JP2005240673A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2005240673A
JP2005240673A JP2004051551A JP2004051551A JP2005240673A JP 2005240673 A JP2005240673 A JP 2005240673A JP 2004051551 A JP2004051551 A JP 2004051551A JP 2004051551 A JP2004051551 A JP 2004051551A JP 2005240673 A JP2005240673 A JP 2005240673A
Authority
JP
Japan
Prior art keywords
nozzle opening
surge
actual
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004051551A
Other languages
English (en)
Inventor
Asami Takaku
麻美 高久
Akira Shirakawa
暁 白河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004051551A priority Critical patent/JP2005240673A/ja
Publication of JP2005240673A publication Critical patent/JP2005240673A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)

Abstract

【課題】 実ノズル開度検出手段(リフトセンサ)の劣化を正確に判定する。
【解決手段】 運転状態(燃料噴射量Qf、エンジン回転数Ne)に応じて可変ノズル型過給機の目標ノズル開度を算出する一方(ステップ12)、可変ノズル型過給機の実ノズル開度を検出する(ステップ13)。そして、減速時におけるアクセルペダル開度の変化量が所定値未満で且つ吸入空気量Qaが増加した時に可変ノズル型過給機のサージを検出し(ステップ2)、これに基づいて実ノズル開度検出手段の劣化を判定する(ステップ14)。劣化を検出した時には、実ノズル開度の補正量を算出し(ステップ15)、この補正量に基づいて実ノズル開度を開く方向に補正して目標ノズル開度にする(ステップ16)。
【選択図】 図4

Description

本発明は、内燃機関の制御装置に関する。
特許文献1には、可変容量型過給器の制御装置において、コンプレッサの入口圧と出口圧との比を演算し、回転域における圧力比の演算結果に応じた仮定サージングラインを超えている場合(サージ領域にある場合)には、リリーフ弁を開弁することでサージを防止すると共にエンジンの出力低下を抑制することが記載されている。
また特許文献2には、可変ノズル型過給機付エンジンの制御装置において、過給機のコンプレッサより下流の吸気圧力状態により検出される実吸気圧と、運転状態に応じて設定される目標吸気圧との偏差に応じてノズル開度の制御量を算出し、これに基づいて実ノズル開度を目標ノズル開度に制御することが記載されている。
特開平6−69331号公報 特開2000−170588号公報
しかしながら、可変ノズル型過給機の実ノズル開度を検出する実ノズル開度検出手段(リフトセンサ)が劣化している場合には、実ノズル開度が正確に検知できなくなるため、目標ノズル開度へのノズル開度制御量が精度良く算出できないという問題がある。
本発明は、このような問題に着目してなされたもので、実ノズル開度検出手段の劣化を正確に判定することを目的とする。
そのため本発明では、可変ノズル型過給機の目標ノズル開度及び実ノズル開度を算出し、実ノズル開度を目標ノズル開度にフィードバック制御する内燃機関の制御装置であって、可変ノズル型過給機のサージを検出し、これに基づいて実ノズル開度検出手段の劣化を判定する。
本発明によれば、サージに基づいて実ノズル開度検出手段の劣化を正確に判定することができるという効果がある。
以下、図面を用いて本発明の実施形態について説明する。
図1は、内燃機関1の制御装置を示す構成図である。
内燃機関1はディーゼルエンジンであり、この本体には、吸気通路2及び排気通路3が接続されている。また、このエンジン1には可変ノズル型過給機5が装備され、この可変ノズル型過給機5は、吸気通路2に設けられたコンプレッサ6と、コンプレッサ6を排気エネルギーにより駆動するために排気通路3に設けられたタービン7とを備えるとともに、後述するノズル8(可変翼)を具備している。
さらにこのエンジン1には、排気通路3と吸気通路2とを連通するEGR通路11(排気還流通路)と、このEGR通路11に介設されたEGR弁12(排気還流弁)とを有するEGR装置(排気還流装置)が設けられている。
エンジン各部の構造を具体的に説明すると、エンジン本体1の各シリンダ14には燃焼室内に燃料を噴射する多噴口の燃料噴射弁15が配設されている。これらの燃料噴射弁15の燃料入口側は、分配通路16を介してコモンレール(共通管)17に接続され、このコモンレール17が燃料噴射ポンプ18に接続されている。そして、燃料噴射ポンプ18から送給された燃料がコモンレール17で蓄圧された上で各燃料噴射弁15に送られることにより燃料を噴射するようになっている。各燃料噴射弁15は、制御信号に応じて燃料噴射時間及び噴射時期の制御が可能な構造となっている。各燃料噴射弁15の戻し側はリターン通路19に接続されている。
吸気通路2には、その上流側から順にエアフロメータ21と、可変ノズル型過給機5のコンプレッサ6と、インタークーラ22と、吸気絞り弁23(電制スロットル弁)と、サージタンク24とが配設されるとともに、サージタンク24に吸気圧力センサ25が設けられている。
吸気絞り弁23は、特定運転領域でEGR導入促進等のため吸気通路2を絞るものであり、負圧応動式のアクチュエータ23aにより駆動されるようになっている。このアクチュエータ23aは電磁弁26Aを介してバキュームポンプ27に接続されており、電磁弁26Aがデューティ制御されることでアクチュエータ23aに対する負圧と大気圧との導入割合が調整され、これにより吸気絞り弁23の開度が制御されるようになっている。
また、排気通路3には、可変ノズル型過給機5のタービン7と、排気中の微粒子(パティキュレート)を捕集するディーゼルパティキュレートフィルタ28とが配設されている。
可変ノズル型過給機5は、タービン7の周囲にノズルを形成する多数のノズル8を備えたVGT(バリアブルジオメトリーターボ)からなっている。すなわち、この可変ノズル型過給機5は、ノズル8の角度調節により、全閉(流通面積最小)から全開(流通面積最大)までにわたりノズル開度(タービン7への排気流通面積)が可変となり、これによってタービン効率が制御されるように構成されている。
図1中に示すように、ノズル8は負圧応動式のアクチュエータ30により駆動され、このアクチュエータ30は負圧導入管29及び電磁弁26Bを介してバキュームポンプ27に接続されている。そして、電磁弁26Bがデューティ制御されることでアクチュエータ30に対する負圧と大気圧との導入割合が調整され、これにより可変ノズル型過給機5のノズル開度が制御されるようになっている。
図2に示すように、アクチュエータ30は、ダイヤフラム31、負圧室32、バネ33、大気圧室34及びノズル開度変更部材35から大別構成されている。ダイヤフラム31により負圧室32と大気圧室34とに仕切られ、負圧室32は負圧導入管29と接続され且つ負圧室32内にはバネ33が圧縮された状態で収納されている。大気圧室34側のダイヤフラム31には、リフト量を変更することによりノズル開度を変更するノズル開度変更部材35(リフト量変更部材)が接続されている。ノズル開度変更部材35には、この変位から実ノズル開度を検出するため、実ノズル開度検出手段としてのリフトセンサ36が配置されている。大気圧室34内は、大気圧導入口34aにより常に大気圧の状態となっている。
従って、負圧導入管29を介して負圧室32内に負圧(バネ33がダイヤフラム31を付勢するより大きい負圧)が導入された場合には、ダイヤフラム31が負圧室32側(図の右側)に変位する。一方、負圧が導入されない場合には、バネ33の付勢によりダイヤフラム31は大気圧室34側(図の左側)に変位する。これにより、ダイヤフラム31に接続されたノズル開度変更部材35が可変ノズル型過給機5のノズル開度を変更する。
再度図1を参照して、EGR通路11は、その一端部が排気通路3におけるタービン7の上流側、例えば排気マニホールドの集合部に接続されるとともに、他端部が吸気通路2における吸気絞り弁23の下流側、例えばサージタンク24もしくはその上流に接続されている。
このEGR通路11に介設されたEGR弁12は、デューティ制御可能な電磁弁26Cを介してバキュームポンプ27に接続され、電磁弁26Cがデューティ制御されることでEGR弁12の負圧室に対する負圧と大気圧との導入割合が調整され、これによりEGR弁12の開度が制御されるようになっている。
燃料噴射弁15及び電磁弁26A,26B,26Cにはエンジン制御装置(ECU)40から制御信号が出力される。このエンジン制御装置40には、エンジン1の運転状態を検出するため、吸入空気量Qaを検出するエアフロメータ21、及び吸気圧力センサ25からの信号が入力され、さらに、アクセルペダル開度Accを検出するアクセルペダル開度センサ37、エンジン回転数Neを検出するクランク角センサ38、及び燃料噴射量Qfを検出するためにコモンレール17内の燃料圧力を検出する燃圧センサ39等からの信号も入力されるようになっている。更に、可変ノズル型過給機5のノズル開度を検出するリフトセンサ36からの信号も入力される。
エンジン制御装置40は、各種センサからの信号に基づいて所定の演算を行い、エンジン1を制御する。例えば、エンジン制御装置40から燃料噴射弁15に出力される制御信号により燃料噴射弁15からの燃料噴射量Qf及び噴射時期が制御され、また電磁弁26A,26B,26Cに出力される制御信号(デューティ信号)により吸気絞り弁23、可変ノズル型過給機5のノズル8及びEGR弁12がそれぞれ制御されるようになっている。
エンジン制御装置40は、燃料噴射弁15の燃料噴射量制御、コモンレール17内の燃料圧力制御、EGR弁12の制御、可変ノズル型過給機5のノズルの開度制御することによって、過給圧を制御する過給圧フィードバック制御、吸気絞り弁23の制御などを行う。更に、バキュームポンプ27へのデューティ信号を制御することにより、可変ノズル型過給機5のノズル開度を制御する。
次に、本発明のエンジン1の制御について説明する。本発明は、可変ノズル型過給機5のサージを検出し、これに基づいて実ノズル開度検出手段の劣化を判定し、劣化していると判定した時に実ノズル開度を目標ノズル開度に制御するものであり、この制御の各処理について以下に説明する。
図3は、可変ノズル型過給機5のサージ検出フローである。
ステップ1(図には「S1」と示す。以下同様)では、減速中であるか否かを判定する。ここでは、アクセルペダル開度Accまたは燃料噴射量Qfの少なくとも一方が低下している場合に減速中であると判定する。減速中であると判定された場合には、ステップ2へ進む。一方、減速中でないと判定された場合には、処理を終了する。
ステップ2では、吸入空気量Qaが増加したか否かを判定する。これは、所定時間におけるエアフロメータ21の出力変化が所定値以上である場合に吸入空気量Qaが増加したと判定する。これにより減速時におけるサージの発生を判定する。
ここで、減速時におけるサージを検出するために用いる他のパラメータとしてアクセルペダル開度Accの変化量と、吸入空気量Qaの変化量とを比較する。この場合は次の(1)及び(2)の条件を満たすとき、すなわちアクセルペダル開度Accの変化量が所定値(0または負の所定値)未満で且つ吸入空気量Qaが所定値(0または正の所定値)より増加した時にサージを検出することとする。
Acc(n)−Acc(n−1)<所定値 ・・・(1)
Qa(n)−Qa(n−1)>所定値 ・・・(2)
なお、減速時における燃料噴射量Qfの変化量と、吸入空気量Qaの変化量とを比較してもよい。この場合は(3)及び(2)の条件を満たすとき、すなわち燃料噴射量Qfの変化量が所定値未満で且つ吸入空気量Qaが増加した時にサージを検出することとする。
Qf(n)−Qf(n−1)<所定値 ・・・(3)
Qa(n)−Qa(n−1)>所定値 ・・・(2)
また、吸気絞り実施時で且つ(2)の条件を満たすとき、すなわち吸気絞り弁23の開度を閉じる方向としており且つ吸入空気量Qaが増加した時にサージを検出してもよい。
これら3つの場合における条件のいずれか1つを満たしたときにステップ3へ進む。一方、条件を満たさない場合、例えば吸入空気量Qaが増加していないと判定された場合には、処理を終了する。
ステップ3では、可変ノズル型過給機5のサージを検出する。これがサージ検出手段に相当する。
ステップ4では、リフトセンサ36の劣化があるとする。そして、例えば劣化フラグを立てる。
ここで図8に示すように、サージが発生するのは、減速時において吸入空気量Qaが一時的に増加した場合である。この吸入空気量Qaは、エアフロメータ21により計測された単位シリンダ当たりの吸入空気量で且つ加重平均前の計測値である。そして、この吸入空気量Qaの変化に基づいてサージの検出を行っている。
図4は、ノズル開度補正を含む制御フローである。
ステップ11では、燃料噴射量Qf及びエンジン回転数Neを読み込む。これは前述の燃圧センサ39及びクランク角センサ38の出力に基づいて算出した値を読み込む。
ステップ12では、読み込んだ燃料噴射量Qf及びエンジン回転数Neなどの運転状態より可変ノズル型過給機5の目標ノズル開度を算出する。目標ノズル開度は、図9に示す目標ノズル開度算出テーブルにより算出する。このテーブルは、エンジン回転数Ne及び燃料噴射量Qfが大きければ目標ノズル開度が大きくなることを示している。これにより、リフトセンサ36に劣化がない場合における目標ノズル開度が算出される。
ステップ13では、可変ノズル型過給機5の実ノズル開度を検出する。実ノズル開度の検出は、リフトセンサ36の出力値に基づいて行う。
ステップ14では、リフトセンサ36が劣化しているか否かを判定する。この判定は、前述のステップ4において劣化ありとされたか否かにより判定する。劣化ありと判定した場合には、ステップ15へ進む。一方、劣化がないと判定した場合には、後述するステップ17へ進む。
ここで図10は、可変ノズル型過給機5の実ノズル開度を検出するリフトセンサ36に劣化がある場合及びない場合のノズル開度を示す図であり、リフトセンサ36の電圧に対するノズル開度を示している。リフトセンサ36に劣化がない場合における実ノズル開度は実線で示す特性となるのに対し、劣化がある場合における実ノズル開度は破線で示す特性となり、劣化がある場合には実ノズル開度が低くなっている。サージが大きいほど(劣化の度合が大きいほど)ノズル開度の低下は著しくなる。劣化による実ノズル開度の低下は、特にリフトセンサ36の電圧が低い領域で顕著に現れる。
このため、劣化がある場合には、予め劣化がない場合において算出していたノズル開度(実線)と、劣化後の実ノズル開度(破線)との差をフィードバック制御により補正するためにステップ15及びステップ16の処理を行う。
ステップ15では、可変ノズル型過給機5の実ノズル開度を補正する量を算出する。この補正量は図10に示しており、例えば図9に示す劣化前のノズル開度(実線)と、劣化後の実ノズル開度(破線)との差を差し引いて算出する(実ノズル開度補正量=劣化前のノズル開度−劣化後の実ノズル開度)。これが実ノズル開度補正量算出手段に相当する。この場合の実ノズル開度の補正量を図11に示している。サージが大きくリフトセンサ電圧が低い場合には、補正量が大きくなっている。
なお、実ノズル開度の補正量の算出は、吸入空気量Qaの変化量ΔQaに応じたノズル開度補正係数算出テーブルに基づいて行ってもよい。このテーブルは、吸入空気量Qaの変化量ΔQaが大きい場合には、実ノズル開度補正係数が大きい値を示すという特徴となる。
ステップ16では、実ノズル開度を補正する。ここでは、実ノズル開度補正量を実ノズル開度に加算することで実ノズル開度を補正する。この補正により実ノズル開度が開く方向に補正される。
ステップ17では、実ノズル開度と目標ノズル開度とを比較する。これらのノズル開度が一致している場合には、ステップ20へ進む。実ノズル開度が目標ノズル開度より大きい場合には、ステップ18へ進む。実ノズル開度が目標ノズル開度より小さい場合には、ステップ19へ進む。
ステップ18では、電磁弁26Bへのデューティを増加させる。これにより、アクチュエータ30のノズル開度変更部材35が負圧によりダイヤフラム31を負圧室32側に変位させることで、可変ノズル型過給機5の実ノズル開度を閉じる方向にする。
ステップ19では、電磁弁26Bへのデューティを減少させる。これにより、アクチュエータ30のノズル開度変更部材35がバネ33の付勢によりダイヤフラム31を大気圧室34側に変位させることで、可変ノズル型過給機5の実ノズル開度を開く方向にする。
ステップ20では、実ノズル開度と目標ノズル開度との差が所定値より大きいか否かを判定する。所定値より大きければステップ21へ進む。一方、所定値より小さければ処理を終了する。これにより実ノズル開度が目標ノズル開度に収束していることが判る。
ステップ21では、リフトセンサ36の劣化があるか否かを判定する。これにより通常のディザ制御を行うか特殊なディザ制御を行うかを判定する。劣化がない場合には、ステップ22にて通常のディザ制御を行う。一方、劣化がある場合には、ステップ23にて特殊なディザ制御を行う。
図5は、特殊なディザ制御を行う場合の処理を示すフローである。特殊なディザ制御を行うことにより、可変ノズル型過給機5の実ノズル開度を目標ノズル開度へフィードバックするときの追従性を良くする。この場合のディザ制御を図12に示している。
ステップ31では、ディザの周期を大きくする。なお、ディザの周期は所定の適合値としている。
ステップ32では、ディザの振幅を大きくする。
また図6に示すように、前述のサージ検出フロー(図3)にタイマーTMを追加して経過時間を計測してもよい。なお、前述のフローと同じ処理については説明を省略する。
ステップ1では減速中であるか否かの判定を行う。
ステップ2では、吸入空気量Qaの増加があるか否かを判定する。なお前述と同じく、アクセルペダル開度Accの変化量が所定値未満の減速時で且つ吸入空気量Qaが増加した時、燃料噴射量Qfの変化量が所定値未満の減速時で且つ吸入空気量Qaが増加した時、または吸気絞り実施時で且つ吸入空気量Qaが増加した時のいずれか1つの時にサージを検出してもよい。この場合には、サージあり、劣化ありとして、ステップ41へ進み、タイマーTMを0に設定する。
一方、ステップ2にて吸入空気量Qaの増加がない場合には、ステップ42へ進み、サージなしとしてタイマーTMの時間を加算する(TM=TM+1)。
そして図7に示すように、ステップ14にてリフトセンサ36に劣化ありと判定した後に、ステップ51にてタイマーTMが所定時間TM以上経過しているか否かを判定してもよい。
この場合、タイマーTMが所定時間TM1未満(TM<TM1)である場合には、ステップ52にて前述のステップ15と同様にして実ノズル開度補正量を算出し、ステップ53にて実ノズル開度を補正する。
一方、ステップ51にて所定時間TM以上経過している(TM≧TM1)場合には、実ノズル開度の補正量を減少させる。そして、サージを検出して可変ノズル型過給機5の実ノズル開度を開方向へ補正した後に所定期間が経過した後、実ノズル開度を閉じ方向へ動作させ、サージが起きる寸前までノズル開度を閉める。これにより、実ノズル開度の補正をした後に、実ノズル開度を開き過ぎてしまった時に目標ノズル開度まで閉める。
本実施形態によれば、運転状態(燃料噴射量Qf、エンジン回転数Ne)に応じて可変ノズル型過給機5の目標ノズル開度を算出する目標ノズル開度算出手段(ステップ12)と、可変ノズル型過給機5の実ノズル開度を検出する実ノズル開度検出手段(ステップ13)と、実ノズル開度を目標ノズル開度にフィードバック制御するフィードバック制御手段と、を備える内燃機関の制御装置であって、可変ノズル型過給機5のサージを検出するサージ検出手段(ステップ3)と、サージ検出に基づいて実ノズル開度検出手段の劣化を判定する劣化判定手段(ステップ14)と、を備える。このため、サージに基づいて実ノズル開度検出手段の劣化を正確に判定することができる。
また本実施形態によれば、実ノズル開度検出手段(ステップ13)が劣化していると判定したとき(ステップ14)、実ノズル開度を増大側に補正してフィードバック制御手段に入力する実ノズル開度補正手段(ステップ16)を備える。このため、実ノズル開度を適切に補正することで目標ノズル開度にすることができる。
また本実施形態によれば、実ノズル開度検出手段(ステップ13)が劣化していると判定して、実ノズル開度を開方向へ補正した後に所定期間が経過した後、実ノズル開度を閉じ方向へ動作させサージが起きる寸前までノズル開度を閉める実ノズル開度動作手段を備える。このため、実ノズル開度を過度に開きすぎた場合においても目標ノズル開度に戻すことができる。
また本実施形態によれば、可変ノズル型過給機5のノズル開度の駆動をディザ制御により制御するノズル開度駆動制御手段を備え、ノズル開度駆動制御手段は、実ノズル検出手段(ステップ13)が劣化していると判定した後、ディザの周期または振幅の少なくとも一方を変化させる(ステップ31,32)。このため、実ノズル開度を目標ノズル開度にする際の追従性を良くすることができる。
また本実施形態によれば、ノズル開度駆動制御手段は、ディザの周期または振幅の少なくとも一方を大きくする(ステップ31,32)。このため、実ノズル開度を目標ノズル開度にする際の追従性を更に良くすることができる。
また本実施形態によれば、サージ検出手段は、アクセルペダル開度Accの変化量が所定値未満の減速時で且つ吸入空気量Qaが増加した時にサージを検出する(ステップ1〜ステップ3)。このため、アクセルペダル開度Acc及び吸入空気量Qaを検出するアクセルペダル開度センサ37及びエアフロメータ21の出力に基づいてサージの検出ができる。
また本実施形態によれば、サージ検出手段は、燃料噴射量Qfの変化量が所定値未満の減速時で且つ吸入空気量Qaが増加した時にサージを検出する(ステップ1〜ステップ3)。このため、燃料噴射量Qf及び吸入空気量Qaを検出する燃圧センサ39及びエアフロメータ21の出力に基づいてサージの検出ができる。
また本実施形態によれば、サージ検出手段は、吸気絞り実施時で且つ吸入空気量が増加した時にサージを検出する(ステップ1〜ステップ3)。このため、吸気絞り実施時及び吸入空気量Qaを検出する吸気絞り弁23の開度及びエアフロメータ21の出力に基づいてサージの検出ができる。
また本実施形態によれば、サージ検出手段(ステップ3)は、吸入空気量Qaとして、エアフロメータ21により計測された吸入空気量で且つ加重平均前の計測値を用いる。このため、サージの発生しているときにおいて吸入空気量Qaが一時的に増加している時を確実に検出することができる。
内燃機関の制御装置を示す構成図 アクチュエータの構成図 可変ノズル型過給機のサージ検出フロー ノズル開度補正を含む制御フロー 特殊なディザ制御を行う場合の処理を示すフロー タイマーを追加したサージ検出フロー タイマーを追加したノズル開度補正フロー サージが発生する状態を示す図 目標ノズル開度算出テーブル リフトセンサに劣化がある場合及びない場合のノズル開度を示す図 実ノズル開度の補正量 特殊なディザ制御を示す図
符号の説明
1…エンジン、2…吸気通路、3…排気通路、5…可変ノズル型過給機、6…コンプレッサ、7…タービン、8…ノズル、21…エアフロメータ、23…吸気絞り弁、29…負圧導入管、30…アクチュエータ、35…リフトセンサ、36…ノズル開度変更部材、37…アクセルペダル開度センサ、38…クランク角センサ、39…燃圧センサ、40…エンジン制御装置

Claims (9)

  1. 運転状態に応じて可変ノズル型過給機の目標ノズル開度を算出する目標ノズル開度算出手段と、可変ノズル型過給機の実ノズル開度を検出する実ノズル開度検出手段と、実ノズル開度を目標ノズル開度にフィードバック制御するフィードバック制御手段と、を備える内燃機関の制御装置であって、
    可変ノズル型過給機のサージを検出するサージ検出手段と、
    サージ検出に基づいて前記実ノズル開度検出手段の劣化を判定する劣化判定手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 実ノズル開度検出手段が劣化していると判定したとき、実ノズル開度を増大側に補正して前記フィードバック制御手段に入力する実ノズル開度補正手段を備えることを特徴とする請求項1記載の内燃機関の制御装置。
  3. 実ノズル開度検出手段が劣化していると判定して、実ノズル開度を開方向へ補正した後に所定期間が経過した後、実ノズル開度を閉じ方向へ動作させサージが起きる寸前までノズル開度を閉める実ノズル開度動作手段を備えることを特徴とする請求項2記載の内燃機関の制御装置。
  4. 可変ノズル型過給機のノズル開度の駆動をディザ制御により制御するノズル開度駆動制御手段を備え、
    前記ノズル開度駆動制御手段は、実ノズル開度検出手段が劣化していると判定した後、ディザの周期または振幅の少なくとも一方を変化させることを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の制御装置。
  5. 前記ノズル開度駆動制御手段は、ディザの周期または振幅の少なくとも一方を大きくすることを特徴とする請求項4記載の内燃機関の制御装置。
  6. 前記サージ検出手段は、アクセルペダル開度の変化量が所定値未満の減速時で且つ吸入空気量が増加した時にサージを検出することを特徴とする請求項1〜請求項5のいずれか1つに記載の内燃機関の制御装置。
  7. 前記サージ検出手段は、燃料噴射量の変化量が所定値未満の減速時で且つ吸入空気量が増加した時にサージを検出することを特徴とする請求項1〜請求項5のいずれか1つに記載の内燃機関の制御装置。
  8. 前記サージ検出手段は、吸気絞りの実施時で且つ吸入空気量が増加した時にサージを検出することを特徴とする請求項1〜請求項5のいずれか1つに記載の内燃機関の制御装置。
  9. 前記サージ検出手段は、前記吸入空気量として、エアフロメータにより計測された吸入空気量で且つ加重平均前の計測値を用いることを特徴とする請求項6〜請求項8のいずれか1つに記載の内燃機関の制御装置。
JP2004051551A 2004-02-26 2004-02-26 内燃機関の制御装置 Pending JP2005240673A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051551A JP2005240673A (ja) 2004-02-26 2004-02-26 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051551A JP2005240673A (ja) 2004-02-26 2004-02-26 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2005240673A true JP2005240673A (ja) 2005-09-08

Family

ID=35022674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051551A Pending JP2005240673A (ja) 2004-02-26 2004-02-26 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2005240673A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185398A (ja) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd 可変ノズルターボ過給機の制御装置
KR101524382B1 (ko) * 2013-12-31 2015-05-29 주식회사 만도 가변 터보차저 전기식 액추에이터의 안정적 위치 제어 방법
CN113074044A (zh) * 2021-04-08 2021-07-06 潍柴动力股份有限公司 一种发动机增压器的保护方法及其设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185398A (ja) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd 可変ノズルターボ過給機の制御装置
KR101524382B1 (ko) * 2013-12-31 2015-05-29 주식회사 만도 가변 터보차저 전기식 액추에이터의 안정적 위치 제어 방법
CN113074044A (zh) * 2021-04-08 2021-07-06 潍柴动力股份有限公司 一种发动机增压器的保护方法及其设备
CN113074044B (zh) * 2021-04-08 2022-04-26 潍柴动力股份有限公司 一种发动机增压器的保护方法及其设备

Similar Documents

Publication Publication Date Title
JP4534514B2 (ja) ディーゼル機関の制御装置
EP2128407B1 (en) Egr controller for internal combustion engine
US6725660B2 (en) Control device for variable-geometry turbocharger
US8010276B2 (en) Intake manifold oxygen control
JP4433051B2 (ja) 内燃機関の制御装置
US7509210B2 (en) Abnormality determination apparatus and method for blow-by gas feedback device, and engine control unit
US7219002B2 (en) Control apparatus for internal combustion engine
US8820297B2 (en) Control device for internal combustion engine
US10309298B2 (en) Control device of an engine
JP3888024B2 (ja) 排気ガス再循環装置
JP4853471B2 (ja) 過給機付き内燃機関の制御装置
EP3351773B1 (en) Control device for internal combustion engine and control method for internal combustion engine
JP6679554B2 (ja) 内燃機関の制御装置
JP4258910B2 (ja) 過給機付エンジンの制御装置
JP4250824B2 (ja) ターボ過給機付エンジンの制御装置
JP2008255896A (ja) 可変動弁機構の制御装置
JP3826592B2 (ja) ターボ過給機付エンジンの制御装置
JP4452534B2 (ja) 内燃機関における過給機の異常検出装置
JP2001107736A (ja) 可変容量型ターボ過給機付エンジンの制御装置
JP2005240673A (ja) 内燃機関の制御装置
US11208972B2 (en) Detection and control of intake system noise during low pressure exhaust gas recirculation operation
US11939928B2 (en) EGR control method and EGR controller
JP2019120204A (ja) エンジン制御装置
JP3821517B2 (ja) エンジンの過給圧制御装置
JP2001193573A (ja) 内燃機関の制御装置