JP2005251342A - 磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置 - Google Patents

磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置 Download PDF

Info

Publication number
JP2005251342A
JP2005251342A JP2004063320A JP2004063320A JP2005251342A JP 2005251342 A JP2005251342 A JP 2005251342A JP 2004063320 A JP2004063320 A JP 2004063320A JP 2004063320 A JP2004063320 A JP 2004063320A JP 2005251342 A JP2005251342 A JP 2005251342A
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetic head
magnetic shield
shield layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004063320A
Other languages
English (en)
Inventor
Kentaro Nagai
健太郎 長井
Takero Kagami
健朗 加々美
Hiroaki Kasahara
寛顕 笠原
Naoki Ota
尚城 太田
Satoshi Miura
聡 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004063320A priority Critical patent/JP2005251342A/ja
Priority to US11/067,643 priority patent/US7489481B2/en
Publication of JP2005251342A publication Critical patent/JP2005251342A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3912Arrangements in which the active read-out elements are transducing in association with active magnetic shields, e.g. magnetically coupled shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Heads (AREA)

Abstract

【課題】 動特性と静特性との間の相関をより一層高める。
【解決手段】 基体上に、順に積層された下部磁気シールド層21、磁気抵抗効果層24〜28及び上部磁気シールド層31が、その順に基体上に積層される。下部リード層51及び上部リード層52は、磁気シールド層21,31を経由して、磁気抵抗効果層24〜28にその膜面と略垂直にセンス電流を流す。下部磁気シールド層21及び上部磁気シールド層31は、積層方向から見たときに互いに実質的にちょうど重なる形状及び大きさを有する。下部リード層51は、下部磁気シールド層21に電気的に接続される。下部リード層51における少なくとも下部磁気シールド層21側の部分が、非磁性導電材料で構成される。上部リード層52は、上部磁気シールド層31に電気的に接続される。上部リード層52における少なくとも上部磁気シールド層31側の部分が、非磁性導電材料で構成される。
【選択図】 図6

Description

本発明は、磁気ヘッド、並びに、これを用いたヘッドサスペンションアセンブリ及び磁気ディスク装置に関するものである。
ハードディスクドライブ(HDD)の大容量小型化に伴い、高感度、高出力のヘッドが要求されている。その要求に対して、現行製品であるGMRヘッド(Giant Magneto-Resistive Head)の懸命な特性改善が進んでおり、一方でGMRヘッドの2倍以上の抵抗変化率が期待できるトンネル磁気抵抗効果型ヘッド(TMRヘッド)の開発も精力的に行われている。
GMRヘッドとTMRヘッドは、一般的に、センス電流を流す方向の違いからヘッド構造が異なる。一般にGMRヘッドのような膜面に対して平行にセンス電流を流すヘッド構造をCIP(Current In Plane)構造、TMRヘッドのように膜面に対して垂直にセンス電流を流すヘッド構造をCPP(Current Perpendicular to Plane)構造と呼ぶ。CPP構造は、磁気シールドそのものを電極として用いることができるため、CIP構造の狭リードギャップ化において深刻な問題になっている、磁気シールド−素子間ショート(絶縁不良)が本質的に生じない。そのため、高記録密度化においてCPP構造は大変有利である。
CPP構造のヘッドとしては、TMRヘッドの他にも、例えば、磁気抵抗効果素子にスピンバルブ膜(スペキュラー型、デュアルスピンバルブ型磁性多層膜を含む)を用いながらもCPP構造を持つCPP−GMRヘッドも知られている。
CIP構造であるかCPP構造であるかを問わず、磁気抵抗効果素子を用いた磁気ヘッドでは、磁気抵抗効果素子が感知する磁束を磁気記録媒体の対向箇所からの磁束のみに制限して他の磁束をシールドするため、磁気抵抗効果層の上下には、下部磁気シールド層及び上部磁気シールド層がそれぞれ設けられている。そして、高記録密度化を図るべく磁気抵抗効果素子の高分解能化を達成するために、下部磁気シールド層と上部磁気シールド層との間隔をより狭める狭シールドギャップ化が進められている。
CIP構造の磁気ヘッドでは、下部磁気シールド層及び上部磁気シールド層は、磁気抵抗効果層、及び、磁気抵抗効果層にその膜面に対して平行にセンス電流を流す第1及び第2のリード層に対して、電気的に絶縁されている。一方、CPP構造の磁気ヘッドでは、下部磁気シールド層及び上部磁気シールド層は第1及び第2のリード層にそれぞれ電気的に接続され、前記第1及び第2のリード層は、下部磁気シールド層及び上部磁気シールド層を経由して磁気抵抗効果層にその膜面に垂直にセンス電流を流すようになっている。従来のCPP構造の磁気ヘッドでは、下部磁気シールド層及び第1のリード層は同一磁性材料で一体に連続して構成され、また、上部磁気シールド層及び第2のリード層は同一磁性材料で一体に連続して構成されている。
このような磁気ヘッドを設計、製造する場合、その磁気特性を測定し評価することが非常に重要である。磁気ヘッドの磁気特性評価方法として、一般に、動特性を測定して評価する方法及び静特性を測定して評価する方法が存在する。
動特性評価とは、磁気ヘッドスライダをサスペンションに取り付けて実際に磁気記録媒体上で浮上させ、磁気ディスク装置における実際の使用環境に近い状態における磁気ヘッドの特性を測定して評価するものである。一方、静特性評価とは、磁気記録媒体からの磁界に代えて磁界発生手段で発生させた均一な磁界を外部から印加した状態で磁気ヘッドの特性を測定して評価するものである。
静特性評価方法は、磁気ディスク装置の実使用環境とは異なる環境下で特性評価できること、及び、磁気ヘッドをサスペンションに搭載することなくしかも磁気記録媒体上を浮上させることなく特性評価できること等から、動特性評価方法に比して容易に実施でき、しかも、製造工程において、独立した磁気ヘッドを完成する前の早い段階において評価を行うことができる。したがって、製品の効率の良いソーティングや磁気ヘッド設計への迅速なフィードバック等を行うことができるという観点から、静特性評価は、再生ヘッド素子の特性評価法として、非常に簡便かつ有効な方法として使用されている。
静特性評価で重要なポイントは、磁気ディスク装置の実使用環境下で行われる動特性評価との間に高い相関を有することである。この相関が低ければ、良好な動特性を有する磁気ヘッドを構成し得る部品(例えば、ウエハや、ウエハから切り出したバー(バー状磁気ヘッド集合体))が、静特性評価により不良と判定されて破棄されたり、不良の動特性を有する磁気ヘッドしか構成し得ない部品が、静特性評価により良と判定されて、磁気ヘッドを完成するために用いられたりすることになる。
しかしながら、狭シールドギャップ化を図ると、動特性と静特性との間の相関が低下するという問題が生ずることが知られている。
下記の特許文献1には、磁気ヘッドにおいて、下部磁気シールド層及び上部磁気シールド層が積層方向から見たときに互いに実質的にちょうど重なる形状及び大きさを有することによって、動特性と静特性との間の相関を高めることができる点が開示されている(例えば、特許文献1の表1中のタイプ7)。また、下記の特許文献2にも、下部磁気シールド層及び上部磁気シールド層が積層方向から見たときに互いに実質的にちょうど重なる形状及び大きさを有する磁気ヘッドが、開示されている(例えば、特許文献2の表1中のタイプ4)。
特開2003−242613号公報 特開2003−242611号公報
本発明者は、CPP構造の磁気ヘッドにおいて、前述した特許文献1の教示に従って、下部磁気シールド層及び上部磁気シールド層が積層方向から見たときに互いに実質的にちょうど重なる形状及び大きさを有するようにすると、一方の磁気シールド層が他方の磁気シールド層より大きい場合に比べて、動特性と静特性との間の相関が高まることを、後述する実験により確認した。このとき、前述した従来のCPP構造の磁気ヘッドと同様に、下部磁気シールド層及び第1のリード層を同一磁性材料で一体に連続して構成するとともに、上部磁気シールド層及び第2のリード層を同一磁性材料で一体に連続して構成した。
このように、前述した特許文献1の教示された技術を前記従来のCPP構造の磁気ヘッドに適用することで、動特性と静特性との間の相関を高めることができるが、その相関をより一層高めることが望まれることは、言うまでもない。
本発明は、このような事情に鑑みてなされたもので、高記録密度化を図るべく狭シールドギャップ化を図っても、動特性と静特性との間の相関をより一層高めることができるCPP構造の磁気ヘッド、並びに、これを用いたヘッドサスペンションアセンブリ及び磁気ディスク装置を提供することを目的とする。
本発明者は、研究の結果、CPP構造の磁気ヘッドにおいて、下部磁気シールド層及び上部磁気シールド層が積層方向から見たときに互いに実質的にちょうど重なる形状及び大きさを有するように構成し、更に、前述した従来のCPP構造の磁気ヘッドと異なり第1及び第2のリード層を非磁性導電材料で構成すると、動特性と静特性との間の相関をより一層高めることができることを、見出し、これを実験により確認した。
その原因は、次のように考えることができる。すなわち、従来のCPP構造の磁気ヘッドと同様に、下部磁気シールド層及び第1のリード層を同一磁性材料で一体に連続して構成するとともに、上部磁気シールド層及び第2のリード層を同一磁性材料で一体に連続して構成すると、第1及び第2のリード層がそれぞれ下部磁気シールド層及び上部磁気シールド層に磁束を導くアンテナのような作用をなすことに起因して、前記相関が低下するものと考えられる。これに対し、第1及び第2のリード層を非磁性導電材料で構成すると、第1及び第2のリード層が前述したアンテナのような作用を行わなくなることに起因して、前記相関が高まるものと考えられる。
本発明は、本発明者によるこのような新たな知見に基づいてなされたものである。
すなわち、前記課題を解決するため、本発明の第1の態様による磁気ヘッドは、基体上に順に積層された第1の磁気シールド層、磁気抵抗効果層及び第2の磁気シールド層と、前記第1及び第2の磁気シールド層を経由して、前記磁気抵抗効果層にその膜面と略垂直にセンス電流を流す第1及び第2のリード層と、を備え、前記第1及び第2の磁気シールド層は、積層方向から見たときに互いに実質的にちょうど重なる形状及び大きさを有し、前記第1のリード層が前記第1の磁気シールド層に電気的に接続されるとともに、前記第1のリード層における少なくとも前記第1の磁気シールド層側の部分が非磁性導電材料で構成され、前記第2のリード層が前記第2の磁気シールド層に電気的に接続されるとともに、前記第2のリード層における少なくとも前記第2の磁気シールド層側の部分が非磁性導電材料で構成されたものである。
この第1の態様によれば、前述した知見に従って、高記録密度化を図るべく狭シールドギャップ化を図っても、動特性と静特性との間の相関をより一層高めることができる。また、この第1の態様によれば、動特性における波形非対称性のばらつきが低減されることが後述する実験により確認された。なお、波形非対称性が大きいと、信号処理のノイズマージンが低下するなどの不都合が生ずる。
本発明の第2の態様による磁気ヘッドは、前記第1の態様において、前記第1及び第2の磁気シールド層は、互いに実質的に同一の厚さを有するものである。
この第2の態様によれば、磁気抵抗効果層を中心とした第1の磁気シールド層の磁気特性と第2の磁気シールド層の磁気特性との間のバランスをより向上させることができ、これにより動特性と静特性との間の相関をより高めることができるので、好ましい。
本発明の第3の態様による磁気ヘッドは、前記第1又は第2の態様において、前記第1及び第2の磁気シールド層は、互いに同一の材料で構成されたものである。
この第3の態様によれば、磁気抵抗効果層を中心とした第1の磁気シールド層の磁気特性と第2の磁気シールド層の磁気特性との間のバランスをより向上させることができ、これにより動特性と静特性との間の相関をより高めることができるので、好ましい。
本発明の第4の態様による磁気ヘッドは、前記第1乃至第3のいずれかの態様において、前記磁気抵抗効果層は、トンネルバリア層と、該トンネルバリア層の一方の面側に形成されたフリー層と、前記トンネルバリア層の他方の面側に形成されたピンド層と、前記ピンド層の前記トンネルバリア層とは反対の側に形成されたピン層と、を含むものである。
本発明の第5の態様による磁気ヘッドは、前記第1乃至第3のいずれかの態様において、前記磁気抵抗効果層は、非磁性金属層と、前記非磁性金属層の一方の面側に形成されたフリー層と、前記非磁性金属層の他方の面側に形成されたピンド層と、前記ピンド層の前記非磁性金属層とは反対の側に形成されたピン層と、を含むものである。
前記第4の態様は前記第1乃至第3の態様をTMRヘッドに適用した例であり、前記第5の態様は前記第1乃至第3の態様をCPP−GMRヘッドに適用した例である。もっとも、前記第1乃至第3の態様は、これらの例に限定されるものではない。
本発明の第6の態様によるヘッドサスペンションアセンブリは、磁気ヘッドと、該磁気ヘッドが先端部付近に搭載され前記磁気ヘッドを支持するサスペンションと、を備え、前記磁気ヘッドが前記第1乃至第5のいずれかの態様による磁気ヘッドであるものである。
この第6の態様によれば、前記第1乃至第5の態様による磁気ヘッドが用いられているので、磁気ディスク装置等の高記録密度化を図ることができる。
本発明の第7の態様による磁気ディスク装置は、前記第6の態様によるヘッドサスペンションアセンブリと、該アセンブリを支持するアーム部と、該アーム部を移動させて磁気ヘッドの位置決めを行うアクチュエータと、を備えたものである。
この第7の態様によれば、前記第9の態様によるヘッドサスペンションアセンブリが用いられているので、高記録密度化を図ることができる。
本発明によれば、高記録密度化を図るべく狭シールドギャップ化を図っても、動特性と静特性との間の相関をより一層高めることができるCPP構造の磁気ヘッド、並びに、これを用いたヘッドサスペンションアセンブリ及び磁気ディスク装置を提供することができる。
以下、本発明による磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置について、図面を参照して説明する。
[第1の実施の形態]
図1は、本発明の第1の実施の形態による磁気ヘッドを模式的に示す概略斜視図である。図2は、図1に示す磁気ヘッドのTMR素子2及び誘導型磁気変換素子3の部分を模式的に示す拡大断面図である。図3は、図2中のA−A’矢視概略図である。図4は、図2中のTMR素子2付近を更に拡大した拡大図である。図5は、図3中のTMR素子2付近を更に拡大した拡大図である。理解を容易にするため、図1乃至図5に示すように、互いに直交するX軸、Y軸及びZ軸を定義する(後述する図についても同様である。)。また、Z軸方向のうち矢印の向きを+Z方向又は+Z側、その反対の向きを−Z方向又は−Z側と呼び、X軸方向及びY軸方向についても同様とする。X軸方向が磁気記録媒体の移動方向と一致している。Z軸方向がTMR素子2のトラック幅方向と一致している。
図1乃至図5に示す磁気ヘッドは、図1に示すように、基体としてのスライダ1と、再生用磁気ヘッド素子として用いられる磁気抵抗効果素子としてのTMR素子2と、記録用磁気ヘッド素子としての誘導型磁気変換素子3と、DLC膜等からなる保護膜4とを備え、複合型磁気ヘッドとして構成されている。本例では、素子2,3はそれぞれ1個ずつ設けられているが、その数は何ら限定されるものではない。
スライダ1は磁気記録媒体対向面側にレール部11,12を有し、レール部11、12の表面がABS(エアベアリング面)を構成している。図1に示す例では、レール部11、12の数は2本であるが、これに限らない。例えば、1〜3本のレール部を有してもよいし、ABSはレール部を持たない平面であってもよい。また、浮上特性改善等のために、ABSに種々の幾何学的形状が付されることもある。本発明による磁気ヘッドは、いずれのタイプのスライダを有していてもよい。
本例では、保護膜4はレール部11,12の表面にのみ設けられ、保護膜4の表面がABSを構成している。もっとも、保護膜4は、スライダ1の磁気記録媒体対向面の全面に設けてもよい。また、保護膜4を設けることが好ましいが、必ずしも保護膜4を設ける必要はない。
TMR素子2及び誘導型磁気変換素子3は、図1に示すように、レール部11、12の空気流出端部TRの側に設けられている。記録媒体移動方向は、図中のX軸方向と一致しており、磁気記録媒体が高速移動した時に動く空気の流出方向と一致する。空気は流入端部LEから入り、流出端部TRから流出する。スライダ1の空気流出端部TRの端面には、TMR素子2に接続されたボンディングパッド5a,5b及び誘導型磁気変換素子3に接続されたボンディングパッド5c,5dが設けられている。デザインに応じて、ボンディングパッドの配置は、これと異なる順に並んでいても良い。
TMR素子2及び誘導型磁気変換素子3は、図2及び図3に示すように、スライダ1を構成するセラミック基体15の上に設けられた下地層16の上に、Al等からなる絶縁層29を介して積層されている。セラミック基体15は、通常、アルチック(Al−TiC)又はSiC等で構成される。Al−TiCを用いる場合、これは導電性があるので、下地層16として、例えばAlからなる絶縁膜が用いられる。下地層16は、場合によっては設けなくてもよい。
TMR素子2は、図4及び図5に示すように、絶縁層29上に形成された下部電極を兼ねる下部磁気シールド層21と下部磁気シールド層21の上側(基体15と反対側)に形成された上部電極を兼ねる上部磁気シールド層31との間に下部磁気シールド層21側から順に積層された、下部金属層(下層)22、下部金属層(上層)23、ピン層24、ピンド層25、トンネルバリア層26、フリー層27、及び、保護膜となる非磁性金属層としての上部金属層(キャップ層)28と、を備えている。ピン層24、ピンド層25、トンネルバリア層26及びフリー層27が、磁気抵抗効果層を構成している。実際のTMR素子2は、図示されたような層数の膜構造ではなく、より多層の膜構造を有するのが一般的であるが、図に示す磁気ヘッドでは、説明の簡略化のため、TMR素子2の基本動作に必要な最少膜構造を示してある。
図6(a)は、下部磁気シールド層21、上部磁気シールド層31、下部リード層51、上部リード層52及び層24〜28の、積層方向(X軸方向)から見た位置関係を模式的に示す概略平面図である。図6(b)は、上部磁気シールド層31及び上部リード層52の、積層方向から見た位置関係を模式的に示す概略平面図である。図6(c)は、下部磁気シールド層21及び下部リード層51の、積層方向から見た位置関係を模式的に示す概略平面図である。
下部リード層51は、下部磁気シールド層21に電気的に接続されているが、上部磁気シールド層31から絶縁されている。上部リード層52は、上部磁気シールド層31に電気的に接続されているが、下部磁気シールド層21から絶縁されている。これにより、下部リード層51及び上部リード層52は、下部磁気シールド層21及び上部磁気シールド層31をそれぞれ経由して前記磁気抵抗効果層にその膜面と略垂直にセンス電流を流すようになっている。図面には示していないが、リード層51,52は、前述したボンディングパッド5a,5bにそれぞれ電気的に接続されている。
本実施の形態では、磁気シールド層21,31はNiFeなどの磁性材料で構成されているのに対し、リード層51,52は、Au、Cuなどの非磁性導電材料で構成されている。リード層51,52は、単層に限らず、複数層(例えば、下側から順に積層したTa層、Cu層及びTa層)で構成してもよい。なお、リード層51,52は、下部磁気シールド層21及び上部磁気シールド層31に対してそれぞれ磁気的に分離されていればよい。したがって、下部リード層51の少なくとも下部磁気シールド層21側の部分を非磁性導電材料で構成すればよい。例えば、下部リード層51の全体を非磁性導電材料で構成してもよいし、下部リード層51の下部磁気シールド層21側の部分のみを非磁性導電材料で構成しかつ下部リード層51の他の部分を磁性材料で構成してもよい。この点は、上部リード層52についても同様である。
また、本実施の形態では、図6に示すように、下部磁気シールド層21及び上部磁気シールド層31は、積層方向(X軸方向)から見たときに互いに実質的にちょうど重なる形状及び大きさを有している。本実施の形態では、磁気シールド層21,22の積層方向から見たときの形状は、長方形状となっているが、その形状は必ずしも長方形状に限定されるものではない。
さらに、本実施の形態では、下部磁気シールド層21及び上部磁気シールド層31は、互いに実質的に同一の厚さを有するとともに、互いに同一の材料で構成されている。もっとも、本発明では、必ずしもこれに限定されるものではない。
再び図2乃至図5を参照すると、下部金属層22は、導電体となっており、例えば、Ta層などで構成される。下部金属層23は、導電体となっており、例えば、NiFe層などで構成される。
ピン層24は、反強磁性層で構成され、例えば、PtMn、IrMnなどのMn系合金で形成することが好ましい。ピンド層25及びフリー層27は、それぞれNiFe等の強磁性層で構成される。ピンド層25は、ピン層24との間の交換結合バイアス磁界によってその磁化方向が所定方向に固定されている。一方、フリー層27は、基本的に磁気情報である外部磁場に応答して自由に磁化の向きが変わるようになっている。ピンド層25及びフリー層27としては、単層に限定されるものではなく、例えば、反強磁性型磁気結合をしている一対の磁性層と、その間に挟まれた非磁性金属層との組み合わせからなる積層体を用いてもよい。このような積層体として、例えば、CoFe/Ru/CoFeの3層積層体からなる強磁性層が挙げられる。なお、本実施の形態では、下部磁気シールド層21側からピン層24、ピンド層25、トンネルバリア層26、フリー層27の順に配置されているが、下部磁気シールド層21側からフリー層27、トンネルバリア層26、ピンド層25、ピン層24の順に配置してもよい。トンネルバリア層26は、例えば、Alなどの材料で形成される。
上部金属層28は、例えば、Ta、Rh、Ru、Os、W、Pd、Pt、Cu、Cr、Ni、Ti、W又はAuの単体、又は、これらのいずれか2種以上の組み合わせからなる合金、を用いた、単層膜又は複層膜で形成される。
図3及び図5に示すように、前記磁気抵抗効果層のZ軸方向の両側には、フリー層27に磁区制御のためのバイアス磁界を付与する縦バイアス層(磁区制御層)32が形成されている。縦バイアス層32は、例えば、Cr/CoPtなどの硬磁性材料で形成される。あるいは、縦バイアス層32は、例えば、軟磁性層と反強磁性層を積層し交換結合を使った層でもよい。縦バイアス層32の下側及び上側には、絶縁層34,35がそれぞれ形成されている。絶縁層34は、縦バイアス層32と層23〜28の+Z側及び−Z側の端面との間にも介在し、層23〜28が縦バイアス層32によって電気的に短絡しないようになっている。場合によっては、絶縁層35は無くても構わない。また、層32,34,35が形成されていない領域には、下部金属層22と上部磁気シールド層31間において、絶縁層30が形成されている。絶縁層30は、層23〜28の−Y側の端面を覆っている。絶縁層34,35,30は、例えば、Al又はSiO等で構成される。
誘導型磁気変換素子3は、図2及び図3に示すように、当該素子3に対する下部磁性層としても兼用される前記上部磁気シールド層31、上部磁性層36、コイル層37、アルミナ等からなるライトギャップ層38、熱硬化性のフォトレジスト(例えば、ノボラック樹脂等の有機樹脂)で構成された絶縁層39及びアルミナ等からなる保護層40などを有している。上部磁性層36の材質としては、例えば、NiFe又はFeNなどが用いられる。下部磁性層としても兼用された上部磁気シールド層31及び上部磁性層36の先端部は、微小厚みのアルミナなどのライトギャップ層38を隔てて対向する下部ポール部31a及び上部ポール部36aとなっており、下部ポール部31a及び上部ポール部36aにおいて磁気記録媒体に対して情報の書き込みを行なう。下部磁性層としても兼用された上部磁気シールド層31及び上部磁性層36は、そのヨーク部が下部ポール部31a及び上部ポール部36aとは反対側にある結合部41において、磁気回路を完成するように互いに結合されている。絶縁層39の内部には、ヨーク部の結合部41のまわりを渦巻状にまわるように、コイル層37が形成されている。コイル層37の両端は、前述したボンディングパッド5c,5dに電気的に接続されている。コイル層37の巻数及び層数は任意である。また、誘導型磁気変換素子3の構造も任意でよい。上部磁気シールド層31は、誘導型磁気変換素子3の下部磁性層とTMR素子2の上部電極の役割を分けるために、Al、SiOなどの絶縁層を挟んで2層に分けても良い。
次に、前述した図1乃至図6に示す磁気ヘッドを製造する方法の一例について、説明する。
まず、ウエハ工程を行う。すなわち、基体15となるべきAl−TiC又はSiC等のウエハ101を用意し、薄膜形成技術等を用いて、ウエハ101上のマトリクス状の多数の磁気ヘッドの形成領域にそれぞれ、前述した各層を前述した構造となるように形成する。
このウエハ工程の概要について、図7乃至図17を参照して説明する。図7乃至図17はウエハ工程を構成する各工程を模式的に示す図である。図7乃至図17の(a)はそれぞれ概略平面図である。図7及び図8の(b)並びに図9の(d)は、それぞれ同じ図の(a)中のD−D’線に沿った概略断面図である。図9乃至図17の(b)はそれぞれ同じ図の(a)中のB−B’線に沿った概略断面図、図9乃至図17の(c)はそれぞれ同じ図の(a)中のC−C’線に沿った概略断面図である。
ウエハ工程では、まず、ウエハ(基板)101上に下地層16を積層し、更に、下地層16上にリフトオフ法により下部リード層51を形成する(図7)。
次に、開口29a,29bを有する絶縁層29を、リフトオフ法により形成する(図8)。開口29aは、下部リード層51に下部磁気シールド層21を接続するためのコンタクトホールである。開口29bは、ボンディングパッド5aに接続される中継電極部のためのコンタクトホールである。
次いで、下部磁気シールド層21及び中継電極部構成層21’,21”をメッキ法等により同一磁性材料で一括して形成した後に、スパッタ法等によりAl等からなる絶縁層61を形成し、更に、CMP工程により平坦化して下部磁気シールド層21及び中継電極部構成層21’,21”の上面を露出させる(図9)。
その後、この状態の基板上に、下部金属層22、下部金属層23、ピン層24、ピンド層25、トンネルバリア層26、フリー層27及びキャップ層28を、スパッタ法等により順次積層し、これらの層22〜28の一部の領域をイオンミリング等により除去して、中継電極部構成層21’,21”を露出させる開口62を層22〜28に形成する(図10)。開口62は、ボンディングパッド5aに接続される中継電極部及びボンディングパッド5bに接続される中継電極部のためのスルーホールとなる。
次に、この状態の基板上にフォトレジスト63を塗布した後、フォトレジスト63をパターニングして、TMR素子2のトラック幅に応じたZ軸方向の間隔を持つ開口63a,63bをフォトレジスト63に形成する(図11)。
その後、フォトレジスト63をマスクとしてイオンミリング等により開口63a,63bの領域の層23〜28を除去する。なお、本実施の形態では、図12(b)に示すように、下部金属層22の途中まで除去されているが、これに限らず、下部金属層23、ピン層24、ピンド層25の適当な深さまで除去しても良い。また、下部シールド層21の途中まで除去しても良い。次に、フォトレジスト63を剥離する前に絶縁層34、縦バイアス層32及び絶縁層35を順次積層し、更に、フォトレジスト63をその上に形成された層34,32,35と共に剥離する(図12)。このようにリフトオフすることで、層23〜28を除去した領域のみに層34,32,35を形成する。
次に、この状態の基板上にフォトレジスト64を塗布した後、フォトレジスト64をパターニングして、TMR素子2のハイト方向に関して必要な幅(Y軸方向の幅)を持つとともに所定長さだけZ軸方向に延びる帯状領域上、中継電極部構成層21’の領域上、及び、中継電極部構成層21”の領域上にのみ、フォトレジスト64を島状に形成する(図13)。
その後、フォトレジスト64をマスクとしてイオンミリング等により、フォトレジスト64が形成されていない領域の、層22〜28等を除去する。次に、フォトレジスト64を剥離する前に絶縁層30を形成し、更に、フォトレジスト64をその上に形成された層30と共に剥離する(図14)。このように、リフトオフすることで、ミリングの際にフォトレジスト64によりマスクされなかった領域のみに層30を形成する。
次に、リフトオフ法により上部リード層52及び中継電極部構成層52’を同一非磁性金属材料で一括して形成する(図15)。
次いで、開口65a〜65dを有するAlからなる絶縁層65を、リフトオフ法により形成する(図16)。開口65aは、キャップ層28に上部磁気シールド層31を接続するためのコンタクトホールである。開口65bは、上部リード層52に上部磁気シールド層31を接続するためのコンタクトホールである。開口65cは、ボンディングパッド5bに接続される中継電極部のためのコンタクトホールである。開口65dは、ボンディングパッド5aに接続される中継電極部のためのコンタクトホールである。
その後、上部磁気シールド層31及び中継電極部構成層31’,31”をメッキ法等により同一磁性材料で一括して形成する(図17)。
最後に、ギャップ層38、コイル層37、絶縁層39、上部磁性層36及び保護膜40を形成し、更に電極5a〜5d等を形成する。これにより、ウエハ工程が完了する。
次に、ウエハ工程が完了したウエハに対して、公知の工程を経て第1の実施の形態による磁気ヘッドを完成させる。簡単に説明すると、前記ウエハから、基体上に複数の磁気ヘッドの部分が一列状に配列された各バー(バー状磁気ヘッド集合体)切り出す。次いで、このバーに対して、スロートハイト、MRハイト等を設定するために、そのABS側にラッピング処理(研磨)を施す。このラッピング処理により最終的に露出する面は、ほぼ図17(a)中のB−B’線に沿った断面である。次に、ABS側に保護膜4を形成し、更に、エッチング等によりレール11,12を形成する。最後に、機械加工により切断してバーを個々の磁気ヘッドに分離する。これにより、第1の実施の形態による磁気ヘッドが完成する。
本実施の形態では、前述したように、下部磁気シールド層21及び上部磁気シールド層31は、積層方向(X軸方向)から見たときに互いに実質的にちょうど重なる形状及び大きさを有し、かつ、下部リード層51及び上部リード層52が非磁性導電材料で構成されている。したがって、高記録密度化を図るべく狭シールドギャップ化を図っても、動特性と静特性との間の相関をより一層高めることができる。この点は、後述する実験により確認された。また、本実施の形態によれば、動特性における波形非対称性のばらつきが低減される。この点も、後述する実験により確認された。
なお、前述した製造方法の説明からわかるように、中継電極部構成層21’,21”,31’,31”は、磁性材料で構成されているが、下部磁気シールド層21及び上部磁気シールド層31に対して磁気的に分離されているので、下部磁気シールド層21又は上部磁気シールド層31に磁束を導くアンテナのような作用を行うことがなく、動特性と静特性との間の相関に影響を与えない。
[比較例]
ここで、前記第1の実施の形態による磁気ヘッドと比較される第1及び第2の比較例による磁気ヘッドについて、図18及び図19を参照して説明する。
図18は、第1の比較例による磁気ヘッドの要部を示し、図6に対応している。図18において、図6中の要素と同一又は対応する要素には同一符号を付し、その重複する説明は省略する。図18(a)は、第1の比較例による磁気ヘッドの下部磁気シールド層21、上部磁気シールド層31、下部リード層51、上部リード層52及び層24〜28の、積層方向(X軸方向)から見た位置関係を模式的に示す概略平面図である。図18(b)は、第1の比較例による磁気ヘッドの上部磁気シールド層31及び上部リード層52の、積層方向から見た位置関係を模式的に示す概略平面図である。図18(c)は、第1の比較例による磁気ヘッドの下部磁気シールド層21及び下部リード層51の、積層方向から見た位置関係を模式的に示す概略平面図である。
図19は、第2の比較例による磁気ヘッドの要部を示し、図6に対応している。図19において、図6中の要素と同一又は対応する要素には同一符号を付し、その重複する説明は省略する。図19(a)は、第2の比較例による磁気ヘッドの下部磁気シールド層21、上部磁気シールド層31、下部リード層51、上部リード層52及び層24〜28の、積層方向(X軸方向)から見た位置関係を模式的に示す概略平面図である。図19(b)は、第2の比較例による磁気ヘッドの上部磁気シールド層31及び上部リード層52の、積層方向から見た位置関係を模式的に示す概略平面図である。図19(c)は、第2の比較例による磁気ヘッドの下部磁気シールド層21及び下部リード層51の、積層方向から見た位置関係を模式的に示す概略平面図である。
第1及び第2の比較例がそれぞれ前記第1の実施の形態と基本的に異なる所は、磁気シールド層21,31及びリード層51,52に関する構造のみである。
前記第1の実施の形態では、磁気シールド層21,31が磁性材料で構成される一方でリード層51,52は非磁性導電材料で構成されているのに対し、第1及び第2の比較例では、下部磁気シールド層21及び下部リード層51は同一磁性材料で一体に連続して構成されるとともに、上部磁気シールド層31及び上部のリード層52は同一磁性材料で一体に連続して構成されている。
また、前記第1の実施の形態では、図6に示すように、下部磁気シールド層21及び上部磁気シールド層31は、積層方向(X軸方向)から見たときに互いに実質的にちょうど重なる形状及び大きさを有している。これに対し、第1の比較例では、図18に示すように、積層方向(X軸方向)から見たときに、上部磁気シールド層31が下部磁気シールド層21より大きくなっている。第2の比較例では、図19に示すように、前記第1の実施の形態と同様に、下部磁気シールド層21及び上部磁気シールド層31は、積層方向(X軸方向)から見たときに互いに実質的にちょうど重なる形状及び大きさを有している。
第1の比較例は、従来のCPP構造の磁気ヘッドに相当している。第2の比較例は、第1の比較例による磁気ヘッドを、前述した特許文献1の教示に従って、下部磁気シールド層21及び上部磁気シールド層31が積層方向から見たときに互いに実質的にちょうど重なる形状及び大きさを有するように、変形したものに相当している。
第1の実施の形態、第2の比較例及び第1の比較例の順に、動特性と静特性との間の相関が高まるとともに動特性における波形非対称性のばらつきが低減されることが、後述する実験により確認された。
ここで、第1の比較例による磁気ヘッドを製造する方法の一例について、説明する。以下の説明において、前記第1の実施の形態で説明した要素と同一又は対応する要素には同一符号を付す。
まず、ウエハ工程を行う。すなわち、基体15となるべきAl−TiC又はSiC等のウエハ101を用意し、薄膜形成技術等を用いて、ウエハ101上のマトリクス状の多数の磁気ヘッドの形成領域にそれぞれ、前述した各層を前述した構造となるように形成する。
このウエハ工程の概要について、図20乃至図26を参照して説明する。図20乃至図26はウエハ工程を構成する各工程を模式的に示す図である。図20乃至図26の(a)はそれぞれ概略平面図である。図20乃至図26の(b)は、それぞれ同じ図の(a)中のE−E’線に沿った概略断面図である。図20乃至図26の(c)はそれぞれ同じ図の(a)中のF−F’線に沿った概略断面図である。
ウエハ工程では、まず、ウエハ(基板)101上に下地層16を積層した後に、下地層16上に、下部磁気シールド層21、下部リード層51及び中継電極部構成層21’,21”をメッキ法等により同一磁性材料で一括して形成し、更に、CMP工程により層21,51,21’,21”の上面を平坦化する(図20)。図20(a)に示すように、下部磁気シールド層21、下部リード層51及び中継電極部構成層21’は一体に連続して形成されるのに対し、中継電極部構成層21”は層21,51,21’から分離されている。中継電極部構成層21’はボンディングパッド5aに接続される中継電極部を構成し、中継電極部構成層21”はボンディングパッド5bに接続される中継電極部を構成する。
その後、この状態の基板上に、下部金属層22、下部金属層23、ピン層24、ピンド層25、トンネルバリア層26、フリー層27及びキャップ層28を、スパッタ法等により順次積層し、これらの層22〜28の一部の領域をイオンミリング等により除去して、中継電極部構成層21’,21”を露出させる開口62を層22〜28に形成する(図21)。開口62は、ボンディングパッド5aに接続される中継電極部及びボンディングパッド5bに接続される中継電極部のためのスルーホールとなる。
次に、この状態の基板上にフォトレジスト63を塗布した後、フォトレジスト63をパターニングして、TMR素子2のトラック幅に応じたZ軸方向の間隔を持つ開口63a,63bをフォトレジスト63に形成する(図22)。
その後、フォトレジスト63をマスクとしてイオンミリング等により開口63a,63bの領域の層23〜28を除去する。次に、フォトレジスト63を剥離する前に絶縁層34、縦バイアス層32及び絶縁層35を順次積層し、更に、フォトレジスト63をその上に形成された層34,32,35と共に剥離する(図23)。このようにリフトオフすることで、層23〜28を除去した領域のみに層34,32,35を形成する。
次に、この状態の基板上にフォトレジスト64を塗布した後、フォトレジスト64をパターニングして、TMR素子2のハイト方向に関して必要な幅(Y軸方向の幅)を持つとともに所定長さだけZ軸方向に延びる帯状領域上、中継電極部構成層21’の領域上、及び、中継電極部構成層21”の領域上にのみ、フォトレジスト64を島状に形成する(図24)。
その後、フォトレジスト64をマスクとしてイオンミリング等により、フォトレジスト64が形成されていない領域の、層22〜28等を除去する。なお、本実施の形態では、図25(c)に示すように、下部金属層22まで除去されているが、これに限らず、下部金属層22、下部金属層23、ピン層24、ピンド層25の適当な深さまで除去しても良い。また、下部シールド層21の途中まで除去しても良い。次に、フォトレジスト64を剥離する前に絶縁層30を形成し、更に、フォトレジスト64をその上に形成された層30と共に剥離する(図25)。このように、リフトオフすることで、ミリングの際にフォトレジスト64によりマスクされなかった領域のみに層30を形成する。
次に、上部磁気シールド層31、上部リード層52及び中継電極部構成層31’,31”をメッキ法等により同一磁性材料で一括して形成する(図26)。図26(a)に示すように、上部磁気シールド層31、上部リード層52及び中継電極部構成層31”は一体に連続して形成されるのに対し、中継電極部構成層31’は層31,52,31”から分離されている。
最後に、ギャップ層38、コイル層37、絶縁層39、上部磁性層36及び保護膜40を形成し、更に電極5a〜5d等を形成する。これにより、ウエハ工程が完了する。
次に、ウエハ工程が完了したウエハに対して、公知の工程を経て第1の比較例による磁気ヘッドを完成させる。簡単に説明すると、前記ウエハから、基体上に複数の磁気ヘッドの部分が一列状に配列された各バー(バー状磁気ヘッド集合体)切り出す。次いで、このバーに対して、スロートハイト、MRハイト等を設定するために、そのABS側にラッピング処理(研磨)を施す。このラッピング処理により最終的に露出する面は、ほぼ図26(a)中のE−E’線に沿った断面である。次に、ABS側に保護膜4を形成し、更に、エッチング等によりレール11,12を形成する。最後に、機械加工により切断してバーを個々の磁気ヘッドに分離する。これにより、第1の比較例による磁気ヘッドが完成する。
以上、前記第1の比較例による磁気ヘッドの製造方法について説明した。前記第2の比較例による磁気ヘッドを製造する場合には、前記第1の比較例による磁気ヘッドの製造方法において、図26を参照して説明した工程において、上部磁気シールド層31及び上部リード層52のパターン形状を図27(a)に示す形状に変更する。他の工程については、第2の比較例による磁気ヘッドを製造する場合も第1の比較例による磁気ヘッドを製造する場合と同じである。
なお、図27は、第2の比較例による磁気ヘッドの製造方法におけるウエハ工程を構成する一工程を模式的に示す図であり、図26に対応している。図27(a)は概略平面図、図27(b)は図27(a)中のE−E’線に沿った概略断面図、図27(c)は図27(a)中のF−F’線に沿った概略断面図である。
[第2の実施の形態]
図28は、本発明の第2の実施の形態による磁気ディスク装置の要部の構成を示す概略斜視図である。
第2の実施の形態による磁気ディスク装置は、軸70の回りに回転可能に設けられた磁気ディスク71と、磁気ディスク71に対して情報の記録及び再生を行う磁気ヘッド72と、磁気ヘッド72を磁気ディスク71のトラック上に位置決めするためのアッセンブリキャリッジ装置73と、を備えている。
アセンブリキャリッジ装置73は、軸74を中心にして回動可能なキャリッジ75と、このキャリッジ75を回動駆動する例えばボイスコイルモータ(VCM)からなるアクチュエータ76とから主として構成されている。
キャリッジ75には、軸74の方向にスタックされた複数の駆動アーム77の基部が取り付けられており、各駆動アーム77の先端部には、磁気ヘッド72を搭載したヘッドサスペンションアッセンブリ78が固着されている。各ヘッドサスペンションアセンブリ78は、その先端部に有する磁気ヘッド72が、各磁気ディスク71の表面に対して対向するように駆動アーム77の先端部に設けられている。
第2の実施の形態では、磁気ヘッド72として、前記第1の実施の形態による磁気ヘッドが搭載されている。したがって、第2の実施の形態によれば、高記録密度化を図ることができるなどの利点が得られる。
前記第1の実施の形態による磁気ヘッド、前記第1の比較例による磁気ヘッド及び前記第2の比較例による磁気ヘッドについて、それぞれ約100個のサンプルを前述した各製造方法により製造した。各磁気ヘッドの製造条件は、互いに同じ工程については同じ製造条件に設定した。いずれの磁気ヘッドのいずれのサンプルについても、その主要な各層の構成は下記の表1に示す通りとした。
Figure 2005251342
第1の実施の形態による磁気ヘッドのサンプルでは、リード層51,52はそれぞれTa(10nm)/Cu(200nm)/Ta(100nm)の3層構造とした。第1及び第2の比較例による磁気ヘッドのサンプルでは、リード層51,52は、表1中の上部磁気シールド層31と同じく、厚さ2μmのNiFeである。
第1の実施の形態による磁気ヘッドのサンプルでは、図6中の各部の寸法を、a1=b1=50μm、a2=b2=15μmとした。第1の比較例による磁気ヘッドのサンプルでは、図18中の各部の寸法を、c1=100μm、c2=76μm、d1=50μm、d2=15μm、d3=25μm、d4=5μm、d5=10μmとした。第2の比較例による磁気ヘッドのサンプルでは、図19中の各部の寸法を、e1=f1=50μm、e2=f2=15μm、e3=f3=25μm、e4=f4=5μm、e5=f5=10μmとした。
各磁気ヘッドの各サンプルについて、バー(バー状磁気ヘッド集合体)に切り出した段階で、擬似静特性テスタ(Quasi Static Tester, QST)によって静特性を測定した。この静特性測定では、0.1mAのセンス電流を流しつつ、バーのABS側の面に対して垂直方向に交番する磁場(+/−140Oe)を印加して、TMR素子2の素子抵抗及びMR出力(出力電圧)を測定した。
また、各磁気ヘッドの各サンプルについて、磁気ヘッドとして完成した状態において、ダイナミックパフォーマンス(DP)テスタ(リードライトテスタ)によって動特性を測定した。この動特性測定では、磁気ディスクの回転速度を5400rpm、本測定における最大測定周波数を225MHz、磁気ヘッドがトレースする半径を28.5mm、フライングハイトを10nm、磁気ディスクの保磁力Hcを3950Oe、磁気ディスクのMrtを0.33memu/cm、バイアス電圧を200mVとした。
これらの静特性測定及び動特性測定により得られた結果を、図29乃至図31及び図33乃至図38に示す。
図29は、第1の実施の形態による磁気ヘッドの各サンプルについて前記静特性測定により得られたヒステリシス曲線のうち、典型的なヒステリシス曲線を示す。このヒステリシス曲線は、線形応答を示す直線に非常に近いものとなっており、理想的である。
図30は、第1の実施の形態による磁気ヘッドの各サンプルの、静特性のMR出力と動特性の出力との関係を示す散布図である。図30の横軸は、前記動特性測定により得られたMR出力(ただし、前記最大測定周波数に対して1/6の周波数で測定を行い、MR出力(磁気ヘッドからの再生出力)を磁気ディスクの1周に渡って平均した値)を示す。図30の縦軸は、前記静特性測定により得られたMR出力(ただし、前記動特性測定時に磁気ヘッドに印加される磁場を模擬した磁場が印加されたときのMR出力)を示す。図30中の斜めの直線は、サンプル点を近似した直線である。図30に示すように、サンプル点は近似直線に集中しており、また、図30に示すデータから算出された相関係数の2乗の値は、0.9178と非常に大きい。このことから、第1の実施の形態では、静特性と動特性との間の相関が極めて高いことがわかる。
図31は、第1の実施の形態による磁気ヘッドの各サンプルの、素子抵抗と波形非対称性の値Asymとの関係を示す散布図である。図31に示すように、サンプル点の値Asymが0付近に集中している。したがって、第1の実施の形態では、動特性の波形非対称性のばらつきが非常に少なく、しかも各サンプル点の値Asymが理想的な0に非常に近い値となっている。
ここで、波形非対称性の値Asymの定義について、図32を参照して説明する。図32は、動特性測定により得られる出力電圧波形(MR出力波形)を模式的に示す波形図である。図32に示すように、この出力電圧波形の正のパルスのピーク値をVmax、正のパルスのピーク値をVminとすると、波形非対称性の値Asymは、下記の数1で表される。
Figure 2005251342
図33は、第1の比較例による磁気ヘッドの各サンプルについて前記静特性測定により得られたヒステリシス曲線のうち、典型的なヒステリシス曲線を示す。このヒステリシス曲線は、理想的な線形応答を示す直線からほど遠いものとなっている。
図34は、第1の比較例による磁気ヘッドの各サンプルの、静特性のMR出力と動特性の出力との関係を示す散布図である。図34の横軸及び縦軸は、図30の横軸及び縦軸とそれぞれ同一である。図34中の斜めの直線は、サンプル点を近似した直線である。図34に示すように、サンプル点は大きく分散しており、また、図34に示すデータから算出された相関係数の2乗の値は、0.0979と非常に小さい。このことから、第1の比較例では、静特性と動特性との間の相関が極めて低いことがわかる。
図35は、第1の比較例による磁気ヘッドの各サンプルの、素子抵抗と波形非対称性の値Asymとの関係を示す散布図である。図35に示すように、サンプル点の値Asymが全体的に非常に大きく分散している。したがって、第1の比較例では、動特性の波形非対称性のばらつきが非常に大きく。しかも、各サンプル点の値Asymが理想的な0から大きくはずれたサンプル点の数も多い。
図36は、第2の比較例による磁気ヘッドの各サンプルについて前記静特性測定により得られたヒステリシス曲線のうち、典型的なヒステリシス曲線を示す。このヒステリシス曲線は、第1の比較例に関する図33に示すヒステリシス曲線に比べると理想的な線形応答を示す直線に近づいているが、第1の実施の形態に関する図29に示すヒステリシス曲線に比べると理想的な線形応答を示す直線から遠いものとなっている。
図37は、第2の比較例による磁気ヘッドの各サンプルの、静特性のMR出力と動特性の出力との関係を示す散布図である。図37の横軸及び縦軸は、図30の横軸及び縦軸とそれぞれ同一である。図37中の斜めの直線は、サンプル点を近似した直線である。図37では、第1の比較例に関する図34ほどサンプル点が大きく分散していないが、第1の実施の形態に関する図29ほどサンプル点が集中していない。また、図37に示すデータから算出された相関係数の2乗の値は、0.07974であり、第1の比較例に関する図34に示すデータから算出された値0.0979より大きいが、第1の実施の形態に関する図30に示すデータから算出された値0.9178より小さい。これらのことから、第2の比較例では、第1の比較例と比べると静特性と動特性との間の相関が高いが、第1の実施の形態と比べるとその相関が低いことがわかる。
図38は、第2の比較例による磁気ヘッドの各サンプルの、素子抵抗と波形非対称性の値Asymとの関係を示す散布図である。図38では、第1の比較例に関する図35ほどサンプル点の値Asymが大きく分散していないが、第1の実施の形態に関する図29ほどサンプル点の値Asymが集中していない。したがって、第2の比較例では、動特性の波形非対称性のばらつきが第1の比較例より小さいが第1の実施の形態より大きいことがわかる。
以上の述べたように、前述した実験結果から、第1の実施の形態、第2の比較例及び第1の比較例の順に、動特性と静特性との間の相関が高まるとともに動特性における波形非対称性のばらつきが低減されることが、判明した。
以上、本発明の各実施の形態及び実施例について説明したが、本発明はこれらに限定されるものではない。
例えば、前述した実施の形態は本発明をTMRヘッドに適用した例であるが、本発明は、CPP−GMRヘッドなどの他のCPP構造を持つ磁気抵抗効果素子を有するヘッドなどにも適用することができる。例えば、前述した第1の実施の形態による磁気ヘッドにおいて、トンネルバリア層26に代えてCu、Au又はAgなどからなる非磁性金属層を形成することで、素子2をCPP−GMR素子にして、当該磁気ヘッドをCPP−GMRヘッドにすることができる。
本発明の第1の実施の形態による磁気ヘッドを模式的に示す概略斜視図である。 図1に示す磁気ヘッドのTMR素子及び誘導型磁気変換素子の部分を模式的に示す拡大断面図である。 図2中のA−A’矢視概略図である。 図2中のTMR素子付近を更に拡大した拡大図である。 図3中のTMR素子付近を更に拡大した拡大図である。 図1に示す磁気ヘッドにおける磁気シールド層及びリード層等を示す図である。 図1に示す磁気ヘッドの製造方法におけるウエハ工程を構成する一工程を模式的に示す図である。 図1に示す磁気ヘッドの製造方法におけるウエハ工程を構成する他の工程を模式的に示す図である。 図1に示す磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 図1に示す磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 図1に示す磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 図1に示す磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 図1に示す磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 図1に示す磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 図1に示す磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 図1に示す磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 図1に示す磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 第1の比較例による磁気ヘッドにおける磁気シールド層及びリード層等を示す図である。 第2の比較例による磁気ヘッドにおける磁気シールド層及びリード層等を示す図である。 第1の比較例による磁気ヘッドの製造方法におけるウエハ工程を構成する一工程を模式的に示す図である。 第1の比較例による磁気ヘッドの製造方法におけるウエハ工程を構成する他の工程を模式的に示す図である。 第1の比較例による磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 第1の比較例による磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 第1の比較例による磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 第1の比較例による磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 第1の比較例による磁気ヘッドの製造方法におけるウエハ工程を構成する更に他の工程を模式的に示す図である。 第2の比較例による磁気ヘッドの製造方法におけるウエハ工程を構成する一工程を模式的に示す図である。 本発明の第2の実施の形態による磁気ディスク装置の要部の構成を示す概略斜視図である。 第1の実施の形態による磁気ヘッドのサンプルについて静特性測定により得られたヒステリシス曲線を示す図である。 第1の実施の形態による磁気ヘッドの各サンプルの、静特性のMR出力と動特性の出力との関係を示す散布図である。 第1の実施の形態による磁気ヘッドの各サンプルの、素子抵抗と波形非対称性の値との関係を示す散布図である。 動特性測定により得られる出力電圧波形を模式的に示す波形図である。 第1の比較例による磁気ヘッドのサンプルについて静特性測定により得られたヒステリシス曲線を示す図である。 第1の比較例による磁気ヘッドの各サンプルの、静特性のMR出力と動特性の出力との関係を示す散布図である。 第1の比較例の形態による磁気ヘッドの各サンプルの、素子抵抗と波形非対称性の値との関係を示す散布図である。 第2の比較例による磁気ヘッドのサンプルについて静特性測定により得られたヒステリシス曲線を示す図である。 第2の比較例による磁気ヘッドの各サンプルの、静特性のMR出力と動特性の出力との関係を示す散布図である。 第2の比較例の形態による磁気ヘッドの各サンプルの、素子抵抗と波形非対称性の値との関係を示す散布図である。
符号の説明
1 スライダ
2 TMR素子
3 誘導型磁気変換素子
21 下部磁気シールド層
22,23 下部金属層
24 ピン層
25 ピンド層
26 トンネルバリア層
27 フリー層
28 上部金属層
29,30,34,35 絶縁層
31 上部磁気シールド層
32 縦バイアス層
51,52 リード層

Claims (7)

  1. 基体上に順に積層された第1の磁気シールド層、磁気抵抗効果層及び第2の磁気シールド層と、
    前記第1及び第2の磁気シールド層を経由して、前記磁気抵抗効果層にその膜面と略垂直にセンス電流を流す第1及び第2のリード層と、
    を備え、
    前記第1及び第2の磁気シールド層は、積層方向から見たときに互いに実質的にちょうど重なる形状及び大きさを有し、
    前記第1のリード層が前記第1の磁気シールド層に電気的に接続されるとともに、前記第1のリード層における少なくとも前記第1の磁気シールド層側の部分が非磁性導電材料で構成され、
    前記第2のリード層が前記第2の磁気シールド層に電気的に接続されるとともに、前記第2のリード層における少なくとも前記第2の磁気シールド層側の部分が非磁性導電材料で構成されたことを特徴とする磁気ヘッド。
  2. 前記第1及び第2の磁気シールド層は、互いに実質的に同一の厚さを有することを特徴とする請求項1記載の磁気ヘッド。
  3. 前記第1及び第2の磁気シールド層は、互いに同一の材料で構成されたことを特徴とする請求項1又は2記載の磁気ヘッド。
  4. 前記磁気抵抗効果層は、トンネルバリア層と、該トンネルバリア層の一方の面側に形成されたフリー層と、前記トンネルバリア層の他方の面側に形成されたピンド層と、前記ピンド層の前記トンネルバリア層とは反対の側に形成されたピン層と、を含むことを特徴とする請求項1乃至3のいずれかに記載の磁気ヘッド。
  5. 前記磁気抵抗効果層は、非磁性金属層と、前記非磁性金属層の一方の面側に形成されたフリー層と、前記非磁性金属層の他方の面側に形成されたピンド層と、前記ピンド層の前記非磁性金属層とは反対の側に形成されたピン層と、を含むことを特徴とする請求項1乃至3のいずれかに記載の磁気ヘッド。
  6. 磁気ヘッドと、該磁気ヘッドが先端部付近に搭載され前記磁気ヘッドを支持するサスペンションと、を備え、前記磁気ヘッドが請求項1乃至5のいずれかに記載の磁気ヘッドであることを特徴とするヘッドサスペンションアセンブリ。
  7. 請求項6記載のヘッドサスペンションアセンブリと、該アセンブリを支持するアーム部と、該アーム部を移動させて磁気ヘッドの位置決めを行うアクチュエータと、を備えたことを特徴とする磁気ディスク装置。
JP2004063320A 2004-03-08 2004-03-08 磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置 Pending JP2005251342A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004063320A JP2005251342A (ja) 2004-03-08 2004-03-08 磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置
US11/067,643 US7489481B2 (en) 2004-03-08 2005-02-28 CCP Head having leads of substantially the same size and shape and not intervening between a shield layer and a MR element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004063320A JP2005251342A (ja) 2004-03-08 2004-03-08 磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置

Publications (1)

Publication Number Publication Date
JP2005251342A true JP2005251342A (ja) 2005-09-15

Family

ID=34918155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063320A Pending JP2005251342A (ja) 2004-03-08 2004-03-08 磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置

Country Status (2)

Country Link
US (1) US7489481B2 (ja)
JP (1) JP2005251342A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7684159B2 (en) 2005-12-06 2010-03-23 Tdk Corporation Magnetic head device provided with lead electrode electrically connected to upper shield layer and lower shield layer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4377777B2 (ja) 2004-08-31 2009-12-02 株式会社東芝 磁気ヘッド、ヘッドサスペンションアッセンブリ、および磁気再生装置
US7420787B2 (en) * 2005-08-15 2008-09-02 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having a shape enhanced pinned layer
JP2007157252A (ja) * 2005-12-06 2007-06-21 Alps Electric Co Ltd 磁気ヘッド装置
JP2008084373A (ja) * 2006-09-26 2008-04-10 Tdk Corp 薄膜磁気ヘッドの製造方法及び薄膜磁気ヘッド
US8705213B2 (en) 2010-02-26 2014-04-22 Seagate Technology Llc Magnetic field detecting device with shielding layer at least partially surrounding magnetoresistive stack
JP5909822B2 (ja) * 2012-02-27 2016-04-27 アルプス・グリーンデバイス株式会社 電流センサ及びその作製方法
US11170807B1 (en) * 2020-06-23 2021-11-09 Western Digital Technologies, Inc. Read head sensor with balanced shield design

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881190A (en) * 1973-09-20 1975-04-29 Ibm Shielded magnetoresistive magnetic transducer and method of manufacture thereof
US5323285A (en) 1992-06-23 1994-06-21 Eastman Kodak Company Shielded dual element magnetoresistive reproduce head exhibiting high density signal amplification
US5696656A (en) * 1996-09-06 1997-12-09 International Business Machines Corporation Highly sensitive orthogonal spin valve read head
US6587315B1 (en) * 1999-01-20 2003-07-01 Alps Electric Co., Ltd. Magnetoresistive-effect device with a magnetic coupling junction
US6456465B1 (en) * 1999-11-09 2002-09-24 Read-Rite Corporation Vertical giant magnetoresistance sensor using a recessed shield
US6396669B1 (en) * 2000-02-08 2002-05-28 International Business Machines Corporation AP pinned PtMn spin valve read head biased for playback symmetry and magnetic stability
US6525911B1 (en) * 2000-03-16 2003-02-25 International Business Machines Corporation Permeability offset of shield layers for correcting bias of a free layer structure in a spin valve sensor
US6473277B1 (en) * 2000-05-03 2002-10-29 International Business Machines Corporation Read head with leads to shields shorts for permitting a thinner second read gap layer and improving read signal symmetry
JP3604617B2 (ja) * 2000-06-12 2004-12-22 富士通株式会社 磁気検出素子
JP2002025018A (ja) 2000-07-10 2002-01-25 Tdk Corp 磁気抵抗効果型薄膜磁気ヘッド及びその製造方法
US6765767B2 (en) * 2000-11-15 2004-07-20 Seagate Technology Llc Magnetoresistive head on a side wall for increased recording densities
US6654209B2 (en) * 2001-01-10 2003-11-25 Seagate Technology Llc Low resistance lead structure for a low resistance magnetic read head
JP3583079B2 (ja) * 2001-03-26 2004-10-27 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気再生装置及び磁気記憶装置
JP2002314168A (ja) * 2001-04-18 2002-10-25 Fujitsu Ltd Cpp構造電磁変換素子およびその製造方法
US6785101B2 (en) * 2001-07-12 2004-08-31 Hitachi Global Storage Technologies Netherlands B.V. Overlaid lead giant magnetoresistive head with side reading reduction
JP2003069109A (ja) * 2001-08-30 2003-03-07 Sony Corp 磁気抵抗効果型磁気センサ、磁気抵抗効果型磁気ヘッド、磁気再生装置と、磁気抵抗効果型磁気センサおよび磁気抵抗効果型磁気ヘッドの製造方法
JP2003242613A (ja) 2002-02-15 2003-08-29 Tdk Corp 磁気抵抗効果センサ及び該センサを有する薄膜磁気ヘッド
JP3846329B2 (ja) 2002-02-15 2006-11-15 Tdk株式会社 磁気抵抗効果センサ及び該センサを有する薄膜磁気ヘッド
JP3576145B2 (ja) 2002-03-29 2004-10-13 株式会社東芝 磁気抵抗効果膜を有する磁気ヘッドを用いた磁気ディスク装置
US6985339B2 (en) * 2002-06-20 2006-01-10 Seagate Technology Llc Disc drive having electromagnetic biased shieldless CPP reader
US7126796B2 (en) * 2002-09-25 2006-10-24 Hitachi Global Storage Technologies Netherlands B.V. Read sensor with overlaying lead layer top surface portions interfaced by hard bias and tapered lead layers
US6943993B2 (en) * 2003-02-11 2005-09-13 Western Digital (Fremont), Inc. Magnetic recording head with a side shield structure for controlling side reading of thin film read sensor
JP4596753B2 (ja) * 2003-06-26 2010-12-15 株式会社日立グローバルストレージテクノロジーズ 磁気ヘッドおよび磁気記録再生装置
US6977800B2 (en) * 2003-07-29 2005-12-20 Hitachi Global Storage Technologies Netherlands B.V. Magnetic read head with dual layer lead
US7061725B2 (en) * 2003-12-01 2006-06-13 Seagate Technology Llc Magnetic read sensor with stripe width and stripe height control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7684159B2 (en) 2005-12-06 2010-03-23 Tdk Corporation Magnetic head device provided with lead electrode electrically connected to upper shield layer and lower shield layer

Also Published As

Publication number Publication date
US20050201018A1 (en) 2005-09-15
US7489481B2 (en) 2009-02-10

Similar Documents

Publication Publication Date Title
JP4458302B2 (ja) Cpp型磁界検出素子及びその製造方法
JP3922303B1 (ja) 複合型薄膜磁気ヘッド、磁気ヘッドアセンブリ及び磁気ディスクドライブ装置
JP4328348B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
KR20040023524A (ko) Cpp 구조 자기 저항 효과 소자
JP3813914B2 (ja) 薄膜磁気ヘッド
JP2005032780A (ja) 磁気抵抗効果素子、これを用いた磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置
JP3699716B2 (ja) 磁気ヘッド及びその製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置
US6657826B2 (en) Magnetoresistive device and method of manufacturing same, thin-film magnetic head and method of manufacturing same, head gimbal assembly and hard disk drive
US7898775B2 (en) Magnetoresistive device having bias magnetic field applying layer that includes two magnetic layers antiferromagnetically coupled to each other through intermediate layer
US7489481B2 (en) CCP Head having leads of substantially the same size and shape and not intervening between a shield layer and a MR element
JP3971140B2 (ja) 磁気抵抗効果素子並びにこれを用いた磁気ヘッド及びヘッドサスペンションアセンブリ
JP2006221739A (ja) 複合型薄膜磁気ヘッド、磁気ヘッドアセンブリ及び磁気ディスクドライブ装置
JP3865738B2 (ja) 薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP2005251254A (ja) 薄膜磁気ヘッド、薄膜磁気ヘッドのウエハ、ヘッドジンバルアセンブリ、ハードディスク装置、および薄膜磁気ヘッドの製造方法
JP2004319060A (ja) 薄膜磁気ヘッドおよびその製造方法
US7408746B2 (en) Magnetoresistive device and method of manufacturing same, thin-film magnetic head, head gimbal assembly, head arm assembly and magnetic disk drive
KR100770813B1 (ko) 자기 저항 헤드, 자기 기록 재생 장치 및 자기 저항 헤드 제조 방법
JP3818596B2 (ja) 磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置
JP4471020B2 (ja) Cpp構造の磁気抵抗効果素子および磁気ディスク装置
JP2005310265A (ja) 薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP2005259346A (ja) 磁気ヘッドの製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置
JPH1021513A (ja) 磁気抵抗型変換デバイス
JP2005293761A (ja) 薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP4112442B2 (ja) 磁気ヘッド、並びに、これを用いたヘッドサスペンションアセンブリ及び磁気ディスク装置
JP2006228326A (ja) 薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213