JP2005266985A - 位置決め方法および位置決め装置 - Google Patents

位置決め方法および位置決め装置 Download PDF

Info

Publication number
JP2005266985A
JP2005266985A JP2004075458A JP2004075458A JP2005266985A JP 2005266985 A JP2005266985 A JP 2005266985A JP 2004075458 A JP2004075458 A JP 2004075458A JP 2004075458 A JP2004075458 A JP 2004075458A JP 2005266985 A JP2005266985 A JP 2005266985A
Authority
JP
Japan
Prior art keywords
moving body
stage
moving
moved
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004075458A
Other languages
English (en)
Other versions
JP3959071B2 (ja
Inventor
Hiroshi Abe
浩 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2004075458A priority Critical patent/JP3959071B2/ja
Priority to CNB2005100558216A priority patent/CN100365464C/zh
Publication of JP2005266985A publication Critical patent/JP2005266985A/ja
Application granted granted Critical
Publication of JP3959071B2 publication Critical patent/JP3959071B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position Or Direction (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

【課題】 移動体を目標位置に精度良く移動停止させることが可能な位置決め方法および位置決め装置を提供する。
【解決手段】 移動体3を目標位置20に向かって移動させ、前記移動体3の位置と前記目標位置20との差分Lを測定し、前記差分Lに基づく前記移動体3の移動量が基準値未満になったときに、前記移動体3を基準移動量未満の移動量で前記目標位置20方向に移動させる。前記移動体3の位置が前記目標位置20に対して許容範囲以内となったときに前記移動体3を停止させる。
【選択図】 図1

Description

本発明は、ステージなどの移動体を目標位置に精度良く移動停止させることが可能な位置決め方法、およびこの位置決め方法を用いた位置決め装置に係り、特に磁気ヘッドの研磨面の干渉縞を検視するための顕微鏡用ステージを、磁気ヘッドの検視位置に向かって移動させる際に、検視位置に対して精度良く、且つ短時間で位置決めできる位置決め方法、および位置決め装置に関する。
磁気ヘッドの記録媒体対向面は湾曲した曲面のクラウン形状に形成されているが、このクラウン形状が設計したとおりに形成されているかを検査するために、異なった角度から観察した磁気ヘッドの記録媒体対向面について、前記クラウン形状の干渉縞を観察し、この干渉縞によって生じる光強度分布から、面全体の相対的な位相分布をもとめ、三次元的な高さに変換する、いわゆる位相シフト法と呼ばれる方法が用いられる。この際、各角度の記録媒体対向面ごとに任意の測定点の光強度を測定し、この高さ位置をもとに計算を行って位相を求める。
この位相シフト法によって前記クラウン形状の検査を行う際、前記測定点の高さ位置は前記位相を求めるためのデータとなるため、前記測定点の高さ位置を正確に把握し、この位置に正確に顕微鏡を停止させる必要がある。
ここで、前記磁気ヘッドのクラウン形状を検査するときは、顕微鏡を顕微鏡用ステージに固定し、このステージを移動することによって顕微鏡を移動して任意の位置に位置決めする。このため、従来より前記ステージをモータとこのモータの駆動力を前記ステージに伝達するための螺子を有する駆動手段とで構成された位置決め装置が用いられている。
このような位置決め装置では、前記位置決めを行う際、使用者が指定した位置までのステージの移動量に比較し、実際に前記ステージの移動量が、前記指定した位置までの移動量よりも小さくなるという、いわゆるロストモーションと呼ばれる現象が発生する。
以下に示す特許文献1には、パルスモータの回転駆動力を、複数の歯車や、ラックおよびピニオンを介してステージを移動させる顕微鏡用ステージが開示されている。この顕微鏡用ステージでは、前記パルスモータをマイクロステップ制御し、1パルスで微小な量の駆動量で前記ステージを移動できるように構成されている。前記ステージを移動させて所定位置に位置決めする際、歯車やラックなどに生じるロストモーションを抑制し、前記ステージの正確な位置決めを行うために、前記歯車やラックを、弾性部材である引っ張りバネによって一定方向へ付勢することにより、歯車やラックの噛み合わせの際に生じるガタつきを少なくするという技術思想が開示されている。
また以下に示す特許文献2には、ロストモーションの発生量以上の駆動量を加えた量でマイクロステップ制御されたパルスモータを駆動し、搬送ローラから排紙ローラへの駆動伝達ギア列のロストモーションを歯車の一方向に片寄らせることによって、ロストモーションの影響を少なくして移動体(被搬送物)を適切に移動させるという技術思想が開示されている。
特開2003−107363号公報 特開2002−068519号公報
しかし、前記特許文献1および2に開示された技術思想は、前記ロストモーションを制御してステージや移動体を正確又は適切に移動させるものではあるが、前記ステージや前記移動体の移動量は前記パルスモータの1ステップの駆動量に依存した状態で前記ステージや前記移動体するため、前記ステージや前記移動物の位置決め精度も前記パルスモータの1パルスの移動量が限界であった。したがって、前記ステージや移動体の位置決めを高精度で行うことはできなかった。
本発明は前記従来の課題を解決するものであり、ステージなどの移動体の位置決めを精度良く行うことができる位置決め方法、および位置決め装置を提供することを目的とする。
本発明の位置決め方法は、移動体を目標位置に向かって移動させ、前記移動体位置と前記目標位置との差分を測定し、前記移動体の位置と前記目標位置との差分に基づく前記移動体の移動量が基準値未満になったときに、前記移動体を基準移動量未満の移動量で前記目標位置方向に移動させ、前記移動体の位置が前記目標位置に対して許容範囲以内となったときに前記移動体を停止させることを特徴とするものである。
この場合、前記移動体を、前記目標位置に向かって第1の方向へ移動させて前記目標位置を通過させた後、前記移動体を目標位置に向かって前記第1の方向と反対方向である第2の方向へ移動させるものとして構成することや、前記移動体を、前記目標位置に向かって前記第1の方向へ前記基準移動量で移動する状態で移動させて前記目標位置の手前で停止させた後、前記停止位置から前記基準移動量未満の移動量で前記移動体を移動させるものとして構成することができる。
また、前記移動体の位置と前記目標位置との差分が前記基準値以上のとき、前記移動体の移動量を基準移動量で除算することにより算出するものとして構成することが好ましい。
また、前記移動体の移動速度が、前記基準値未満の場合よりも前記基準値以上の場合の方が大きいものとして構成することが好ましい。
この場合、前記移動体をパルスモータの回転駆動力で移動させ、前記基準移動量は前記パルスモータの1パルスの移動量であり、ロストモーションによって前記基準移動量未満の移動量で前記移動体を移動するものとして構成することができる。
また本発明の位置決め装置は、移動体と、前記移動体と目標位置との差分を検出する位置検出手段と、前記移動体を移動させる駆動手段とを有し、前記位置検出方法を用いた位置決め装置において、
前記移動体を前記駆動手段によって目標位置に向かって移動させ、前記位置検出手段で検出した前記差分が基準値未満になったときに、前記駆動手段によって前記移動体を基準移動量未満の移動量で前記目標位置方向に移動させ、前記位置検出手段で検出した前記差分が許容範囲以内となったときに、前記駆動手段を停止し、前記移動手段が停止されることを特徴とするものである。
この場合、前記駆動手段はパルスモータを有し、前記パルスモータにマイクロステップ制御を施すものとして構成することが好ましい。
また、前記パルスモータのマイクロステップ制御を、前記基準値以上の場合は25分割で行い、前記基準値未満の場合は250分割で行うことができる。
この場合、前記駆動手段のロストモーションによって前記移動体を前記基準移動量未満で移動させるものとして構成することが好ましい。
また、前記移動体に顕微鏡が固定されるものとして構成することに好適である。
本発明の位置決め方法および位置決め装置では、移動体を移動させる際、前記移動体を駆動手段などの理論値未満の移動量で移動させるものである。したがって、前記移動体を高精度で位置決め可能とすることができる。
本発明の位置決め方法および位置決め装置では、特にロストモーションを利用することによって、前記移動体が駆動手段などによって移動される際の理論的な最小移動量として規定される基準移動量よりも、はるかに少ない移動量で前記移動体を移動することを適切に行うことが可能となる。これにより、前記移動体を前記基準移動量で定まる精度よりも高精度で位置決めできることとなる。
また、前記移動体の位置と前記目標位置との差分が前記基準値以上のとき、前記移動体の移動量を基準移動量で除算することにより算出する場合には、前記移動体を位置決めするための移動を、小刻みに複数回に亘って前記移動体の位置決め動作がなされるので、前記移動体の位置決めを精度良く行うことが可能となる。
位置決め装置の前記駆動手段としてパルスモータ使用し、前記パルスモータにマイクロステップ制御を施すものとして構成された場合には、高精度の位置決めを行うことが可能となる。
また、前記移動体の移動速度が、前記基準値未満の場合よりも前記基準値以上の場合の方が大きいものとして構成された場合、特に前記位置決め装置として具体化された場合に、前記パルスモータのマイクロステップ制御を、前記基準値以上の場合は25分割で行い、前記基準値未満の場合は250分割で行うことにより前記移動体の速度を設定すると、高精度の位置決めを迅速に行うことが可能となる。
本発明の位置決め方法および位置決め装置では、移動体を移動させる際、前記移動体を駆動手段などの理論値未満の移動量で移動させるものである。したがって、前記移動体を高精度で位置決め可能とすることができる。特にロストモーションを利用することによって、前記移動体が駆動手段などによって移動される際の理論的な最小移動量として規定される基準移動量よりも、はるかに少ない移動量で前記移動体を移動することを適切に行うことが可能となる。これにより、前記移動体を前記基準移動量で定まる精度よりも高精度で位置決めできることとなる。
また、前記移動体の位置と前記目標位置との差分が前記基準値以上のとき、前記移動体の移動量を基準移動量で除算することにより算出する場合には、前記移動体を位置決めするための移動を、小刻みに複数回に亘って前記移動体の位置決め動作がなされるので、前記移動体の位置決めを精度良く行うことが可能となる。
図1は本発明の実施例である位置決め装置の構成を示す説明図、図2は図1に示す位置決め装置を用いて検査を行う磁気ヘッドを示す斜視図である。
図2に示す磁気ヘッドH1は、例えば記録媒体に記録信号を記録し、再生する映像機器の磁気記録再生装置、またはコンピュータ用のデータ磁気記録再生装置などを構成する摺動型磁気ヘッドである。前記磁気ヘッドH1は、第1コア101上に再生用のMR型薄膜磁気ヘッド102、記録用のインダクティブヘッド103、及び保護膜である絶縁層104が形成されており、前記絶縁層104上に第2コア105が接着されている。符号106は電極である。
前記磁気ヘッドH1は、アルミナチタンカーバイドからなる第1コア101の磁気再生ヘッドの形成面上に、AlやSiOなどの絶縁性材料からなる下地層(図示せず)を介して、薄膜磁気ヘッド102、および保護膜であるAlからなる絶縁層104が薄膜形成プロセスによって形成されている。
図2に示すように、前記磁気ヘッドH1は、MR型薄膜磁気ヘッド102とインダクティブヘッド103との複合型薄膜磁気ヘッドである。
図2に示すように第1コア101及び第2コア102の記録媒体対向面H1Aは、記録媒体の進行方向である図示Z方向にR形状(クラウン形状)に湾曲形成されている。
図1に示す位置決め装置1は、図2に示す磁気ヘッドH1の前記記録媒体対向面H1Aの前記クラウン形状が、設計した形状の許容範囲内の形状に形成されているか否かを検査するために使用されるものである。
図3に示すように、前記磁気ヘッドH1の記録媒体対向面H1Aを顕微鏡50によって観察する。このとき、前記顕微鏡50を上下方向(図示Y1およびY2方向)に移動させながら任意の観察点を中心として観察する。このとき、前記記録媒体対向面H1Aを前記顕微鏡50で観察すると、図4ないし図7に示すように前記クラウン形状に基く干渉縞60を観察することができる。ここで、図4ないし図7に示す点a,b,c,dは、前記顕微鏡50の観察点である。
前記干渉縞60は1/2周期で明暗が繰り返されるため、前記顕微鏡50を前記干渉縞60の周期の1/4の距離で移動させて複数の画像を得て、各画像の干渉縞60を観察する。
このようにして観察した前記クラウン形状の干渉縞60を観察し、この干渉縞60によって生じる光強度分布から、面全体の相対的な位相分布をもとめ、三次元的な高さに変換する、いわゆる位相シフト法と呼ばれる方法が用いられる。この際、各画像ごとに前記観察点の光強度を測定し、この光強度をもとに計算を行って位相を求める。
この位相シフト法によって前記クラウン形状の検査を行う際、前記観察点の位置は前記位相を求めるためのきわめて重要なデータとなるため、前記観察点の位置を高精度に把握し、この観察点の位置に正確に顕微鏡を停止させる必要がある。
図1に示す位置決め装置1では、前記顕微鏡50の位置を極めて高精度に位置決めできるものである。したがって、前記位置決め装置1は前記磁気ヘッドH1の記録媒体対向面H1Aのクラウン形状を位相シフト法によって検査するのに好適なものである。
図1に示すように、前記位置決め装置1は、コントローラ2と、本発明の移動体であるステージ3と、スケール4と、駆動手段であるパルスモータ5、および前記駆動手段であるパルスモータ5の駆動力を、前記移動体であるステージ3に伝達するための伝達手段として機能する螺子6とを有して構成されている。
前記コントローラ2はCPU7とドライバ8とを有して構成されている。
前記位置決め装置1では、前記ステージ3は螺子6を介して前記パルスモータ5と接続されており、前記ステージ3は前記パルスモータ5の駆動力が前記螺子6を介して、図示Y1方向およびY2方向に移動可能とされている。前記ステージ3の上には前記顕微鏡50が固定される。そして、この顕微鏡50により前記磁気ヘッドH1の前記クラウン形状に基づく干渉縞60を観察するのである。
前記パルスモータ5はステップ角0.36°であり、1回転させるのに1000パルスが必要となるものである。そして、1ステップを250分割したマイクロステップ駆動がなされるように前記ドライバ8で制御されている。また、前記螺子6の1ピッチは1mmに構成されている。
したがって、前記パルスモータ5を1パルス出力させた場合、前記ステージ3の移動量は1mm/1000パルス/250分割=4nmとなるように構成されている。この4nmという移動量が、前記位置決め装置1では、前記ステージ3の基準移動量となる。また、前記パルスモータ5を250分割したときが、前記ステージ3の移動速度のうち低速時となる。この低速時における後記する位置決めサイクルの1サイクル当たりの最大移動量がV1であり、この低速時の前記ステージ3の最大移動速度と相関する。このV1は、前記パルスモータ5のマイクロステップが250分割の時にはステージ3の負荷による限界よりも、電気的にドライバに入力可能な周波数によって決定される。
なお、前記ドライバ8によって、前記パルスモータ5は25分割のマイクロステップ制御もなされるように構成されている。このように前記パルスモータ5を25分割したときが、前記ステージ3の移動速度のうち高速時となる。この高速時における後記する位置決めサイクルの1サイクル当たりの最大移動量がV2であり、この高速時の前記ステージ3の最大移動速度と相関する。このV2はステージ3の負荷と前記パルスモータ5のトルクとの関係によって決まり、パルスモータ5特有の脱調現象を起こさないようにするために、制御に必要となるパラメータである。
前記パルスモータ5の1パルス出力時の前記ステージ3の基準移動量は4nmであるため、前記ステージ3を目標位置に移動させて停止させる場合、前記ステージ3の目標位置に対する位置決め精度は4nmが限界となるのが普通である。
しかし、本発明の前記位置決め装置1では、前記ステージ3を4nmよりも小さい距離(精度)で位置決め可能なものである。その原理を以下に説明する。
図8は基準点から前記ステージ3を何処まで移動させるのかを指令したときの指令位置(nm)と、前記指令に基いて実際に前記ステージ3が移動したときの前記基準点からの移動位置(nm)を示したグラフ、図9は図8に示すグラフを前記指令位置が50nmまで拡大して示したグラフである。
図8に示す「ステージNo.1」は、前記パルスモータ5に前記螺子6として1mm/ピッチのものを使用したときのステージを表すもので、1パルス当たり4nmの基準移動量である。一方「ステージNo.2」は、前記パルスモータ5に、前記螺子6として0.5mm/ピッチのものを使用したときのステージを表したもので、1パルス当たり2nmの基準移動量である。
図8に示すように、指令どおり動いた場合のグラフと比較すると、指令位置に対して、前記「ステージNo.1」および「ステージNo.2」が実際に移動した距離は短くなっていることが分かる。これはロストモーションと呼ばれる現象で、前記「ステージNo.1」「ステージNo.2」を駆動させるための部材(例えば螺子6など)が弾性変形することにより生じるものと考えられ、前記位置決め装置1においては前記ステージ3を位置決めする際に位置決め精度の低下をもたらす原因である。図8において、「ステージNo.1」および「ステージNo.2」では、「指令どおりに動いた場合」のグラフからの差分がロストモーションになっている。
また図8に示すように、指令位置の値が小さいほど、実際の移動量は小さくなっており、ロストモーションは指令位置の値が小さいほど、大きくなるということがいえるのである。これは特に、漸増型ロストモーションと呼ばれるものである。
本発明の前記位置決め装置1では、前記ロストモーションが大きい領域、即ち前記指令位置の値が小さい領域で前記ステージを動かすことによって、前記ステージ3を前記パルスモータ5の1パルスにおける前記ステージ3の移動量よりも少ない量で前記ステージ3を動かすものである。即ち、前記ステージの指令移動量を、例えば前記パルスモータ5の1パルスでの移動量よりも小さい値で指令すると、図8および図9から分かるように、指令移動量よりも非常に少ない量でしか前記ステージ3が移動しないため、理論的なステージの最小移動量4nmよりも小さい値での移動が可能となるのである。
なお、前記位置決め装置1では、後述するように指令移動量を1nmとしている。
次に、前記位置決め装置1の前記ステージ3の位置決め動作について、図1、図10および図11を用いて説明する。ここで図10は、前記ステージ3の中心線O−Oを、目標位置20にある磁気ヘッドH1の破線21と同一線上に移動させる際の位置決め動作を説明する模式図である。また、図11は前記コントローラ2の内部処理を示す図である。なお、図10に示す前記磁気ヘッドH1の前記破線21上に、前記磁気ヘッドH1の前記測定点a,b,c,若しくはdが存在する。
まず図1に示すように、前記CPU2に内蔵されたパルスカウンター(PC)9に、パルス発生器11により、前記ステージ3を図10に示す目標位置20まで移動させるための信号となる信号S1を入力する(手順1)。この信号S1は前記ステージ3の目標位置20までの移動指令について、1パルス当たりどの位の最低移動量で前記ステージ3を移動させれば良いかを規定するためのものである。このとき、前記パルスカウンター9によって、1パルスでの前記パルスモータ5の駆動が可能となり、前記ステージ3の最小移動量が規定される。この最小移動量は、前記パルスモータの1パルス当たりでの前記基準移動量よりも少ない移動量であり、本実施形態の位置決め装置1では、1nm単位で指令可能となっている。この理由は、前記ロストモーションを利用して、前記パルスモータ5の1パルスにおける前記ステージ3の移動量を微小に行うことができるからである。
次に、図10に示すように位置Aにある前記ステージ3のO−O線から、前記目標位置20の中心線O´−O´線までの差分である距離Lを、本発明の位置検出手段である前記スケール4で測定する。このスケール4は例えばガラスと格子上の網を有して構成される公知の光スケールなどで構成できる。そして、前記スケール4で測定した前記距離Lの距離信号S2を、図1に示すパルスカウンター(PC)10を介して前記CPU7に入力する(手順2)。この信号S2はパルス信号であり、前記パルスカウンター10によってスケール4の位置をステージ3とともに1パルスごとに移動させることができる。本実施形態の位置決め装置1では、前記スケール4は前記信号S1に基いて1nm単位で移動可能となっているため、1nmの位置検出精度で前記ステージ3の位置を検出できるものである。
そして、前記信号S1およびS2は、前記パルスカウンター9および10を介して前記CPU7の回転方向判断手段12に入力される(手順3)。
前記回転方向判断手段12は、前記信号1と前記信号S2との距離に基いて、図10に示す目標位置20に対して前記ステージ3を、第1の方向であるY1方向へ移動させるべきか、第2の方向(前記第1の方向と反対方向)であるY2方向へ移動させるべきかを判断し、この判断に基いた方向信号S3を、前記CPU7のPID制御(比例積分微分制御)手段13に入力する(手順4)。このとき前記信号S3は、前記ステージ3をY1方向へ移動させる場合には、後記する制御量Cが正値となる。一方、前記ステージ3をY2方向へ移動させる場合には、後記する制御量Cが負値となる。
前記PID制御手段13では、前記信号S3に基いて、前記ステージ3を前記目標位置20に近づけるべく、PID制御を行う(手順5)。
前記PID制御手段13は、前記パルス発生器11からの信号S1、前記スケール4からの距離信号S2、および前記回転方向判断手段12から出力された前記信号S3に基いて、前記ステージ3の必要な制御量(即ち前記ステージ3の必要移動量)Cを算出し、これを信号S4として、前記CPU7の移動制御手段14に入力する(手順6)。
前記移動制御手段14は、前記PID制御手段13で計算された前記信号S4に基いて、前記ステージ3を移動させるための前記パルスモータ5の駆動を制御するものである。
図11には前記移動制御手段14における制御方法を示している。ここで図14において「Max」とは、前記ドライバ8で前記パルスモータ5のマイクロステップを25分割したときの、後記する位置決めサイクルの1サイクル当たりの移動量と同じ値である。また「A」とは、前記高速時のパルスモータ5の分割数と前記低速時のパルスモータ5の分割数との比を表したものであるあり、前記位置決め装置では250/25=10となる。「Pitch」とは、前記低速時速度の1パルス当たりの前記ステージ3の移動量、即ち前記基準移動量であり、前記位置決め装置1では4nmである。
図11に示すように、前記PID制御手段13が算出した前記制御量Cが信号S4として前記移動制御手段14に入力される。
前記制御量Cの絶対値|C|が、|C|>「Max」の場合には、{Max/(A×(Pitch)}のパルス数で前記パルスモータ5を駆動させるように、前記ドライバ8に信号S5aを出力する。このとき、前記ドライバ8は、前記パルスモータ5を25分割のマイクロステップで駆動させるように信号6aを出力する(手順7a)。このとき、前記Cが正値の場合には、前記パルスモータ5を時計方向(CW)へ回転駆動させて前記ステージ3を図10に示すY1方向へ向かって移動させ、負値の場合には、前記パルスモータ5を反時計方向(CCW)へ回転駆動させて前記ステージ3を図10に示すY2方向へ向かって移動させる。なお、前記パルスモータ5を時計方向(CW)へ回転駆動させて前記ステージ3を図10に示すY2方向へ向かって移動させ、前記パルスモータ5を反時計方向(CCW)へ回転駆動させて前記ステージ3を図10に示すY1方向へ向かって移動させるように構成しても良い。
前記絶対値|C|が、|C|>V1の場合には、{C/(A×(Pitch)}のパルス数で前記パルスモータ5を駆動させるように、前記ドライバ8に信号S5bを出力する。このとき、前記ドライバ8は、前記パルスモータ5を25分割のマイクロステップで駆動させるように信号6bを出力する(手順7b)。このとき、前記Cが正値の場合には、前記パルスモータ5を時計方向(CW)へ回転駆動させて前記ステージ3を図10に示すY1方向へ向かって移動させ、負値の場合には、前記パルスモータ5を反時計方向(CCW)へ回転駆動させて前記ステージ3を図10に示すY2方向へ向かって移動させる。なお、前記パルスモータ5を時計方向(CW)へ回転駆動させて前記ステージ3を図10に示すY2方向へ向かって移動させ、前記パルスモータ5を反時計方向(CCW)へ回転駆動させて前記ステージ3を図10に示すY1方向へ向かって移動させるように構成しても良い。
前記絶対値|C|が、|C|≧「Pitch」の場合には、{C/Pitch}のパルス数で前記パルスモータ5を駆動させるように、前記ドライバ8に信号S5cを出力する。このとき、前記ドライバ8は、前記パルスモータ5を250分割のマイクロステップで駆動させるように信号6cを出力する(手順7c)。このとき、前記Cが正値の場合には、前記パルスモータ5を時計方向(CW)へ回転駆動させて前記ステージ3を図10に示すY1方向へ向かって移動させ、負値の場合には、前記パルスモータ5を反時計方向(CCW)へ回転駆動させて前記ステージ3を図10に示すY2方向へ向かって移動させる。なお、前記パルスモータ5を時計方向(CW)へ回転駆動させて前記ステージ3を図10に示すY2方向へ向かって移動させ、前記パルスモータ5を反時計方向(CCW)へ回転駆動させて前記ステージ3を図10に示すY1方向へ向かって移動させるように構成しても良い。
前記絶対値|C|が、|C|<「Pitch」であり、かつ|C|>0の場合には、1パルスで前記パルスモータ5を駆動させるように、前記ドライバ8に信号S5dを出力する。この「Pitch]、すなわち基準移動量が、本発明の「基準値」となる。このとき、前記ドライバ8は、前記パルスモータ5を250分割のマイクロステップで駆動させるように信号6cを出力する(手順7d)。このとき、前記Cが正値の場合には、前記パルスモータ5を時計方向(CW)へ回転駆動させて前記ステージ3を図10に示すY1方向へ向かって移動させ、負値の場合には、前記パルスモータ5を反時計方向(CCW)へ回転駆動させて前記ステージ3を図10に示すY2方向へ向かって移動させる。なお、前記パルスモータ5を時計方向(CW)へ回転駆動させて前記ステージ3を図10に示すY2方向へ向かって移動させ、前記パルスモータ5を反時計方向(CCW)へ回転駆動させて前記ステージ3を図10に示すY1方向へ向かって移動させるように構成しても良い。
このようにして、前記手順1から手順7を位置決めサイクルの1サイクルとし、前記|C|が1nm未満になったときに、前記ステージ3を停止させ、前記ステージ3の位置決めが終了する。この1nmは前記信号S1に基いて規定されたものである。したがって、この1nmが本発明の「許容範囲」となる。前記1サイクルごとに、前記ステージ3の位置が前記目標位置20に対し1nm以上の距離に位置している場合には、前記位置決めサイクルを繰り返して行い、前記|C|が1nm未満になったときに、前記ステージ3の位置決めが終了する。なお、前記位置決めサイクルの2度目以降では、前記手順1および2を記憶させておき、前記手順3から始まるものとすると、ステージ3の位置決めを簡単に行うことが可能となる。
なお、前記位置決めサイクルの途中で、前記ステージ3を、前記手順1から手順7によって図10に示すAの位置から図示矢印方向へ移動させた際、前記位置決めサイクルの1サイクル終了時に、前記ステージ3が前記目標位置20の手前(図示Y2方向)に位置する停止位置A´に停止するように構成しても良く、または前記ステージ3が前記目標位置20の図示Y1方向に位置する停止位置A´´に停止するように構成しても良い。
本発明の位置決め装置1では、前記手順7aから前記手順7bでは、前記ステージ3の移動量Cを前記位置決めサイクルの1サイクルに移動可能な移動量(V1、V2)で比較している。これにより、前記パルスモータ5を脱調させずに最大限の速度と精度で、前記ステージ3の移動を行うことが可能となる。
一方、手順7cおよび7dでは、前記制御量Cを「Pitch」に基いて比較している。これにより、必要な前記ステージ3の移動量が「Pitch」未満になった場合は、出力可能な最小パルスによって前記パルスモータ5を駆動させて、前記ステージ3を移動させることによって、前記ステージ3に位置の微調整を行うことが可能となる。
本発明の前記位置決め装置1では、前記手順7a,7b,7cで、前記制御量Cを、前記Pitch、すなわち前記基準移動量で除した値で決定している。したがって、前記ステージ3を位置決めするために図10に示すY1方向、またはY2方向に移動させる際、ロストモーションと同じ量だけ不足分として、目標位置20の手前で前記ステージ3が停止し、次の位置決めサイクルで、この不足分を補うように小刻みに前記ステージ3を移動させることが可能となるため、前記ステージ3の位置決めを精度良く行うことが可能となる。
しかし、前記ステージ3の移動を小刻みに行うと、位置決めまでの前記位置決めサイクル数が多くなってしまい、位置決めに要する時間も多くなってしまう。これを抑制するために、前記位置決め装置1では、前記ステージ3の制御量Cが大きくなる手順7aおよび7bの場合には、前記パルスモータ5を25分割のマイクロステップで制御することにより、パルスモータ5の前記1パルスの駆動量を大きくし、前記ステージ3の移動速度を早くすることによって、前記ステージ3の位置決めを迅速に行うことができるように構成している。
また、前記ステージ3の制御量Cが大きい場合には、前記制御量Cを前記「Pitch」で徐した値で決定し、前記「Pitch」から計算した前記基準移動量分の出力とすることで、前記ステージ3が前記目標位置20を通り過ぎないように構成している。
ただし前記したように、更に制御量Cが大きい手順7aおよび7bの場合には、前記パルスモータ5のマイクロステップ分割を、250分割から25分割に切り替える。これは、前記ステージ3の微小な移動を行って位置決めを行うためには、前記パルスモータ5のマイクロステップを250分割とすることが必要であるが、位置決めサイクルの1サイクルで出力できる前記パルスモータ5のパルス数が、前記ドライバ8の回路仕様などによって制限されることから、前記マイクロステップを250分割としたときに、前記ステージ3の移動速度が遅くなってしまうことを回避するためであり、前記パルスモータ5のマイクロステップを25分割とすることによって、前記パルスモータ5の最大トルク域を使用することができ、前記したように、前記ステージ3の移動速度を大きくすることが可能となる。
一方、前記ステージ3の制御量Cが小さい手順7cおよび7dの場合には、前記パルスモータ5を250分割のマイクロステップで制御することにより、パルスモータ5の1パルスの駆動量を小さくすることによって前記ステージ3を微小に移動可能とし、前記ステージ3の位置決め精度を向上させているのである。
前記位置決め装置1では、前記したように前記パルスモータ5を250分割のマイクロステップで制御した場合、理論的な前記ステージ3の移動量、即ち前記基準移動量は4nmである。これにも拘らず、前記位置決め装置では、前記信号S1で、ステージ3の移動量を1nmに設定し、前記信号S2で、前記スケール4の測定精度を1nmに設定することによって、前記ステージ3の位置決め精度を1nmの精度で行うこととしている。
これは前記したように、本発明の前記位置決め装置1では、ロストモーションが大きい領域で前記ステージ3を移動させるため、前記パルスモータ5を1パルス駆動させても、前記ステージ3を4nm未満の移動量で移動させることができる。ここで、図9において前記位置決め装置1で使用したステージ3に相当する示す「ステージ1」のみを書き写したのが図12である。図12に示すように、前記「ステージ1」のグラフでは、250分割マイクロステップ制御時のパルスモータ5の1パルス分である4nmを指令した場合、前記「ステージ1」が実際に移動する移動量を1nm未満とすることが可能となる。したがって、前記位置決め装置1では、前記ステージ3の移動量指令を1パルス、即ち4nmとしても、前記ステージ3を1nm未満で移動させることが可能となるのである。そして、1nm未満で移動する前記ステージ3を、前記スケール4で位置計測し、その信号S2を前記コントローラ2にフィードバックすることによって、前記ステージ3を1nmの精度で位置決め可能となるのである。
このように、本発明の位置決め装置1では、前記ロストモーションを利用して、本来前記ステージ3の理論的な最小移動量である基準移動量よりも、はるかに少ない移動量で前記ステージ3を移動可能とすることによって、前記ステージ3を前記基準移動量で定まる精度よりも高精度で位置決めできるのである。
また本発明の位置決め装置1では、前記ロストモーションを利用して、本来前記ステージ3の理論的な最小移動量である基準移動量よりも、はるかに少ない移動量で前記ステージ3を移動可能としているため、理論的な最小移動量自体が非常に小さな高精度な寸法で形成されたステージ3や螺子6などの構成部材を使用する必要がないため、使用するステージ3や螺子6などの構成部材のコストを低廉に抑えることが可能となる。
なお、前記手順7cでは、|C|≧「Pitch」とする場合、手順7dでは、|C|<「Pitch」とする場合を例にして、すなわち前記制御量|C|を前記基準移動量との比較によって前記パルスモータ5を駆動させるためのパルス数を算出しているが、本発明はこれに限定されるものではなく、前記基準移動量に換えて、例えば図8に示すステージ3の始動特性に基いた任意の数で前記比較を行って、前記パルスモータ5を駆動させるためのパルス数を算出しても良い。このようにすると、位置決めの条件に合わせて、前記ステージ3の移動速度、ひいては位置決め速度を調整することが可能となる。この場合には、前記手順7dにおける本発明の「基準値」は前記任意の数となる。
また、前記位置決め装置1の説明では、前記手順1における前記信号S1を1nmとして入力する例で説明したが、本発明ではこれ以外の任意の数値で指令することも可能であり、この数値が本発明の「許容範囲」となる。この場合、前記手順2での前記信号2も、前記信号S1と同じ任意の数値で合わせることにより、ステージの位置検出精度を移動量の精度と一致させることができ、正確な位置決めが可能となる。
また、以上のような前記ステージ3の1nm精度での位置決めを、モータ制御で行う場合、従来では、モータ自体の分解能の制限がないため、ボイスコイルモータやサーボモータなどの連続で駆動可能なものを使用するのが一般的であった。しかし、このような連続駆動が可能なモータの場合、電流の大きさと極性によって一方向にトルクが発生するため、目標位置20に前記ステージ3が到達したときには、電流値が非常に小さい値となり、保持トルクを持たないか、または前記スケールの最小分解能の値で微小に振動している状態になる。
これに対し、本願発明の前記位置決め装置1では、モータとしてパルスモータ5を使用しているため、目標位置20に前記ステージ3が到達したときでも、電流を定格状態で流し続けることができることから、前記パルスモータ5による前記ステージ3の保持トルクを維持することができるため、前記ステージ3を目標位置20で静止状態にできる。
また、ボイスコイルモータやサーボモータなどの連続で駆動可能なモータを使用した場合には、電流を切断して制御を止めてしまうと、前記ステージ3に加わっている力などの影響でモータが回転してしまい、前記ステージ3が動いてしまうが、前記パルスモータ5を使用することで、制御を止めた後でも、前記ステージ3が動いてしまうことを抑制することが可能となる。
本発明の実施例である位置決め装置の構成を示す説明図、 図1に示す位置決め装置を用いて検査を行われる磁気ヘッドを示す斜視図、 図2に示す磁気ヘッドの記録媒体対向面を光学的顕微鏡によって観察する状態を示す側面図、 図2に示す磁気ヘッドの記録媒体対向面を図3に示す顕微鏡で観察した状態を示す平面図、 図2に示す磁気ヘッドの記録媒体対向面を図3に示す顕微鏡で観察した状態を示す平面図、 図2に示す磁気ヘッドの記録媒体対向面を図3に示す顕微鏡で観察した状態を示す平面図、 図2に示す磁気ヘッドの記録媒体対向面を図3に示す顕微鏡で観察した状態を示す平面図、 図1に示す位置決め装置を構成するステージの始動特性を示すグラフ、 図8に示すグラフの部分拡大グラフ、 図1に示す位置決め装置の位置決め動作を説明する模式図、 図1に示す位置決め装置の制御方法を示す説明図、 図9に示すグラフの一部分のみを示したグラフ、
符号の説明
1 位置決め装置
2 コントローラ
3 ステージ
4 スケール
5 パルスモータ
6 螺子
7 CPU
8 ドライバ
9 パルスカウンタ
10 パルスカウンタ
11 パルス発生器
12 回転方向判断手段
13 PID制御手段
14 移動制御手段
50 顕微鏡

Claims (11)

  1. 移動体を目標位置に向かって移動させ、前記移動体位置と前記目標位置との差分を測定し、前記移動体の位置と前記目標位置との差分に基づく前記移動体の移動量が基準値未満になったときに、前記移動体を基準移動量未満の移動量で前記目標位置方向に移動させ、前記移動体の位置が前記目標位置に対して許容範囲以内となったときに前記移動体を停止させることを特徴とする位置決め方法。
  2. 前記移動体を、前記目標位置に向かって第1の方向へ移動させて前記目標位置を通過させた後、前記移動体を目標位置に向かって前記第1の方向と反対方向である第2の方向へ移動させる請求項1記載の位置決め方法。
  3. 前記移動体を、前記目標位置に向かって前記第1の方向へ前記基準移動量で移動する状態で移動させて前記目標位置の手前で停止させた後、前記停止位置から前記基準移動量未満の移動量で前記移動体を移動させる請求項1記載の位置決め方法。
  4. 前記移動体の位置と前記目標位置との差分が前記基準値以上のとき、前記移動体の移動量を基準移動量で除算することにより算出する請求項1ないし3のいずれかに記載の位置決め方法。
  5. 前記移動体の移動速度が、前記基準値未満の場合よりも前記基準値以上の場合の方が大きい請求項1ないし4のいずれかに記載の位置決め方法。
  6. 前記移動体をパルスモータの回転駆動力で移動させ、前記基準移動量は前記パルスモータの1パルスの移動量であり、ロストモーションによって前記基準移動量未満の移動量で前記移動体を移動する請求項1ないし5のいずれかに記載の位置決め方法。
  7. 移動体と、前記移動体と目標位置との差分を検出する位置検出手段と、前記移動体を移動させる駆動手段とを有し、請求項1ないし6に記載の位置検出方法を用いた位置決め装置において、
    前記移動体を前記駆動手段によって目標位置に向かって移動させ、前記位置検出手段で検出した前記差分が基準値未満になったときに、前記駆動手段によって前記移動体を基準移動量未満の移動量で前記目標位置方向に移動させ、前記位置検出手段で検出した前記差分が許容範囲以内となったときに、前記駆動手段を停止し、前記移動手段が停止されることを特徴とする位置決め装置。
  8. 前記駆動手段はパルスモータを有し、前記パルスモータにマイクロステップ制御を施す請求項7記載の位置決め装置。
  9. 前記パルスモータのマイクロステップ制御を、前記基準値以上の場合は25分割で行い、前記基準値未満の場合は250分割で行う請求項8記載の位置決め装置。
  10. 前記駆動手段のロストモーションによって前記移動体を前記基準移動量未満で移動させる請求項7ないし9のいずれかに記載の位置決め装置。
  11. 前記移動体に顕微鏡が固定される請求項7ないし10のいずれかに記載の位置決め装置。
JP2004075458A 2004-03-17 2004-03-17 位置決め装置 Expired - Fee Related JP3959071B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004075458A JP3959071B2 (ja) 2004-03-17 2004-03-17 位置決め装置
CNB2005100558216A CN100365464C (zh) 2004-03-17 2005-03-16 定位装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075458A JP3959071B2 (ja) 2004-03-17 2004-03-17 位置決め装置

Publications (2)

Publication Number Publication Date
JP2005266985A true JP2005266985A (ja) 2005-09-29
JP3959071B2 JP3959071B2 (ja) 2007-08-15

Family

ID=35041892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075458A Expired - Fee Related JP3959071B2 (ja) 2004-03-17 2004-03-17 位置決め装置

Country Status (2)

Country Link
JP (1) JP3959071B2 (ja)
CN (1) CN100365464C (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257122A (ja) * 2007-04-09 2008-10-23 Hitachi High-Technologies Corp 制御対象物手動操作制御システム
JP2013228910A (ja) * 2012-04-26 2013-11-07 Sigma Tec Kk テーブル位置決め装置
JP2014021254A (ja) * 2012-07-18 2014-02-03 Hirox Co Ltd ズームレンズを備えたデジタルマイクロスコープにおけるピント調整方法及びその装置。
CN104635757A (zh) * 2014-12-09 2015-05-20 中国科学院苏州生物医学工程技术研究所 一种共聚焦显微镜针孔定位控制方法
JP2015127734A (ja) * 2013-12-27 2015-07-09 株式会社ハイロックス 観察装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038494B (zh) * 2006-03-15 2011-06-29 苏州宝时得电动工具有限公司 位置控制方法、位置控制装置和包含此装置的电动工具
GB0700507D0 (en) * 2007-01-11 2007-02-21 Renishaw Plc A Movement Apparatus
CN106033212B (zh) * 2015-03-10 2019-04-12 上银科技股份有限公司 电动夹爪系统及其控制方法
CN110887437B (zh) * 2018-09-10 2021-10-29 奥动新能源汽车科技有限公司 电池仓的定位方法及定位系统
JP7408434B2 (ja) * 2020-02-25 2024-01-05 ファスフォードテクノロジ株式会社 モータ制御装置、ダイボンディング装置および半導体装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848253A (ja) * 1981-09-14 1983-03-22 Teac Co テ−プレコ−ダのテ−プ位置検索方式
JPS62106509A (ja) * 1985-11-05 1987-05-18 Canon Inc 位置決め装置
JP2518885B2 (ja) * 1988-02-05 1996-07-31 シャープ株式会社 アクセス制御方式
JPH09293771A (ja) * 1996-04-25 1997-11-11 Canon Inc 移動制御方法
JP4580613B2 (ja) * 2001-07-25 2010-11-17 オリンパス株式会社 顕微鏡用電動ステージの原点検出方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257122A (ja) * 2007-04-09 2008-10-23 Hitachi High-Technologies Corp 制御対象物手動操作制御システム
JP2013228910A (ja) * 2012-04-26 2013-11-07 Sigma Tec Kk テーブル位置決め装置
JP2014021254A (ja) * 2012-07-18 2014-02-03 Hirox Co Ltd ズームレンズを備えたデジタルマイクロスコープにおけるピント調整方法及びその装置。
JP2015127734A (ja) * 2013-12-27 2015-07-09 株式会社ハイロックス 観察装置
CN104635757A (zh) * 2014-12-09 2015-05-20 中国科学院苏州生物医学工程技术研究所 一种共聚焦显微镜针孔定位控制方法

Also Published As

Publication number Publication date
JP3959071B2 (ja) 2007-08-15
CN1670562A (zh) 2005-09-21
CN100365464C (zh) 2008-01-30

Similar Documents

Publication Publication Date Title
CN100365464C (zh) 定位装置
JP5885883B2 (ja) サーボ制御装置
JP4824080B2 (ja) 同期制御システム
JP5645489B2 (ja) 複数の振動子を用いた振動型アクチュエータの制御装置並びに調整方法、振動型アクチュエータ、及びそれを用いたレンズユニット並びに光学機器
JP5020117B2 (ja) ガルバノスキャナ制御装置
JP4665507B2 (ja) ペンレコーダ
CN104215170A (zh) 旋转角度指令值的校正方法
JP6482002B2 (ja) ステージ装置および顕微鏡システム
JP2009247088A (ja) ステージ位置決め装置
JP4989063B2 (ja) 位置制御装置およびそれを用いた光学機器
JP4715342B2 (ja) 電磁駆動力を利用したアクチュエータの制御
JP3240845B2 (ja) レンズ装置における光学素子位置検出装置
US10948706B2 (en) Stage apparatus, method of controlling stage apparatus, and microscope system
JP4909562B2 (ja) 表面性状測定装置
US20090003165A1 (en) Method and apparatus for generating synchronous clock for write operation in a disk drive
JP5972231B2 (ja) 偏芯調整装置
US20230334331A1 (en) Management apparatus, processing system, management method, and article manufacturing method
KR20170010976A (ko) 엔코더 내장 보이스 코일 모터 및 엔코더 내장 보이스 코일 모터 제조 방법
Houška et al. The measurement of the operating characteristics of the piezoelectric linear motor
JP4119655B2 (ja) 電子顕微鏡の試料移動装置
JP2001157477A (ja) 位置・速度制御装置およびこれを用いたステージシステム
JP3086537B2 (ja) 磁気ヘッドの浮上量検出方法
JP3572055B2 (ja) ディスク再生装置
JP2015060606A (ja) 磁気ヘッド若しくは磁気ディスクの検査装置及び検査方法
JPH05198111A (ja) ヘッドの位置決め制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060904

Free format text: JAPANESE INTERMEDIATE CODE: A621

A871 Explanation of circumstances concerning accelerated examination

Effective date: 20061013

Free format text: JAPANESE INTERMEDIATE CODE: A871

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Effective date: 20070124

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees