Gas Co Ltd
Priority to JP2004098381A priority Critical patent/JP2005282481A/ja
Priority to US11/091,932 priority patent/US7323041B2/en
Priority to DE602005001075T priority patent/DE602005001075T2/de
Priority to EP05006955A priority patent/EP1582731B1/en
Publication of JP2005282481A publication Critical patent/JP2005282481A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

【課題】吸着時あるいは脱離時に、キャニスタの温度分布がより均一となるようにし、吸着量の向上を図る。
【解決手段】温度変化に応じて潜熱の吸収および放出を生じる相変化物質として、相変化温度が雰囲気温度よりも高いn−エイコサン(融点36℃)をメラミン等でマイクロカプセル化して粉末状の蓄熱剤とし、これを、バインダとともに押し出し成形して、成形蓄熱剤(A)とする。ケース1内に、成形蓄熱剤(A)を平均で20wt%の配合割合となるように成形活性炭と混合して充填するが、大気開放口6側部分では30wt%、蒸気流入口4側部分では10wt%となるように、配合割合が連続的に変化している。吸着時には大気開放口6側が最も高温となるので、成形蓄熱剤(A)により温度上昇が抑制され、各部の温度分布がより均一化する。
【選択図】図1

Description

この発明は、例えば自動車用内燃機関の蒸発燃料の処理などに用いられる活性炭等の吸着材を利用したキャニスタに関する。
例えば自動車用内燃機関においては、車両の燃料タンクから蒸発した燃料蒸気の外部への放出を防止するために、燃料蒸気の吸着および脱離が可能なキャニスタが設けられており、車両停止後等に発生する燃料蒸気を一時的に吸着し、かつ、その後の運転中に、吸着していた燃料成分を新気とともに脱離させて内燃機関で燃焼処理するようになっている。ここで、活性炭等の吸着材を用いたキャニスタにおいては、燃料蒸気を吸着する際には、いわゆる発熱反応であるため、キャニスタの温度が上昇し、その温度上昇に伴って吸着性能が低下し、逆に、吸着した燃料成分が脱離する際には、いわゆる吸熱反応であるため、キャニスタの温度が低下し、その温度低下に伴って脱離性能が低下することが知られている。
このようなキャニスタの吸着時ならびに脱離時の温度変化を抑制するために、従来から、活性炭等の吸着材に蓄熱剤を混合することが検討されている。例えば、特許文献1には、金属等の比熱の大きな物質からなる蓄熱剤を吸着材に混合したキャニスタが開示されている。
しかし、キャニスタ内に多量の蓄熱剤を配合すると、本来の吸着作用に必要な吸着材の割合が相対的に減少するので、近時、上記の蓄熱剤として、相変化物質を利用したものが注目されている。例えば、特許文献2,3には、相変化に伴って潜熱の吸収および放出を生じる脂肪族炭化水素等の相変化物質をマイクロカプセル中に封入して粉末状の蓄熱剤とし、この粉末状の蓄熱剤を、吸着材と混合して一体に成形し、あるいは粒状の吸着材(活性炭)の表面に付着させて、潜熱蓄熱型吸着材としたものが開示されている。このような相変化に伴う潜熱を利用した蓄熱剤によれば、比較的少量の蓄熱剤でもって、燃料蒸気の吸着および脱離に伴う温度変化が抑制され、吸着性能および脱離性能の向上が図れる。
特開2001−248504号公報 特開2001−145832号公報 特開2003−311118号公報
キャニスタは、直線状あるいはUターン形状等に構成されるケース内の流路の流れ方向の一端に蒸気の流入・流出部が設けられ、他端に大気開放口が設けられるが、蒸気の吸着は、上記流入・流出部側の部分から上記大気開放口側へ向かって徐々に進行し、逆に、蒸気の脱離は、上記大気開放口側の部分から上記流入・流出部側へ向かって徐々に進行するので、吸着時および脱離時のキャニスタの温度分布は一様ではない。従って、蓄熱剤を各部に均一に配合したのでは、蓄熱作用による吸着量向上が必ずしも最良のものとならない。
また、相変化に伴う潜熱を利用した蓄熱剤は、キャニスタの温度変化によって相変化が生じないと、熱の吸収もしくは放出が得られないので、吸着時の温度上昇の抑制と脱離時の温度低下の抑制との双方の効果を得ることは、本質的に困難であり、相変化温度とキャニスタの使用条件下での雰囲気温度との関係から、吸着時もしくは脱離時のいずれか一方にのみ効果が得られることになる。従って、このような相変化物質に特有の性質を考慮して、キャニスタの蓄熱剤として利用する必要がある。
本発明のキャニスタは、温度変化に応じて潜熱の吸収および放出を生じる相変化物質を利用した蓄熱剤を、吸着材と混合してケース内に充填するとともに、流れ方向の一端に蒸気の流入・流出部を設け、かつ他端に大気開放口を設けたものであって、特に、上記蓄熱剤の配合割合が一様ではなく、上記流入・流出部側から上記大気開放口側の間の流れ方向に沿って、上記蓄熱剤の配合割合が変化している。
つまり、蒸気の吸着時あるいは脱離時のキャニスタの温度分布を考慮して、蓄熱剤の配合割合が各部で最適なものとなっている。
本発明では、好ましくは、キャニスタの使用条件下の雰囲気温度よりも相変化温度が高い蓄熱剤を用いるとともに、この蓄熱剤の配合割合が、上記大気開放口側で相対的に高くなっている。
あるいは、キャニスタの使用条件下の雰囲気温度よりも相変化温度が低い蓄熱剤を用いるとともに、この蓄熱剤の配合割合が、上記流入・流出部側で相対的に高くなっている。
つまり、発熱反応である吸着時には、吸着材の温度つまりキャニスタの温度が上昇する。潜熱を利用した蓄熱剤によって、この吸着時の温度上昇を抑制するには、吸着前の雰囲気温度に近い温度状態では相変化前(例えば固相)であって吸着による温度上昇により相変化(例えば液相への変化)する必要があるので、蓄熱剤としては、キャニスタの使用条件下で想定される雰囲気温度よりも相変化温度が高い蓄熱剤が必要である。そして、一般に、吸着時には、大気開放口側の温度が最も高く上昇するが、この大気開放口側の部分に蓄熱剤を多く配合すれば、潜熱として吸収できる熱量が大となる。従って、吸着時におけるキャニスタ各部の温度が、より均一な温度分布に近付く。
一方、吸熱反応である脱離時には、吸着材の温度つまりキャニスタの温度が低下する。潜熱を利用した蓄熱剤によって、この脱離時の温度低下を抑制するには、脱離前の雰囲気温度に近い温度状態では相変化前(例えば液相)であって脱離による温度低下により相変化(例えば固相への変化)する必要があるので、蓄熱剤としては、キャニスタの使用条件下で想定される雰囲気温度よりも相変化温度が低い蓄熱剤が必要である。そして、一般に、脱離時には、流入・流出部側の温度が最も低くなるが、この流入・流出部側の部分に蓄熱剤を多く配合すれば、潜熱として放出できる熱量が大となる。従って、脱離時におけるキャニスタ各部の温度が、より均一な温度分布に近付く。
また本発明では、各部の蓄熱剤の配合割合(吸着材と蓄熱剤との総量に対する蓄熱剤の割合)が、0〜40wt%の範囲内にあることが望ましい。蓄熱剤が過度に多いと、本来の吸着作用を有する吸着材の割合が相対的に減少し、温度変化を抑制しても吸着量の面では却って不利となる。
本発明の一つの態様では、上記ケース内が上記流れ方向に沿って複数の領域に区画されており、各領域でそれぞれ蓄熱剤の配合割合が異なるように、配合割合が段階的に変化している。蓄熱剤を混合しない吸着材のみが収容される領域があってもよい。
なお、各領域はガスが通流可能な仕切壁によって物理的に区画されていてもよく、あるいは物理的な仕切壁を具備せずに複数の領域に区画された構成であってもよい。
また本発明の一つの態様では、複数の領域に明確に区画されることなく、蓄熱剤の配合割合が、上記の流れ方向に沿って、連続的に変化している。
上記蓄熱剤としては、温度変化に応じて潜熱の吸収および放出を生じる相変化物質を利用したものであれば、種々の形態のものを利用することが可能であり、特に限定されるものではないが、例えば、前述した特許文献2あるいは特許文献3等に開示されているような温度変化に応じて潜熱の吸収および放出を生じる相変化物質をマイクロカプセル中に封入してなる微細な蓄熱剤を利用することができる。
そして、好ましくは、上記蓄熱剤は、相変化物質をマイクロカプセル中に封入してなる微細な蓄熱剤を、バインダとともに粒状に成形した成形蓄熱剤からなり、この成形蓄熱剤が、粒状の吸着材と混合して用いられる。
マイクロカプセル化した微細は蓄熱剤は、前述した特許文献2あるいは特許文献3等によって公知であり、上記相変化物質は、例えば、融点が10℃〜80℃の有機化合物および無機化合物からなる。例えば、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサン、ヘンイコサン、ドコサンなどの直鎖の脂肪族炭化水素、天然ワックス、石油ワックス、LiNO3・3H2O、Na2SO4・10H2O、Na2HPO4・12H2Oなどの無機化合物の水和物、カプリン酸、ラウリル酸等の脂肪酸、炭素数が12から15の高級アルコール、バルミチン酸メチル、ステアリン酸メチル等のエステル等が挙げられる。上記相変化物質は、上記から選ばれる2種類以上の化合物を併用してもよい。そして、これらを芯材料として、コアセルベーション法、in−situ法(界面反応法)等の公知の方法により、マイクロカプセルとしたものを用いることができる。マイクロカプセルの外殻としては、メラミン、ゼラチン、ガラス等の公知の材料が使用され得る。このマイクロカプセル化した蓄熱剤の粒子径は、数μm〜数十μm程度が好ましい。マイクロカプセルが過度に小さいと、カプセルを構成する外殻が占める割合が増え、溶解・凝固を繰り返す相変化物質の割合が相対的に減少するので、粉末状蓄熱剤の単位体積当たりの蓄熱量が低下する。逆に、マイクロカプセルが過度に大きくても、カプセルの強度が必要となってくるため、やはりカプセルを構成する外殻が占める割合が増え、粉末状蓄熱剤の単位体積当たりの蓄熱量が低下する。
本発明では、好ましくは、上記のマイクロカプセル化した粉末状蓄熱剤を、バインダとともに適宜な形状および寸法に成形し、粒状の成形蓄熱剤とする。このように蓄熱剤のみを成形することで、成形時のマイクロカプセルの破壊は最小限のものとなる。バインダとしては、種々のものを用いることができるが、最終的なキャニスタとして要求される温度や溶媒に対する安定性ならびに強度の上から、フェノール樹脂やアクリル樹脂等の熱硬化性樹脂が好適である。そして、この粒状の成形蓄熱剤を同じく粒状の吸着材と混合して用いることで、所期の蓄熱作用を確保しつつ、振動を受けたときの両者の分離を抑制することができる。さらに粒状をなす成形蓄熱剤や吸着材の間に適宜な間隙が確保され、吸着・脱離作用を損なうことがないとともに、キャニスタとしての圧力損失が少ない。また、吸着材の外表面が粉末状蓄熱剤によって覆われることがないので、吸着速度の低下等の悪影響を生じることがない。粒状の成形蓄熱剤の粒子径は、例えば、数百μm〜数mm程度とする。
粒状の成形蓄熱剤の大きさと粒状の吸着材の大きさは、両者の経時的な分離を抑制するとともにガスが流れる流路を適切に確保するために、なるべく同じ大きさもしくは近似した大きさであることが望ましい。具体的には、成形蓄熱剤の平均粒子径が、吸着材の平均粒子径の10%〜300%であることが望ましく、成形蓄熱剤の平均粒子径が、吸着材の平均粒子径の50%〜150%であることがさらに望ましい。
上記吸着材としては、公知の種々のものを利用可能であるが、例えば、活性炭を用いることができる。そして、所定寸法に個々に成形したものを用いてもよく、あるいは、破砕した活性炭等の吸着材を、所定のメッシュに分類して用いてもよい。なお、同様に、粒状の成形蓄熱剤についても、当初から所定寸法に形成するほか、大きな寸法に成形したものを破砕して用いることも可能である。
好ましい形状としては、成形蓄熱剤および吸着材が、それぞれ、直径1〜3mmでかつ長さ1〜5mmの円柱状をなしている。この円柱状の成形蓄熱剤および吸着材は、例えば連続的に押し出したものを切断ないしは破断することによって容易に得られる。このような円柱状のもの同士を組み合わせることによって、経時的な両者の分離がより確実に抑制される。
この発明によれば、吸着時ないしは脱離時に、キャニスタの温度分布がより均一となるような形で潜熱の吸収による温度上昇の抑制あるいは潜熱の放出による温度低下の抑制を行うことができ、効果的に吸着量を向上させることができる。
以下、本発明の具体的な実施例について説明する。
メラミン粉末5gに37%ホルムアルデヒド水溶液6.5gと水10gを加え、pHを8に調整した後、約70℃まで加熱し、メラミン−ホルムアルデヒド初期縮合物水溶液を得た。
pHを4.5に調整したスチレン無水酸共重合体のナトリウム塩水溶液100g中に、相変化物質としてn−エイコサン80gを溶解した混合液を、上記メラミン−ホルムアルデヒド初期縮合物水溶液に激しく攪拌しながら添加し、乳化を行ったのち、pHを9に調整してカプセル化を行った。このカプセル体分散液の溶媒を乾燥により除去し、メラミンの膜で覆われたn−エイコサンのマイクロカプセル粉末体(蓄熱剤)を得た。なお、n−エイコサンの相変化温度つまり融点は、36℃であり、これは、キャニスタの使用条件下の雰囲気温度を25℃と想定した場合に、該雰囲気温度よりも高いものとなる。
この粉末状の蓄熱剤にバインダとしてカルボキシメチルセルロース水溶液を添加して、混合した後、円柱状に押し出し成形し、これを乾燥させるとともに切断して、直径約2mm、長さ1〜5mmの円柱状成形蓄熱剤(A)を得た。
また、同様の押し出し成形により、直径約2mm、長さ1〜5mmの円柱状に成形された木質系成形活性炭を得た。
平均の配合割合として、上記の成形蓄熱剤(A)が20wt%、上記の成形活性炭が80wt%、の割合となるように混合したものを、図1に示すように、ナイロン樹脂製の吸着材容量が900ccのケース1に充填し、キャニスタを得た。特に、蒸気流入口4および蒸気流出口5を備えた図左方の端部で、成形蓄熱剤(A)が10wt%、成形活性炭が90wt%、となり、大気開放口6を備えた図右方の端部で、成形蓄熱剤(A)が30wt%、成形活性炭が70wt%、となり、両者間で成形蓄熱剤(A)の配合割合が連続的に変化するようにした。従って、ケース1の長手方向の中央部では、成形蓄熱剤(A)が20wt%、成形活性炭が80wt%、となる。
なお、このような連続的に変化する分布は、ケース1内に充填する際に、成形蓄熱剤(A)と成形活性炭とを混合しつつ充填するようにし、かつ両者の供給速度をそれぞれ充填中に変化させることにより、容易に実現できる。
実施例1と同じ成形蓄熱剤(A)と成形活性炭とを用い、図2に示すように、ケース1内を、流れ方向に沿って3つの領域に区画するように、成形蓄熱剤(A)の配合割合を段階的に変化させた。成形蓄熱剤(A)を10wt%、成形活性炭を90wt%、の割合で均一に混合したものを、蒸気流入口4,蒸気流出口5側の第1領域11に充填し、成形蓄熱剤(A)を20wt%、成形活性炭を80wt%、の割合で均一に混合したものを、中央の第2領域12に充填し、成形蓄熱剤(A)を30wt%、成形活性炭を70wt%、の割合で均一に混合したものを、大気開放口6側の第3領域13に充填した。
(比較例1)
実施例1,2で用いた円柱状の木質系成形活性炭のみを、実施例1,2と同じナイロン樹脂製のケース1に充填し、キャニスタとした。
(比較例2)
実施例1,2と同じ成形蓄熱剤(A)を20wt%、成形活性炭を80wt%、の割合で均一に混合したものを、実施例1,2と同じナイロン樹脂製のケース1の全体に充填し、キャニスタを得た。
図3は、上記キャニスタのより具体的な構造を示すものであり、上記ケース1は円筒状をなし、一端が流入・流出部側端壁2によって閉塞されているとともに、他端が大気開放口側端壁3によって閉塞されている。上記流入・流出部側端壁2には、燃料タンクに接続される蒸気流入口4とエンジン吸気路に接続される蒸気流出口5とが並んで形成され、上記大気開放口側端壁3には、大気に開放される大気開放口6が形成されている。上記流入・流出部側端壁2の内側には、空間7を残すように周縁にフランジを備えた多孔板8と不織布等からなるシート状フィルタ部材9とが重ねて配置されている。上記大気開放口側端壁3の内側には、同様に、空間23となる間隙を残して、平板状の多孔板21とシート状フィルタ部材22とが配置されており、2つのシート状フィルタ部材9,22の間が、吸着材を充填する吸着材収容空間10となっている。大気開放口側端壁3と上記多孔板21との間には、複数の圧縮コイルばね24が配設され、これによって、吸着材収容空間10内に充填された吸着材に適宜な押圧力が付与されている。
実施例1では、上述のように、この吸着材収容空間10に充填される成形活性炭と成形蓄熱剤(A)との配合割合が連続的に変化する。また、実施例2では、上述のように、上記吸着材収容空間10が、第1領域11〜第3領域13に区画され、それぞれに異なる配合割合の成形蓄熱剤と成形活性炭とが充填されているが、図3に示すように、各領域の間に、必ずしも物理的な仕切壁は必要ない。
図4は、上記キャニスタの異なる具体例を示しており、この構成例では、配合割合が段階的に異なる複数の領域の間に、それぞれの成形蓄熱剤が混合することのないように、物理的な仕切壁26が設けられている。この仕切壁26は、不織布等の通気性を有する円形のフィルタ部材からなり、隣接する領域の間に介在しているが、ケース1に対しては、特に固定されていない。なお、図4は、仕切壁26により2つの領域に区画した構成を例示しているが、実施例2のように3つあるいはそれ以上の領域に区画することが可能である。
また、本発明は、図5に示すように、Uターン形状の流路を有するキャニスタにおいても、同様に適用することが可能である。すなわち、この構成例では、ケース1は、全体として直方体形状をなし、かつ中間の隔壁31によって図上方の第1ケース部32と図下方の第2ケース部33とに分割されている。第1,第2ケース部32,33は、いずれも断面矩形の筒状をなし、第1ケース部32の一端が流入・流出部側端壁2によって閉塞されているとともに、第2ケース部33の一端が大気開放口側端壁3によって閉塞されている。上記流入・流出部側端壁2には、燃料タンクに接続される蒸気流入口4とエンジン吸気路に接続される蒸気流出口5とが並んで形成され、上記大気開放口側端壁3には、大気に開放される大気開放口6が形成されている。つまり、これら三者が、ケース1の同じ面に配置されている。上記流入・流出部側端壁2の内側には、空間7となる間隙を残して、多孔板8とシート状フィルタ部材9とが重ねて配置されており、上記大気開放口側端壁3の内側には、同様に、空間23となる間隙を残して、平板状の多孔板21とシート状フィルタ部材22とが重ねて配置されている。
またケース1の他端に、連通部端壁34が取り付けられているとともに、上記第1,第2ケース部32,33の他端開口面を覆うように、不織布等からなるフィルタ部材35が配置されている。このフィルタ部材35は、上記連通部端壁34に設けられた複数個の突起部34aによって支持されており、これによって、連通部端壁34とフィルタ部材35との間に、第1ケース部32と第2ケース部33とを連通する連通路となる空間36が形成されている。従って、第1ケース部32内に、2つのフィルタ部材35,9に挟まれた第1の吸着材収容空間10aが構成され、かつ第2ケース部33内に、2つのフィルタ部材35,22に挟まれた第2の吸着材収容空間10bが構成され、これら2つの吸着材収容空間10a,10bが、流路として実質的に直列に接続されている。なお、大気開放口側端壁3と多孔板21との間、および流入・流出部側端壁2と多孔板8との間、の双方に、それぞれ複数の圧縮コイルばね24が配設されている。
このようなUターン形状のキャニスタにおいても、図3,図4のような直線状のキャニスタと比較して、キャニスタとしての本質は何ら変わるものではなく、上記実施例1あるいは実施例2の蓄熱剤の分布を同様に適用することができる。
図6は、上記のUターン形状のキャニスタとして、上記実施例1の配合割合の分布を適用した例を示す。同様に、図7は、上記のUターン形状のキャニスタとして、上記実施例2の配合割合の分布を適用した例を示す。
上記の各実施例と比較例2とを用いてキャニスタの吸着量を測定したところ、図8に示すような結果が得られた。
すなわち、成形活性炭に成形蓄熱剤(A)を均一に配合した比較例2に比較して、成形蓄熱剤(A)を最適な分布で配合した実施例1,2では、成形蓄熱剤(A)の使用量が同様であるにも拘わらず、吸着量の大幅な向上がみられた。
なお、吸着量の測定方向は、次の通りである。まず、雰囲気温度25℃の下で、図9に示す試験回路51の燃料容器53に試験用のキャニスタを接続し、エアフローメータ52の入口52a,52bを通して所定流量(1.0L/min)の空気を、燃料容器53内の液体燃料(ガソリン)53a中に吹き込み、バブリングを発生させて、その燃料蒸気53bをキャニスタに吸着させる。そして、キャニスタの大気開放口6側からの漏れ(破過)を、漏れ検知装置54で測定し、漏れ量が2.0gとなるまで、吸着させる。次に、キャニスタを図10に示す試験回路61に組み替え、真空ポンプ62およびエアフローメータ63を用いて、キャニスタに大気開放口6側から空気を搬送し、ガソリン蒸気の脱離を行う。以上のガソリン蒸気の吸着・脱離を6回繰り返し、最終3回におけるガソリン蒸気の吸着量を平均して、各キャニスタの吸着量とした。
図11は、実施例1,2および比較例1,2について、キャニスタ内の各部の温度分布、特に、吸着終了時の温度分布を測定した結果を示している。キャニスタ内の温度は、基本的に、成形活性炭のみを用いた比較例1に見られるように、吸着時には、雰囲気温度(25℃)よりも温度上昇し、かつ大気開放口6側ほど高い温度となる。融点が36℃である成形蓄熱剤(A)の相変化物質は、雰囲気温度の下では固相であり、融点以上に温度上昇すると潜熱を吸収して液相に相変化するため、この成形蓄熱剤(A)を含む実施例1,2および比較例2は、その潜熱吸収作用によって、比較例1よりも温度が低く抑制される。ここで、実施例1,2は、温度上昇が最も顕著な大気開放口6側部分において成形蓄熱剤(A)により吸収し得る熱量が、比較例2よりも大となり、従って、この大気開放口6側部分での温度を、比較例2よりも低く抑制することができる。そのため、大気開放口6側部分における吸着材の吸着性能の低下を抑制できる。なお、蒸気流入口4,蒸気流出口5側部分についてみると、実施例1,2は比較例2よりも成形蓄熱剤(A)が少ないため温度が高くなるが、絶対的な温度そのものが大気開放口6側部分よりも低いので、キャニスタ全体の吸着量に与える悪影響は相対的に小さく、キャニスタ全体の吸着量としては、上述したように、比較例2よりも向上することになる。
図12に示すように、Uターン形状のキャニスタにおいて、上記の成形活性炭のみを第1の吸着材収容空間10a内に充填し、上記の成形蓄熱剤(A)と成形活性炭とを混合したものを、第2の吸着材収容空間10b内に充填した。特に、第2の吸着材収容空間10bにおいて、第1の吸着材収容空間10aに連なる連通路(空間36)側の端部で、成形蓄熱剤(A)が0wt%、成形活性炭が100wt%、となり、大気開放口6側の端部で、成形蓄熱剤(A)が40wt%、成形活性炭が60wt%、となり、両者間で成形蓄熱剤(A)の配合割合が連続的に変化するようにした。従って、キャニスタ全体としての平均的な配合割合としては、成形蓄熱剤(A)が10wt%、成形活性炭が90wt%、となる。第1の吸着材収容空間10aにおける成形活性炭は、例えば粗悪燃料の使用などにより活性炭の劣化が著しいような場合に、前処理層として機能するものである。この場合、キャニスタ全体での成形蓄熱剤(A)は、それだけ減少することになる。なお、Uターン形状のキャニスタに限られず、前述した直線状のキャニスタとして構成することも勿論可能である。
上記実施例1と同様の方法により、相変化物質としてn−ヘキサデカンを用いて、円柱状成形蓄熱剤(B)を得た。なお、n−ヘキサデカンの相変化温度つまり融点は、16℃であり、これは、キャニスタの使用条件下に想定される雰囲気温度(25℃)よりも低いものとなる。
平均の配合割合として、上記の成形蓄熱剤(B)が20wt%、上記の成形活性炭が80wt%、の割合となるように混合したものを、図13に示すように、ナイロン樹脂製のケース1に充填し、キャニスタを得た。特に、蒸気流入口4および蒸気流出口5を備えた図左方の端部で、成形蓄熱剤(B)が30wt%、成形活性炭が70wt%、となり、大気開放口6を備えた図右方の端部で、成形蓄熱剤(B)が10wt%、成形活性炭が90wt%、となり、両者間で成形蓄熱剤(B)の配合割合が連続的に変化するようにした。従って、ケース1の長手方向の中央部では、成形蓄熱剤(B)が20wt%、成形活性炭が80wt%、となる。つまり、実施例4は、実施例1に比較して、成形蓄熱剤の増減方向が逆となっている。
図14は、実施例4および比較例1について、キャニスタ内の各部の温度分布、特に、脱離終了時の温度分布を測定した結果を示している。キャニスタ内の温度は、基本的に、成形活性炭のみを用いた比較例1に見られるように、脱離時には、雰囲気温度(25℃)よりも温度低下し、かつ蒸気流出口5側ほど低い温度となる。融点が16℃である成形蓄熱剤(B)の相変化物質は、雰囲気温度の下では液相であり、融点以下に温度低下すると潜熱を放出して固相に相変化するため、この成形蓄熱剤(B)を含む実施例4は、その潜熱放出作用によって、比較例1よりも温度が高く保たれる。ここで、実施例4は、温度低下が最も顕著な蒸気流出口5側部分において成形蓄熱剤(B)の配合割合が高いので、この部分の温度低下をより確実に抑制することができる。そのため、蒸気流出口5側部分での脱離が十分に行われ、該部分における吸着材の吸着性能の低下を抑制できる。
図15に示すように、Uターン形状のキャニスタにおいて、上記の成形活性炭のみを第1の吸着材収容空間10a内に充填し、上記の成形蓄熱剤(B)と成形活性炭とを混合したものを、第2の吸着材収容空間10b内に充填した。特に、第2の吸着材収容空間10bにおいて、第1の吸着材収容空間10aに連なる連通路(空間36)側の端部で、成形蓄熱剤(B)が40wt%、成形活性炭が60wt%、となり、大気開放口6側の端部で、成形蓄熱剤(B)が0wt%、成形活性炭が100wt%、となり、両者間で成形蓄熱剤(B)の配合割合が連続的に変化するようにした。従って、キャニスタ全体としての平均的な配合割合としては、成形蓄熱剤(B)が10wt%、成形活性炭が90wt%、となる。この実施例5は、実施例3と同じく、第1の吸着材収容空間10aにおける成形活性炭が、例えば粗悪燃料の使用などにより活性炭の劣化が著しいような場合に、前処理層として機能するものである。なお、Uターン形状のキャニスタに限られず、前述した直線状のキャニスタとして構成することも勿論可能である。
以上、キャニスタの使用条件下での雰囲気温度を25℃と想定して、相変化物質としてn−エイコサン(融点36℃)およびn−ヘキサデカン(融点16℃)を利用した各実施例を説明したが、自動車におけるキャニスタの配置等によって、雰囲気温度がより高い場合、あるいは逆により低い場合があり得るのは言うまでもなく、従って、相変化物質としては、想定される雰囲気温度を基準として、吸着時もしくは脱離時に相変化が生じるように、適宜に選定されるものである。
実施例1のキャニスタの説明図。 実施例2のキャニスタの説明図。 キャニスタのより具体的な構成を示す断面図。 キャニスタの具体的な構成の異なる例を示す断面図。 キャニスタの具体的な構成のさらに異なる例を示す断面図。 Uターン形状とした実施例1のキャニスタの説明図。 Uターン形状とした実施例2のキャニスタの説明図。 実施例および比較例の吸着量を示す特性図。 吸着時の試験回路を示す説明図。 脱離時の試験回路を示す説明図。 実施例および比較例の吸着終了時の温度分布を示す特性図。 実施例3のキャニスタの説明図。 実施例4のキャニスタの説明図。 実施例4および比較例の脱離終了時の温度分布を示す特性図。 実施例5のキャニスタの説明図。
符号の説明
1…ケース
4…蒸気流入口
5…蒸気流出口
6…大気開放口

Claims (8)

  1. 温度変化に応じて潜熱の吸収および放出を生じる相変化物質を利用した蓄熱剤を、吸着材と混合してケース内に充填するとともに、流れ方向の一端に蒸気の流入・流出部を設け、かつ他端に大気開放口を設けたキャニスタにおいて、
    上記流入・流出部側から上記大気開放口側の間の流れ方向に沿って、上記蓄熱剤の配合割合が変化していることを特徴とするキャニスタ。
  2. キャニスタの使用条件下の雰囲気温度よりも相変化温度が高い蓄熱剤を用いるとともに、この蓄熱剤の配合割合が、上記大気開放口側で相対的に高くなっていることを特徴とする請求項1に記載のキャニスタ。
  3. キャニスタの使用条件下の雰囲気温度よりも相変化温度が低い蓄熱剤を用いるとともに、この蓄熱剤の配合割合が、上記流入・流出部側で相対的に高くなっていることを特徴とする請求項1に記載のキャニスタ。
  4. 各部の蓄熱剤の配合割合が、0〜40wt%の範囲内にあることを特徴とする請求項1〜3のいずれかに記載のキャニスタ。
  5. 上記ケース内が上記流れ方向に沿って複数の領域に区画されており、各領域でそれぞれ蓄熱剤の配合割合が異なるように、配合割合が段階的に変化していることを特徴とする請求項1〜4のいずれかに記載のキャニスタ。
  6. 蓄熱剤を混合しない吸着材のみが収容される領域を含むことを特徴とする請求項5に記載のキャニスタ。
  7. 上記蓄熱剤の配合割合が、上記の流れ方向に沿って、連続的に変化していることを特徴とする請求項1〜4のいずれかに記載のキャニスタ。
  8. 上記蓄熱剤は、相変化物質をマイクロカプセル中に封入してなる微細な蓄熱剤を、バインダとともに粒状に成形した成形蓄熱剤からなり、この成形蓄熱剤が、粒状の吸着材と混合して用いられることを特徴とする請求項1〜7のいずれかに記載のキャニスタ。
JP2004098381A 2004-03-30 2004-03-30 キャニスタ Pending JP2005282481A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004098381A JP2005282481A (ja) 2004-03-30 2004-03-30 キャニスタ
US11/091,932 US7323041B2 (en) 2004-03-30 2005-03-29 Gas storage canister
DE602005001075T DE602005001075T2 (de) 2004-03-30 2005-03-30 Kraftstoffdampfsammelbehälter
EP05006955A EP1582731B1 (en) 2004-03-30 2005-03-30 Gas storage canister

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098381A JP2005282481A (ja) 2004-03-30 2004-03-30 キャニスタ

Publications (1)

Publication Number Publication Date
JP2005282481A true JP2005282481A (ja) 2005-10-13

Family

ID=35181151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098381A Pending JP2005282481A (ja) 2004-03-30 2004-03-30 キャニスタ

Country Status (1)

Country Link
JP (1) JP2005282481A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001862A (ja) * 2008-06-23 2010-01-07 Futaba Industrial Co Ltd キャニスタ
JP2010138789A (ja) * 2008-12-11 2010-06-24 Aisan Ind Co Ltd 蒸発燃料処理装置
JP2011169219A (ja) * 2010-02-18 2011-09-01 Aisan Industry Co Ltd キャニスタ
JP2013151875A (ja) * 2012-01-24 2013-08-08 Aisan Industry Co Ltd トラップキャニスタ
JP2017089499A (ja) * 2015-11-10 2017-05-25 マツダ株式会社 キャニスタ
WO2023080208A1 (ja) * 2021-11-05 2023-05-11 大阪ガスケミカル株式会社 キャニスタ、及びそれを備えた自動車両

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001862A (ja) * 2008-06-23 2010-01-07 Futaba Industrial Co Ltd キャニスタ
JP2010138789A (ja) * 2008-12-11 2010-06-24 Aisan Ind Co Ltd 蒸発燃料処理装置
US8177893B2 (en) 2008-12-11 2012-05-15 Aisan Kogyo Kabushiki Kaisha Fuel vapor processing apparatus
JP2011169219A (ja) * 2010-02-18 2011-09-01 Aisan Industry Co Ltd キャニスタ
JP2013151875A (ja) * 2012-01-24 2013-08-08 Aisan Industry Co Ltd トラップキャニスタ
JP2017089499A (ja) * 2015-11-10 2017-05-25 マツダ株式会社 キャニスタ
WO2023080208A1 (ja) * 2021-11-05 2023-05-11 大阪ガスケミカル株式会社 キャニスタ、及びそれを備えた自動車両

Similar Documents

Publication Publication Date Title
US7543574B2 (en) Canister
US7323041B2 (en) Gas storage canister
JP5638298B2 (ja) 造粒蓄熱材および蒸発燃料処理装置
US8015965B2 (en) Fuel vapor storage canister, fuel vapor adsorbent for canister, and method of producing fuel vapor adsorbent
JP5242360B2 (ja) 蒸発燃料処理装置
JP2008303846A (ja) キャニスタ
JP2005233106A (ja) キャニスタ
US8506691B2 (en) Shaped heat storage materials including heat transfer members
JP2013151875A (ja) トラップキャニスタ
US11896949B2 (en) Adsorbent, canister and method for producing adsorbent
EP3530930B1 (en) Canister
JP2010007671A (ja) キャニスタ
US20220040627A1 (en) Adsorbent, canister, and method for producing adsorbent
JP2006207485A (ja) キャニスタ
JP4471700B2 (ja) キャニスタ
JP2005282481A (ja) キャニスタ
JP4526333B2 (ja) キャニスター用吸着材、その製造方法及び燃料蒸散防止用キャニスター
JP2010142679A (ja) 蓄熱材が付与された複合吸着材とその製造方法
JP2005325708A (ja) キャニスタ
JP2010096118A (ja) 蒸発燃料処理装置
JP4861136B2 (ja) 蓄熱機能付吸着材の製造方法及び蓄熱機能付吸着材並びにキャニスター
JP5462765B2 (ja) 蓄熱機能付吸着材の製造方法及び蓄熱機能付吸着材並びにキャニスター
JP4439995B2 (ja) キャニスタ
JP2019049215A (ja) キャニスタ
JP2019044700A (ja) キャニスタ