JP2005234507A - 光走査装置および多色画像形成装置 - Google Patents

光走査装置および多色画像形成装置 Download PDF

Info

Publication number
JP2005234507A
JP2005234507A JP2004047003A JP2004047003A JP2005234507A JP 2005234507 A JP2005234507 A JP 2005234507A JP 2004047003 A JP2004047003 A JP 2004047003A JP 2004047003 A JP2004047003 A JP 2004047003A JP 2005234507 A JP2005234507 A JP 2005234507A
Authority
JP
Japan
Prior art keywords
light source
optical
scanning
deflection
scanning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004047003A
Other languages
English (en)
Other versions
JP4340557B2 (ja
Inventor
Tomohiro Nakajima
智宏 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004047003A priority Critical patent/JP4340557B2/ja
Publication of JP2005234507A publication Critical patent/JP2005234507A/ja
Application granted granted Critical
Publication of JP4340557B2 publication Critical patent/JP4340557B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)

Abstract

【課題】多色画像形成装置において、ポリゴンミラーの厚さを厚くせずに単一の偏向面で複数の画像形成ステーションに対応した光ビームを走査するには、各光ビームの間隔を偏向面で近接させ、偏向された後には各光ビームを空間的に分離する必要がある。しかし、偏向面の回転に伴う反射点の移動により走査ラインが副走査方向に湾曲する。
【解決手段】光源250からの光ビームは、主走査平面に光軸を合わせた偏向前光学系209の光軸上に入射後、偏向手段213の上段のポリゴンミラーに入射し、主走査方向に偏向され、走査光学系を経て感光体ドラム102上に主走査される。光源252からの光ビームは同様な偏向前光学系211の光軸より下に偏心して入射後、副走査方向に角度を持って、同じポリゴンミラーの主走査平面上に入射し、感光体ドラム101上に主走査される。光源251と光源253も下段のポリゴンミラーに対し類似に構成されている。
【選択図】 図1

Description

本発明は、デジタル複写機およびレーザプリンタ等の書込系に用いられる光走査装置に適用され、特に複数色のトナー像を重ね合わせてカラー画像を形成する多色画像形成装置に関する。
カールソンプロセスを用いた画像形成装置においては、感光体ドラムの回転に従って潜像形成、現像、転写が行われる。したがって、複数の感光体ドラムを転写体の搬送方向に沿って配列し、各色の画像形成ステーションで形成したトナー像を重ねる多色画像形成装置においては、感光体ドラムの偏心や径のばらつきによる潜像形成から転写までの時間、各色の感光体ドラム間隔の異なり、転写体、例えば、転写ベルトや記録紙を搬送する搬送ベルトの速度変動や蛇行によって、各トナー像の副走査方向のレジストずれにより色ずれや色変わりとなって画像品質を劣化させる。
同様に、光走査装置においても、感光体ドラムに形成する静電潜像の主走査倍率および書込み位置を正確に合わせなければ、主走査方向のレジストずれが発生し、色ずれや色変わりの要因となる。
このようなレジストずれを低減するため、従来、複数の画像形成ステーションを単一のハウジングに収納して相対的な配置精度を保ち、さらに単一のポリゴンミラーにより複数のステーションに対応した光ビームを一括で走査し、書出し開始の位相が揃うようにしている(例えば、特許文献1 参照。)。
しかしながら、ポリゴンミラーで偏向された後、各光ビームを各々に対応した被走査面まで導いていかなければならず、各光ビームを分離できるような光線のレイアウトとしておく必要がある。
反面、ポリゴンミラーが厚くなると回転負荷が大きくなり高速に回転できなくなるうえ、回転体の重心が高くなり軸受剛性や振動面で不利になる。
ポリゴンミラーの厚さをなるべく薄くする方法として、プリズム等を用いて偏向面での副走査方向の間隔を狭める(例えば、特許文献2 参照。)、あるいは、偏向面の法線に対し副走査方向での入射角を光ビーム毎に異ならせて入射させ、偏向後に光束が離隔するようにして各ビームを分離する例(例えば、特許文献3 参照。)が開示されている。
また、偏向面の法線に対し角度をもって光ビームを入射させる際、走査ラインの曲がりが発生するが、この補正手段として、あらかじめ走査レンズの母線形状を副走査方向に湾曲させて設計する方法(例えば特許文献4 参照。)や、副走査方向にパワーを有する走査レンズを組付時に主走査に沿って変形させる方法(例えば特許文献5 参照。)が開示されている。
特開2002−139884号公報 特開2001−305450号公報 特開2000−180749号公報 特許第3450653号公報 特開2002−148551号公報
上記したようにポリゴンミラーの厚さを厚くせずに単一の偏向面で複数の画像形成ステーションに対応した光ビームを走査するには、各光ビームの間隔を偏向面で近接させ、偏向された後には各光ビームを空間的に分離する必要がある。
偏向面の法線に対し角度をもって光ビームを入射させることにより特別な部品を追加することなく対処が可能であるが、偏向面の回転に伴う反射点の移動により、偏向面の回転軸方向に対し垂直に入射する際にはなかった、走査ラインが副走査方向に湾曲するといった不具合が発生する。
走査ラインの曲がりは、特許文献2等により、走査レンズを曲がりの発生具合に合わせて設計することで補正は可能であるが、部品のばらつき等による偏向面への入射角のずれや、走査レンズの加工精度により設計値との誤差が生じ、完全に補正しきれず、ある程度の曲がりは残ってしまう。
このような各画像形成ステーション間の曲がり残差がわずかでもあると、上記したように色ずれや色変わりとなって画像品質を劣化させる。
従来、特許文献5に示される方法等により、特定の画像形成ステーションを基準として相対的なライン形状の調整を行なっているが、これは、走査レンズの成形に伴う反りや、複数のレンズ間の配置ずれによって生じる単調な曲がりの補正であり、上記したような複雑な曲がりに対応できうるものではなく、調整作業が面倒で生産効率を著しく低下させていた。
したがって、こういった調整が必要な因子はできるだけ避けることが好ましい。
本発明では、複数の画像形成ステーションによって形成された画像を重ね合わせるタンデム方式の多色画像形成装置において、
1.薄肉のポリゴンミラーで複数の画像形成ステーションに対応する光ビームを偏向できるようにし、ポリゴンモータの回転負荷を低減して電力を削減する
2.各ステーション間の走査ラインの曲がり残差を抑制し、色ずれや色変わりのない高品位なカラー画像形成が行なえるようにする一方、調整工程を簡素化し生産効率を向上する
ことを目的としている。
請求項1に記載の発明では、副走査方向に離隔して配備した第1および第2の光源手段とを有する光源装置と、該各光源手段からの各光ビームを一括して偏向し主走査を行う偏向手段と、前記各光ビームのそれぞれを前記偏向手段に設けられた偏向面に入射させる偏向前光学系と、偏向された前記各光ビームを各々に対応した被走査面に結像する走査光学系と、を有する光走査装置において、前記第1の光源手段の射出軸を、当該光源手段に対応する偏向前光学系の光軸を含む主走査平面に一致するよう配備し、前記第2の光源手段の射出軸を、前記主走査平面に対して偏心するよう配備して、前記各光ビームを前記偏向手段の偏向面の近傍で副走査方向に交差させ、共通の偏向面で走査することを特徴とする。
請求項2に記載の発明では、請求項1に記載の光走査装置において、前記偏向前光学系は前記光ビームを少なくとも偏光面の近傍で副走査方向に収束させると共に、各々の偏向前光学系の収束位置が重なるよう配置したことを特徴とする。
請求項3に記載の発明では、請求項1または2に記載の光走査装置において、前記各光源手段は、前記偏向面に入射する光束の前記走査光学系の光軸に対する主走査方向に見た角度、すなわち平均入射角度θが、互いに異なっていることを特徴とする。
請求項4に記載の発明では、請求項3に記載の光走査装置において、前記第2の光源手段の前記平均入射角θが、前記第1の光源手段のそれより小さいことを特徴とする。
請求項5に記載の発明では、請求項1ないし4のいずれか1つに記載の光走査装置において、前記偏向前光学系は、各光源手段からの光ビームを、少なくとも偏向面の近傍で副走査方向に収束させるとともに、前記第2の光源手段に対応した偏向前光学系を、光軸周りに回動させることによって、収束された光ビームの偏向面における光束の姿勢を変更できることを特徴とする。
請求項6に記載の発明では、請求項5に記載の光走査装置において、前記第2の光源手段の前記偏向面における光束の姿勢を前記第1の光源手段のそれに一致させるのに要する前記偏向前光学系の光軸周りの回動角をγとし、前記第2の光源手段からの光ビームが前記主走査平面となす角度をβとし、同光ビームの平均入射角をθ2とするとき、γは以下の式
γ=tan−1{tan(θ/2)・tanβ}
で表されることを特徴とする。
請求項7に記載の発明では、請求項1ないし6のいずれか1つに記載の光走査装置において、前記走査光学系を構成する光学素子のうち前記偏向手段に最も近い光学素子は、副走査方向に収束力を有さず、前記各光源手段からの光ビームを通過させることを特徴とする。
請求項8に記載の発明では、請求項1ないし7のいずれか1つに記載の光走査装置を、前記偏向手段を共用して2組備え、該偏向手段の相異なる偏向面で偏向される各組の前記主走査平面を同一面に配置し、前記被走査面における各々の走査線が平行で、組によって走査方向が異なることを特徴とする。
請求項9に記載の発明では、請求項1ないし7のいずれか1つに記載の光走査装置を、前記偏向手段を共用して2組備え、各組の前記主走査平面を、前記偏向面ともども所定間隔をもって平行に配置し、前記被走査面における各々の走査線が平行、かつ走査方向が同方向であることを特徴とする。
請求項10に記載の発明では、請求項9に記載の光走査装置において、前記各組の前記第2の光源手段は、それぞれの射出軸をそれぞれの主走査平面に対して相反する方向に偏心させてあることを特徴とする。
請求項11に記載の発明では、請求項8ないし10のいずれか1つに記載の光走査装置を用いた多色画像形成装置を特徴とする。
本発明は各光ビームを偏向手段の偏向面の近傍で副走査方向に交差させ、共通の偏向面で走査することにより薄肉のポリゴンミラーでゴンミラー回転軸を含む側断面図である。
図3、図4はハウジングの構成を示す分解斜視図である。
各図において符号101〜104は感光体ドラム、105は転写ベルト、111〜114は防塵ガラス、115はポリゴンモータベース部、116は固定軸、117は円筒スリーブ、118は磁気コイル、119は環状のマグネット、201〜204は光ビーム、209〜212はシリンダレンズ、213は偏向手段としてのポリゴンミラー、215〜217は反射ミラー、218はfθレンズ、219〜222はトロイダルレンズ、223〜226は折り返しミラー、227〜229は折り返しミラー、231はLED素子、232はフォトセンサ、233は集光レンズ、234はハウジング、235はカバー、236はポリゴンモータ、241〜243は非平行平板、250〜253は光源ユニット、254、255は板ばね、256〜259は突き当て部、260〜262は突き当て部、持部材、283、284は基板、285、286は装着面、290はネジ穴、502はくさび状の板ばね、520はL字状のブラケットをそれぞれ示す。
本実施例は4ステーション分を一方向に走査する実施例である。4つの感光体ドラム101、102、103、104を転写ベルト105の移動方向に沿って配列し、順次異なる色のトナー像を転写することでカラー画像を形成する画像形成装置において、各光走査装置を一体的に構成し単一のポリゴンミラー213の同一面で全ての光ビームを走査する。
また、実施例では、各感光体に対して半導体レーザを対で配備し、副走査方向に記録密度に応じて1ラインピッチ分ずらして走査することにより、2ラインずつ同時に走査するようにしている。ここで副走査方向とは、本来は感光体ドラム面の移動方向を指す言葉であり、主走査方向とは感光体上を光束が走査する方向を指す言葉であるが、光源その他の配置は、これら両方向と密接に関係を持たせて配置しているので、便宜上、それぞれに対応する方向を同様に副走査方向、あるいは主走査方向と呼ぶことにする。
各光源ユニットからのビーム201、202、203、204は、光源ユニット毎に射出位置が副走査方向に異なる部位、実施例では光源ユニット250の射出位置が最も高くハウジング底面から離れた位置となるよう、続いて光源ユニット252、253、251の順に、また、主走査方向には射出方向がポリゴンミラーの偏向点に向かって収斂するように配置され、発光点からポリゴンミラーの偏向点に至る光路長は各々同一となるよう設定されている。
シリンダレンズ209、210、211、212は、一方を平面、もう一方を副走査方向に共通の曲率を有し、ポリゴンミラー213の偏向点までの光路長が等しくなるように配備して、各光ビームは偏向面にて副走査方向に線状となるように収束され、偏向点と感光体面上とが副走査方向に共役となるようにして、後述するトロイダルレンズとの組み合わせで面倒れ補正光学系をなす。
非平行平板241、242、243は、光学くさびとも呼ばれ、いずれか一面を主または副走査方向にわずかに傾けたガラス基板であり、基準色を除くステーション(実施例では、光源ユニット250からのビーム以外)に配備され、光軸周りに回転制御することで各走査位置を安定的に保持する。
ビーム合流手段としての反射ミラー215、216、217は、反射角がビーム合流手段での折り返し位置a、b、cが偏向点oから近いほど鋭角となるように配置すると同時に、反射ミラー216、217の位置を光源ユニット250からのビームの光路に重ならない位置まで主走査方向にずらし、ポリゴンミラー213へは異なる平均入射角で入射されるようにしている。
ここで、平均入射角とは、主走査方向に見たときの、光源からの入射光線が、走査光学系の光軸となす角度を意味する。
実施例では光源ユニット251の平均入射角を光源ユニット250のそれと一致させ、また、光源ユニット253の平均入射角を光源ユニット252のそれと一致させて配置している。
なお、光源ユニット250からのビームは反射ミラーを介さず直接ポリゴンミラーへと向かうようにしているが、他のビームと同様、反射ミラーを配備して折り返してもよい。
各反射面は階段状に高さが異なり、光源ユニット250からのビームは、反射ミラー215の直上をかすめてポリゴンミラーへと向かい、光源ユニット251からのビームは反射ミラー215で折り返され、光源ユニット250からの光路に主走査方向を近接させ、ポリゴンミラーへと向かう。
同様に光源ユニット252からのビームは、反射ミラー216で折り返され反射ミラー217の直上をかすめてポリゴンミラーへと向かい、光源ユニット253からのビームは反射ミラー217で折り返され、光源ユニット252からの光路に主走査方向を近接させ、ポリゴンミラーへと向かう。
ポリゴンミラー213は2段に構成されており、上段では光源ユニット250、252からのビームを、また下段では光源ユニット251、253からのビームを走査する。
図5はポリゴンミラーに対する光線の入出射角を説明するための概念図である。
図6は主走査平面に対する入射角を説明するための図である。
図5において符号701はポリゴンミラー、702は主走査平面、703、704は入射光線、705は出射光線、707はシリンダレンズをそれぞれ示す。
入射光線703は光源ユニット250、251からの光束に相当し、入射光線704は光源ユニット252からの光束に相当する。
ここで主走査平面とは、ポリゴンミラー上の光束の入射点を含み回転軸に直交する平面とする。
光源ユニット250、251からのビームは図5に光線703で示すように主走査平面702内で偏向面701に入射され、光源ユニット252、253からのビームは光線704で示すように主走査平面に対し副走査方向にβ(実施例では3°)だけ傾けて入射され偏向面の近傍で主走査平面と交差する。
各々平均入射角は、θ1=60°、θ2=70°としている。
実施例では、図6に示すように、各シリンダレンズ209、210、211、212の光軸が主走査平面上に揃うよう配置し、光源ユニット252の射出軸を主走査平面より下側、また、光源ユニット253の射出軸を主走査平面より上側に各々dだけシフトして配備することにより、光源ユニット252からのビーム203はシリンダレンズ211の光軸より下側に入射され、屈折力により上向きに変えられて、偏向された後に主走査平面を貫いて光源ユニット250からのビームと上下関係が入れ代わって離散していく。
一方、光源ユニット253からのビームはシリンダレンズ212の光軸より上側に入射され、屈折力により下向きに変えられて、偏向された後に光源ユニット251からのビームと上下関係が入れ代わって離散して、各ビーム間の副走査間隔が徐々に広がるようにしている。
なお、光源ユニット250、251からの光ビームは所定の距離(6mm)を保って平行に進む。
また、実施例では光源ユニット252、253からの光ビームを主走査平面に対し、シフトしているがチルトにより偏心しても、偏向面の近傍で主走査平面を貫くようにすれば効果は同様である。
ポリゴンミラー213の上下段の間隔は主走査面の間隔に合わせ6mmであり、偏向に用いないビーム間の部分にポリゴンミラーの内接円より若干小径となるように溝を設けて風損をより低減した形状とし、1層の厚さは約2mmとしている。
fθレンズ218は各ビームに共通で、ポリゴンミラーと同様に厚肉に形成され、副走査方向には収束力を持たない。主走査方向にはポリゴンミラーの回転に伴って各感光体面上でビームが等速に移動するようにパワーを持たせた非円弧面形状となし、各ビーム毎に配備され、ポリゴンミラーの面倒れ補正機能を有するトロイダルレンズ219、220、221、222とにより各ビームを感光体面上にスポット状に結像し、4つの潜像を同時に記録する光走査手段を各々構成する。
光走査手段では、ポリゴンミラーから感光体面に至る各光路長が一致するように、また、等間隔で配列された各感光体ドラムに対する入射位置、入射角が等しくなるように複数枚の折り返しミラーが配置される。各光走査手段毎に光路を説明すると、光源ユニット252からのビーム203は、ポリゴンミラーの上段で偏向され、fθレンズ218を通過した後、折り返しミラー223で反射されトロイダルレンズ219を介して感光体ドラム101に導かれ、第1の光走査手段としてイエロー画像を形成する。
光源ユニット250からのビーム201は、ポリゴンミラーの上段で偏向され、fθレンズ218を通過した後、折り返しミラー224で反射されトロイダルレンズ220を介して、折り返しミラー227、感光体ドラム102に導かれ、第2の光走査手段としてマゼンタ画像を形成する。
光源ユニット251からのビーム202は、ポリゴンミラーの下段で偏向され、fθレンズ218を通過した後、折り返しミラー225で反射されトロイダルレンズ221を介して、折り返しミラー228により感光体ドラム103に導かれ、第3の光走査手段としてシアン画像を形成する。
光源ユニット253からのビーム204は、ポリゴンミラーの下段で偏向され、fθレンズ218を通過した後、折り返しミラー226で反射されトロイダルレンズ222を介して、折り返しミラー229により感光体ドラム104に導かれ、第4の光走査手段としてブラック画像を形成する。
この内、折り返しミラー224、225、226はビーム分岐手段を構成し、ビームの流れに沿って、まず、光源ユニット253からのビームを分岐し、さらに光源ユニット251からのビームを分岐、というようにfθレンズ射出面での副走査方向の配列順に対応して順次分岐していく。
各感光体ドラムへのビーム入射角度は同一である。
図7は偏向面にビームを斜入射させたときの光束の様子を示す図である。同図(a)は通常の配置の場合の様子、同図(b)はシリンダレンズを傾けた場合の様子をそれぞれ示す図である。
同図において符号706は偏向面、707はシリンダレンズ、708は光束をそれぞれ示す。
同図(a)において、光束708は図示省略のシリンダレンズによって偏向面上において副走査方向に収束され、線状に結像される。この線状の結像光の主走査平面との位置関係を姿勢と呼ぶ。ここで、副走査方向にβだけ傾いて入射した場合、平均入射角θにより偏向面に照射された光束の左右端でbだけ光路長差があるため、光束の姿勢が傾きfθレンズに対して角度γ傾いて入射され、被走査面におけるビームスポットが歪んで各画像形成ステーション間で不均一となってしまう。走査に伴って光束の姿勢は変化するが、ここでは、平均入射角時の、言いかえれば、画像中央に到達する光ビームの偏向面に照射された姿勢が、もう一方の偏向面に水平入射された光束の姿勢と揃うようにし、同図(b)に示すようにあらかじめシリンダレンズ707を下記に示す角度γだけ傾けて配備している。
γ=tan−1{tan(θ/2)・tanβ}
図4に示すように、4つの光走査手段の光源ユニット250、251、252、253からfθレンズ218に至る部分は単一のハウジング234に収納され、カバー235で上部開口を封止される。
ポリゴンモータ236は、動圧軸受方式であり、図2に示すように、ベース部115を基準としてハウジング底面にねじ固定される。ベース部115外周にはへリングボーン溝を形成した固定軸116が立設され、ポリゴンミラー213の中心部をくり抜いて円筒スリーブ117を装着した回転体が挿入されている。回転体下部には環状のマグネット119が配備され、円周方向に対向する磁気コイル118とで回転する。
光源ユニット250、251、252、253の詳細は後述するが、ホルダ部材の光軸に直交する当接面をハウジングの壁面に突き当て、円筒部を壁面に設けられた勘合穴に挿入してねじ固定される。
シリンダレンズ209、210、211、212は、各々ハウジング底面に高さを変えて立設したL字状の突き当て部256、257、258、259に各々レンズ底面と平面側を各々突き当て、板ばね255で付勢して支持する。板ばね255は突き当て部にねじ固定される。
反射ミラー215、216、217は、同様にハウジング底面に高さを変えて立設した突き当て部260、261、262に各々反射面の下側を突き当て板ばね254で押圧して支持する。
fθレンズ218は、ハウジング底面に設けられた台座面に中央部において接着固定され、射出された光ビームはハウジング壁面の開口部263を通ってハウジング外部に各々副走査方向に平行に放射される。
図中、244,245、246、は、非平行平板241、242、243を回転機構に装着した光軸変更手段で、詳細は後述する。
図3において、ハウジングの前後壁面277、278には、一対のピン264、(265)が形成され、コの字状に曲げられた板金製の側板266、267を、板面に形成された基準穴268、(269)にピン264、(265)を挿入して各々光軸方向および副走査(高さ)方向に位置決めされ、ねじ穴290に側板を介してねじを螺合することによって板面間に挟み込むようにして固定しており、側板266、267は主走査方向両端側に互いに対向するよう配備される。
側板266、267の下側には、凹凸形状に曲げられ、各感光体ドラムの照射位置に対応する位置にスリット状の開口271、272、273、274を形成した板金製の底板270が配備され、両端面から突出した複数の突起275を側板266、267に形成した係合穴276に各々挿入してカシメ結合され、側板266、267同士が平行に保たれるよう保持される構造体となしている。
各々の板面には、折り返しミラーおよびトロイダルレンズの支持部材が貫通するように打ち抜き開口が設けられており、上記ハウジングの前後壁面の位置決めピン264、(265)により各側板間で開口位置が主走査方向に通しで重なるよう揃えられている。
図8は折り返しミラーの固定方法を示す図である。
同図において符号501は側板打ち抜き穴の一辺、502はくさび上の板ばね、503は板ばねの切り欠き部、504は501の対辺をそれぞれ示す。
打ち抜き端面の一辺501に折り返しミラーの反射面側を突き当て、くさび状の板ばね502を裏面側と側板の対向辺504との間に外側より挿入し、切欠503を側板の縁504に係合して両側とも固定する。くさび状の板ばね502は全て同一形状である。
図9はトロイダルレンズの支持筐体の構成を示す図である。
同図において符号505はトロイダルレンズ、506はリブ部、507は位置決め用の突起、508は調節ねじ、509は支持板、510は立曲げ部、512はねじ穴、513、514は開口、516は切欠、517、518は板ばね、519は切欠、520はL字状のブラケット、521はステッピングモータ、522は送りねじ、523はネジ穴、524は板ばね、525は板ばねの穴、530は側板に設けられた開口の一辺をそれぞれ示す。
トロイダルレンズ505は、樹脂製でレンズ部を囲うようにリブ部506が形成され、中央部には位置決め用の突起507が形成されている。
支持板509は板金でコの字状に形成され、トロイダルレンズ505は、立曲げ部に形成した切欠516に上記突起507を係合し、リブの下面を立曲げ部510に突き当て位置決めし、板ばね517、518によりリブの上面より付勢して両端を保持する。板ばね517、518はトロイダルレンズ505を支持板509に重ね合わせた状態で外側よりはめ込み、一端を開口513から内側に出し開口514に挿入して固定する。
また、中央部にはねじ穴512に調節ねじ508を螺合させ、板ばね524を同様に外側よりはめ込み下側リブの内側に引っ掛けて、調節ねじ508の先端にリブの下面が確実に当接するように付勢する。
板ばねの穴525は調節ねじ508を貫通する穴である。
トロイダルレンズ505は長尺で、剛性が低いため、わずかな応力が加わるだけで変形(反り)を生じ易く、また、周囲温度の変化に伴って上下に温度分布があると熱膨張差によっても変形してしまうが、このように支持板に沿わせることで形状を安定的に保ち、後述する傾け調整の際に局部的に応力が加わってもトロイダルレンズを変形させることがない(母線の直線性を保持する)ようにしている。
トロイダルレンズを装着した支持板は、副走査方向における板面を側板267に設けられた開口の一辺530に突き当て、端部に形成された切欠519を開口の縁に係合して、折返しミラー同様、同形状の板ばね502により固定し、もう一端は側板266を貫通させたステッピングモータ521のシャフト先端に形成された送りねじ522をねじ穴523に螺合して支持する。
送りねじ522でのバックラッシュをとるため、こちらにも板ばね502をはめ込み一方向に付勢している。ステッピングモータ521は全て側板266の外側に接合されたL字状のブラケット520に取付けられ、副走査方向(トロイダルレンズの高さ方向)に変位可能としている。
したがって、ステッピングモータ521の正逆回転に追従してトロイダルレンズ505は光軸と直交する面内で、側板267の開口縁を支点として角度γの回動調節でき、それに伴って副走査方向におけるトロイダルレンズの母線が傾いて、トロイダルレンズの結像位置としての走査ラインが傾けられる。
実施例では、ブラックを除く他のトロイダルレンズに回転支点端の方向を揃えて配備される。
図10はトロイダルレンズの装着状態を光軸方向から見た図である。
同図において符号511はトロイダルレンズの母線を示す。
トロイダルレンズ505は両端を立曲げ部510の縁、中央を調節ねじ508の先端で支持され、調節ねじ508の突き出し量が立曲げ部510の高さに足りない場合には、トロイダルレンズ505の母線511が下側に凸となるよう反る。逆に突き出し量が超えると上側に凸に反る。したがって、これらの調節ねじ508を調整することによってトロイダルレンズ505の焦線が副走査方向に湾曲され、走査ラインの曲がりが補正できる。
前記したように、走査ラインの曲がりは偏向面への斜入射によって発生するため、実施例では、イエローとブラックのステーションに配備され、各々、偏向面に水平入射されるマゼンタ、シアンのステーションとの差をキャンセルする方向にトロイダルレンズ505を湾曲させることによって各走査ライン間の湾曲の方向と量を揃えることができる。
上記により構成された光学ユニットは、側板266、267曲げ部に各々形成された装着面285、286を基準に本体にねじ止めにより取付けがなされる。
図2において、防塵ガラス111、112、113、114は、底板に設けられた開口を塞ぐように接合される。
第1の光走査手段には、図3に示すように、画像記録領域の走査開始側および走査終端側において走査ビームを折り返すミラー280、281が、底板270に接合された支持部材282に装着され、フォトセンサを実装した基板283、284において各々ビームを検出する。
基板283、284は、底板の立ち上げ面に開口からフォトセンサが覗くようにねじ止めされる。
実施例では、基板283は同期検知センサとなし、この検出信号を基に全てのステーションにおける書込開始のタイミングをはかるよう共用している。
一方、基板284は終端検知センサをなし、同期検知センサ283との検出信号の時間差を計測することで走査速度の変化を検出し、検出された走査速度の変化に対して、各半導体レーザを変調する画素クロックの基準周波数を反比例倍して再設定することで、少なくとも基準となる第1の光走査手段について後述する転写ベルト上での全幅倍率を安定的に保持することができる。
図11はフォトセンサの受光部の形状を示す図である。
同図において符号351、352は特に一方向に長いフォトダイオードをそれぞれ示す。
長辺を主走査方向に垂直に向けたフォトダイオード351と、それに対して非平行なフォトダイオード352とで構成することにより、フォトダイオード351からフォトダイオード352に至る時間差Δtを計測して、光ビームの副走査位置のずれΔyを検出している。
両フォトダイオード351と352の仮想の交点Pから見た副走査位置のずれΔyはフォトダイオード352の傾斜角α、光ビームの走査速度Vを用いて
Δy=(V/tanα)・Δt
で表され、Δtが一定となるように、後述する光軸偏向手段を用いてフィードバック補正することにより、設定された副走査レジストずれが生じないよう走査位置を保持することができる。
図12は光源ユニットの斜視図である。
同図において符号301、302は半導体レーザ、303、304はカップリングレンズ、305、306はベース部材、307はホルダ部材、308、309はV溝部、310、311は板ばね、312はプリント基板、313は円筒部、314は当接面をそれぞれ示す。
全ての光源ユニットは同一構成である。
図13は像面上におけるビームスポットの関係を説明するための図である。
図12において、半導体レーザ301、302およびカップリングレンズ303、304は、各色走査手段毎に射出軸に対して主走査方向に対称に配備され、半導体レーザはパッケージの外周をかん合して各々ベース部材305、306に裏側より圧入され、ホルダ部材307の裏面に、各々3点を表側から貫通したねじを螺合して当接させて保持し、カップリングレンズ303、304はホルダ部材307に相反する方向に開くよう形成したV溝部308、309に外周を突き当て、板ばね310、311により内側に寄せてねじ固定される。
この際、半導体レーザの発光点がカップリングレンズの光軸上になるようベース部材の当接面(光軸に直交する面)上での配置を、また、カップリングレンズからの射出光が互いに平行となるようV溝上(光軸上)での位置を調節して固定している。
各々の射出光の光軸は射出軸Cに対して互いに交差する方向となるよう傾けられ、実施例ではこの交差位置をポリゴンミラー反射面の近傍となるように支持部材の傾斜を設定している。
駆動回路が形成されたプリント基板312は、ホルダ部材307に立設した台座にネジ固定により装着され、各半導体レーザのリード端子をスルーホール(図示省略)に挿入してハンダ付けすることで光源ユニット300が一体的に構成される。
光源ユニット300は、ハウジングの壁面に高さを異ならしめて形成した係合穴に各ホルダ部材の円筒部313を挿入して位置決めし、当接面314を突き当ててネジ止めされる。
この際、円筒部313を基準として傾け量γを調整することで、図13に示すように、副走査方向のビームスポット間隔を記録密度に応じた走査ラインピッチPに合わせることができる。
図14は書込制御回路のブロック図である。
同図において符号401は画素クロック生成部、402は高周波クロック生成回路、403はカウンタ、404は比較回路、405は画素クロック制御回路をそれぞれ示す。
書込制御回路の動作について説明する。
まず、画素クロック生成部401であるが、カウンタ403では、高周波クロック生成回路402で生成された高周波クロックVCLKをカウントし、比較回路404ではこのカウント値と、デューティ比に基いてあらかじめ同回路に設定される設定値L、および画素クロックの遷移タイミングとして外部(図ではメモリ)から与えられ、位相シフト量を指示する位相データHとを比較し、カウント値が上記設定値Lと一致した際に画素クロックPCLKの立下りを指示する制御信号lを、位相データHと一致した際に画素クロックPCLKの立上がりを指示する制御信号hを画素クロック制御回路405に出力する。この際、カウンタ403は制御信号hと同時にリセットされ再び0からカウントを行なうことで、連続的なパルス列が形成できる。
こうして、1画素クロック毎に位相データHを与え、順次パルス周期が可変された画素クロックPCLKを生成する。
実施例では、画素クロックPCLKは、高周波クロックVCLKの8分周とし、1/8クロックの分解能で位相が可変できるようにしている。
図15は位相変化を説明するためのタイミングチャートである。
1/8クロック位相を遅らせる例について説明する。
デューティ50%とすると設定値L=3が与えられ、カウンタ403で4カウントされ画素クロックPCLKを立ち下げる。位相データHは通常7が与えられている。1/8クロック位相を遅らせるとすると一時的に位相データH=6が与えられ、7カウント目で立上げる。同時にカウンタがリセットされるので、実際にはカウント数6の次に0が来る。設定値L=3は変わっていないので、4カウントで再び立ち下げる。位相データは再び7に戻され、カウンタは7までカウントしてから0にリセットされる。つまり、画素クロックの周期は、カウンタにおける8カウントから7カウントに減り、再び8カウントに戻ることにより、隣接するパルス周期が1/8クロック分縮められたことになる。
こうして生成された画素クロックPCLKは、光源駆動部407に与えられ、画素クロックPCLKを基準に、画像処理部408により読み出された画像データを各画素に割り当てて変調データを生成し、半導体レーザを駆動する。したがって、この画像データの読み出すタイミングを可変する書込みタイミングを変更できる。
上記した構成によれば、画素クロックPCLKの位相は1クロック毎に変化させることが可能であるため、高精細な補正が可能であるが、実際には、このように1クロック毎のパルス周期に対応する倍率を与えるのは、相当量のメモリが必要になりコストアップを招くうえ、そのような微小間隔での倍率を計測するフォトセンサもないため、位相データを全画素に対応して用意することはせず、許容できる範囲でまとまった画素毎に位相データを与える形式をとっている。
そのため実施例では、主走査領域を複数の区間に分割し、各分割区間毎に位相をシフトする画素の間隔とシフト量を設定するとともに、ある法則に従って位相データを与えるようにしている。
いま、主走査位置xに対する倍率の変化をL(x)とすると、ビームスポット位置ずれの変化M(x)はその積分値で表される。
M(x)=∫L(x)dx
例えば、ある分割区間の倍率の変化に伴う分割区間幅のずれをΔm、位相シフトの分解能をσ(一定)、分割区間内の画素数をNとすると、分割区間の始点と終点でビームスポット位置ずれが0となるようにするには、
D≒N/(Δm/σ) 但し、Dは整数
で示される画素毎に、σずつずらせばよいことになる。このようにすれば、各分割区間の補正残差が累積されることなく全幅での倍率も合わせることができる。
この場合、分割区間のちょうど中間位置でビームスポット位置ずれが最大となるが、この最大値が許容範囲内となるように各分割位置、分割区間の数を決めてやればよい。
上記した実施例では、位相シフトする画素は等間隔に配置しているが、以下には、この間隔を関数式で表した別の実施例を示す。
図16は主走査位置に対する区間毎の倍率補正を説明するための図である。
図示のようにいくつかの極値、同図の例では7つの極値、を有し画像中央から周辺に行くほどその周期が短くなっている。
ここでは、この極値となる位置を分割位置とし各分割区間内では単調に増加または減少する曲線となるようにしている。各区間について、位相シフトの分解能σで終端(N画素目)でのレジストずれ、いわゆる分割区間幅のずれΔmを分割すると、ビームスポット位置ずれの変化曲線M(x)との交点が位相をシフトする画素の間隔Diを決定できる。
同図の例の場合、画像左から中央にかけて(走査始端側)は、各区間でこの画素の間隔Diが始点から終点にかけて徐々に延び、画像中央から右にかけて(走査終端側)は、徐々に縮む傾向があるので、各区間の画素の間隔Diを概略1次式で近似できる。
Di≒a・x+b 但し、Diは整数、a、bは係数
このように、位相データを関数式で与えることで、各画素毎に持たせる必要はなく、各項の係数のみをメモリ上に記憶させておけばよいので、メモリ量が低減できるうえ、分割区間の数を増やさずに許容できる範囲での補正が可能となる。
1次式に限らず、多次式あるいはsin関数等を用いてもよく、変化曲線になるべくフィットするように選択すればよい。
このように主走査領域を複数区間に分割して、各分割区間毎の部分倍率のずれを補正することによってビームスポット位置は改善されるが、上記したように分割数にも限界があるため、各々の誤差が累積され全幅倍率のずれが大きくなってしまう。
そこで、実施例では、後述する画素クロック基準値の補正等により全幅を合わせることを想定し、各分割区間での部分倍率を許容内に入れるようにしている。
つまり、実施例では、各分割区間における部分倍率が全幅倍率Gに合うように補正をかける。
図17は主走査方向における倍率変化とビームスポット位置のずれを説明するための図である。同図(a)は部分倍率の変化を示す図、同図(b)はビームスポット位置のずれを示す図である。
全体倍率はこれらの累積であるから平均値mとなる。ビームスポット位置は同期検知時には一致するが徐々にずれ始め全幅倍率補正前では走査終端で走査幅×Gだけずれることになる。この状態で走査始端と走査終端が一致するように補正すると、そのゆがみが中央部にしわ寄せされ、図示のように画像中央部で最もビームスポット位置ずれが大きく発生することになる。
図18はビームスポット位置ずれの温度依存性を説明するための図である。
上記したように、全幅倍率が一致するように倍率を一様に可変して揃えたとき、環境温度の変化によって、走査領域に沿った部分倍率の変化が生ずる。実施例では各極値のうち、特に中央と走査終端で変化が大きくなっており、各分割位置毎に見ると温度に対して線形性をもって変化している。このような場合、全幅倍率の変化量を各分割区間に重みづけして配分する、例えば全幅倍率の変化量を変数とした1次式で表すことで、各分割区間毎の倍率の変化を予測することができる。
したがって、トナー像を形成しなくとも、上記した同期検知センサと終端検知センサとの検出時間差により全幅倍率を検出してやれば、各分割区間毎の倍率補正が行なえる。
このように、全幅倍率のみの検出により許容できる範囲内での補正が可能となる。
図19は走査ラインの傾き調整を実施した後の部分倍率の変化等を示す図である。同図(a)は部分倍率の変化を示す図、同図(b)はビームスポット位置のずれを示す図である。
この変化は走査レンズや、折返しミラーを傾けることに伴って走査始端と走査終端とで光路長差を生じることにより発生するもので、一方で縮み、もう一方で広がる。
同様に、全幅倍率を補正した後のビームスポット位置ずれは画像中央部で最も大きく発生し、各分割位置毎に見ると、トロイダルレンズの傾け量に対して線形性をもって変化する。
したがって、この調整量を変数とした1次式で表すことで、各分割区間毎の倍率の変化を予測することができる。
ところで、転写ベルト105は、駆動ローラと従動ローラからなる3本のローラにより回転され、各感光体ドラムから順次トナー像が転写されるが、この際、副走査方向の書出しタイミングにより各色画像位置が合わされて重ね合わされる。
各色画像の重ね合わせ精度は、転写ベルト105上に形成したトナー像の検出パターンを読み取ることで、主走査レジスト、主走査方向倍率、副走査レジスト、走査線傾き(スキュー)のずれを検出して定期的に補正制御がなされる。補正制御のタイミングは、例えば、装置の立ち上げ時やジョブ間等が一般的であるが、1ジョブのプリント枚数が多い場合には途中で割り込みをかけることもある。
図20は検出パターンの検出状況を説明するための図である。
検出手段は、照明用のLED素子231と反射光を受光するフォトセンサ232、および一対の集光レンズ233とからなり各分割位置に配備され(図1参照)、基準色であるブラック、およびシアン、マゼンタ、イエローのトナー像を所定ピッチで並列し形成した主走査方向から約45°傾けたラインパターン群と、主走査方向に沿ったラインパターン群とを、転写ベルトの移動に応じて順次読み取る。
主走査方向に沿ったラインパターンの検出時間差Δtc、Δtm、Δtyより各検出位置での副走査レジスト、各検出位置間の時間tsより走査線傾きを、また、45°傾けたラインパターン検出時間差より各検出位置での主走査レジスト、各検出位置間の主走査方向倍率を検出する。
主走査方向倍率については、両端に配置された検出手段間の検出時間差Δt1により全幅倍率を、また、中央に配置された検出手段間の検出時間差により左右の倍率差を検出することができる。
ここで、倍率の変化に伴う分割区間幅のずれ量をΔxとすると、転写ベルトの送り速度v、検出時間差Δtを用いて
Δx=v・Δt
で表せ、分割区間幅で割れば倍率となる。
実施例では、あらかじめ、各分割位置を主走査領域に沿って変化が大きい領域は分割位置の間隔を近づけ、小さい領域は間隔を遠ざける、つまり偏分割とすることで部分倍率の変化をより的確に補正するようにしている。
また、部分倍率の変化のパターン化により、上記したように各分割区間毎に倍率を検出しなくても、特定の分割区間のみ、あるいは、複数の分割区間を繋ぎ合せた複数区間での倍率変化を検出することで、各分割区間毎の倍率変化をわざわざ計測せず、予測により対応している。
当然、各分割区間の境界毎に検出手段を、実施例では7分割なので9箇所に、設けて各区間の部分倍率を計測してもよい。
図21は本発明におけるビームスポット位置ずれの制御を示すブロック図である。
上記したように装置立ち上げ時やジョブ間において、色ずれの補正開始信号をトリガとして転写ベルト上にトナー像の検出パターンを形成し、基準色に対する走査ラインの傾きと主走査および副走査レジストのずれを検出する。
傾きずれについては、上記したトロイダルレンズの傾き調整手段を駆動し補正するとともに、調整量を変数とした関数式により傾き調整に伴う部分倍率の変化を予測する。
一方、全幅倍率を変数とした関数式により温度変化に伴う部分倍率の変化を予測する。
データテーブルには、各部分倍率の変化に対する位相データが、あらかじめ記憶されており、まず、傾き調整に伴う部分倍率の変化を、予測値に基いて位相データを読み出して設定し、各分割区間毎の部分倍率が全幅倍率との差がなくなるように補正する。
次に、温度変化に伴う部分倍率の変化を、予測値に基いて位相データを読み出して既に設定されている設定値に加算し再設定するという手順で補正する。
全幅倍率は画素クロック基準値を可変することで補正する。
また、副走査レジストずれについては、ポリゴンミラー1面おき、つまり1走査ラインピッチPを単位として副走査方向における書出しタイミングを合わせる。
近年、カラー画像の要求品質が高まるにつれ、1走査ラインピッチp以下の精度でレジストずれを合わせる必要があり、後述する光軸変更手段等を用いて照射位置を微調整し、トナー像によって検出された副走査レジストずれのうち書出しタイミングによって補正できない余分を補正して、走査位置の基準値(初期値)を設定する。
さらに、上記したように非平行フォトダイオードを実装した同期検知センサを用いることで、走査位置ずれによって生じた検出信号の差分をフィードバック制御により補正することで、設定された基準値が常に保たれるようにしている。
図22は光軸変更手段である非平行平板の支持部を示す斜視図である。
同図において符号320は光軸変更手段、321は非平行平板、322はホルダ部材、323は軸受部、324は支持部材、325はかん合部、326は鍔部、327はレバー部、328はステッピングモータ、329はスプリング、330は貫通穴、331、332はピンをそれぞれ示す。
光軸変更手段320は図4における光軸変更手段244〜246を代表している。非平行平板321は、図1における非平行平板241〜243を代表している。非平行平板321は、円筒状のホルダ部材322中央枠内に固定され、軸受部323を形成した支持部材324にホルダ部材に形成した一対の鍔部326を切欠に合わせて挿入し、水平に戻すことで鍔部326が裏側に引っ掛かり、支持部材に密着した状態でかん合部325を基準に回転可能に保持される。
支持部材324は、上記したように底面を基準にハウジングにねじ止めされ、軸受部323の回転中心が光源ユニットの射出軸と中心が合うように高さHが各々設定されており、回転によってビームの射出軸をわずかに傾けることができる。
ホルダ部材の一端にはレバー部327が形成され、支持部材に形成した貫通穴330に係合され固定されているステッピングモータ328の軸先端に形成した送りネジを螺合しており、その上下動に伴って非平行平板321を回動可能としている。
この際のバックラッシュをとるため、ホルダ部材のピン331と支持部材のピン332との間にスプリング329により引張力をかけ、一方向に片寄せする構成としている。
いま、この回転角をδ、非平行平板の頂角をε、カップリングレンズの焦点距離をfc、光学系全系の副走査倍率をζとすると、感光体面での副走査位置変化は、
Δy=ζ・fc・(n0−1)ε・sinδ、n0は非平行平板の屈折率
で与えられ、微小回転角の範囲では回転角にほぼ比例して変化する。
非平行平板の頂角εは、約2°に設定している。
図23は光走査装置を搭載した画像形成装置の例を示す図である。
同図において符号900は光走査装置、901は感光体ドラム、902は帯電チャージャ、903は現像ローラ、904はトナーカートリッジ、905はクリーニングケース、906は転写ベルト、907は給紙トレイ、908は給紙コロ、909はレジストローラ対、910は定着ローラ、911は排紙トレイ、912は排紙ローラをそれぞれ示す。
感光体ドラム901の周囲には感光体を高圧に帯電する帯電チャージャ902、光走査装置900により記録された静電潜像に、帯電したトナーを付着して顕像化する現像ローラ903、現像ローラにトナーを補給するトナーカートリッジ904、ドラムに残ったトナーを掻き取り備蓄するクリーニングケース905が配置され画像形成ステーションが構成される。感光体ドラム901へは上記したようにポリゴンミラー1面毎の走査により複数ライン、実施例では5ライン同時に画像記録が行われる。
上記した画像形成ステーションは転写ベルト906の移動方向に複数並列され、イエロー、マゼンタ、シアン、ブラックのトナー画像が転写ベルト上にタイミングを合わせて順次転写され、重ね合わされてカラー画像が形成される。
各画像形成ステーションはトナー色が異なるだけで、基本的には同一構成である。
一方、記録紙は給紙トレイ907から給紙コロ908により供給され、レジストローラ対909により副走査方向の記録開始のタイミングに合わせて送りだされ、転写ベルトよりカラー画像が転写されて、定着ローラ910で定着されて排紙ローラ912により排紙トレイ911に排出される。
図24は画像形成装置の他の例を説明するための図である。
本例は、単一のポリゴンミラー213により、主走査平面を揃えて対向する方向に走査するようにした画像形成装置の例で、図23に示した例と同様に、平行に配列された複数の感光体ドラムを走査する。
その他は図23に示した実施例におけるポリゴンミラーの下段で走査する装置構成と同様なので説明は省略するが、ポリゴンミラーの回転方向は一定のため、ポリゴンミラーを挟んで一方の画像形成ステーションでは紙面手前から奥行方向へ、他方では奥行方向から手前へと走査方向が異なる。
このような構成においても本実施例は適用でき、ポリゴンミラーは一段で済む。
本発明の実施例を説明するための図である。 図1におけるポリゴンミラー回転軸を含む側断面図である。 ハウジングの構成を示す分解斜視図である。 ハウジングの構成を示す分解斜視図である。 ポリゴンミラーに対する光線の入出射角を説明するための概念図である。 主走査平面に対する入射角を説明するための図である。 偏向面にビームを斜入射させたときの光束の様子を示す図である。 折り返しミラーの固定方法を示す図である。 トロイダルレンズの支持筐体の構成を示す図である。 トロイダルレンズの装着状態を光軸方向から見た図である。 フォトセンサの受光部の形状を示す図である。 光源ユニットの斜視図である。 像面上におけるビームスポットの関係を説明するための図である。 書込制御回路のブロック図である。 位相変化を説明するためのタイミングチャートである。 主走査位置に対する区間毎の倍率補正を説明するための図である。 主走査方向における倍率変化とビームスポット位置のずれを説明するための図である。 ビームスポット位置ずれの温度依存性を説明するための図である。 走査ラインの傾き調整を実施した後の部分倍率の変化等を示す図である。 検出パターンの検出状況を説明するための図である。 本発明におけるビームスポット位置ずれの制御を示すブロック図である。 光軸変更手段である非平行平板の支持部を示す斜視図である。 光走査装置を搭載した画像形成装置の例を示す図である。 画像形成装置の他の例を説明するための図である。
符号の説明
101、102、103,104 感光体ドラム
201、202、203,204 光ビーム
209、210、211、212 偏向前光学系
213 偏向手段
218 fθレンズ
250,251,252,253 光源手段

Claims (11)

  1. 副走査方向に離隔して配備した第1および第2の光源手段とを有する光源装置と、該各光源手段からの各光ビームを一括して偏向し主走査を行う偏向手段と、前記各光ビームのそれぞれを前記偏向手段に設けられた偏向面に入射させる偏向前光学系と、偏向された前記各光ビームを各々に対応した被走査面に結像する走査光学系と、を有する光走査装置において、前記第1の光源手段の射出軸を、当該光源手段に対応する偏向前光学系の光軸を含む主走査平面に一致するよう配備し、前記第2の光源手段の射出軸を、前記主走査平面に対して偏心するよう配備して、前記各光ビームを前記偏向手段の偏向面の近傍で副走査方向に交差させ、共通の偏向面で走査することを特徴とする光走査装置。
  2. 請求項1に記載の光走査装置において、前記偏向前光学系は前記光ビームを少なくとも偏光面の近傍で副走査方向に収束させると共に、各々の偏向前光学系の収束位置が重なるよう配置したことを特徴とする光走査装置。
  3. 請求項1または2に記載の光走査装置において、前記各光源手段は、前記偏向面に入射する光束の前記走査光学系の光軸に対する主走査方向に見た角度、すなわち平均入射角度θが、互いに異なっていることを特徴とする光走査装置。
  4. 請求項3に記載の光走査装置において、前記第2の光源手段の前記平均入射角θが、前記第1の光源手段のそれより小さいことを特徴とする光走査装置。
  5. 請求項1ないし4のいずれか1つに記載の光走査装置において、前記偏向前光学系は、各光源手段からの光ビームを、少なくとも偏向面の近傍で副走査方向に収束させるとともに、前記第2の光源手段に対応した偏向前光学系を、光軸周りに回動させることによって、収束された光ビームの偏向面における光束の姿勢を変更できることを特徴とする光走査装置。
  6. 請求項5に記載の光走査装置において、前記第2の光源手段の前記偏向面における光束の姿勢を前記第1の光源手段のそれに一致させるのに要する前記偏向前光学系の光軸周りの回動角をγとし、前記第2の光源手段からの光ビームが前記主走査平面となす角度をβとし、同光ビームの平均入射角をθ2とするとき、γは以下の式で表されることを特徴とする光走査装置。
    γ=tan−1{tan(θ/2)・tanβ}
  7. 請求項1ないし6のいずれか1つに記載の光走査装置において、前記走査光学系を構成する光学素子のうち前記偏向手段に最も近い光学素子は、副走査方向に収束力を有さず、前記各光源手段からの光ビームを通過させることを特徴とする光走査装置。
  8. 請求項1ないし7のいずれか1つに記載の光走査装置を、前記偏向手段を共用して2組備え、該偏向手段の相異なる偏向面で偏向される各組の前記主走査平面を同一面に配置し、前記被走査面における各々の走査線が平行で、組によって走査方向が異なることを特徴とする光走査装置。
  9. 請求項1ないし7のいずれか1つに記載の光走査装置を、前記偏向手段を共用して2組備え、各組の前記主走査平面を、前記偏向面ともども所定間隔をもって平行に配置し、前記被走査面における各々の走査線が平行、かつ走査方向が同方向であることを特徴とする光走査装置。
  10. 請求項9に記載の光走査装置において、前記各組の前記第2の光源手段は、それぞれの射出軸をそれぞれの主走査平面に対して相反する方向に偏心させてあることを特徴とする光走査装置。
  11. 請求項8ないし10のいずれか1つに記載の光走査装置を用いたことを特徴とする多色画像形成装置。
JP2004047003A 2004-02-23 2004-02-23 光走査装置および多色画像形成装置 Expired - Fee Related JP4340557B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004047003A JP4340557B2 (ja) 2004-02-23 2004-02-23 光走査装置および多色画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004047003A JP4340557B2 (ja) 2004-02-23 2004-02-23 光走査装置および多色画像形成装置

Publications (2)

Publication Number Publication Date
JP2005234507A true JP2005234507A (ja) 2005-09-02
JP4340557B2 JP4340557B2 (ja) 2009-10-07

Family

ID=35017483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004047003A Expired - Fee Related JP4340557B2 (ja) 2004-02-23 2004-02-23 光走査装置および多色画像形成装置

Country Status (1)

Country Link
JP (1) JP4340557B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249187A (ja) * 2006-02-20 2007-09-27 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2015025993A (ja) * 2013-07-29 2015-02-05 京セラドキュメントソリューションズ株式会社 光走査装置及び画像形成装置
JP2019008034A (ja) * 2017-06-21 2019-01-17 京セラドキュメントソリューションズ株式会社 光走査装置及び該光走査装置を備えた画像形成装置
JP2019008033A (ja) * 2017-06-21 2019-01-17 京セラドキュメントソリューションズ株式会社 光走査装置及び該光走査装置を備えたカラー画像形成装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249187A (ja) * 2006-02-20 2007-09-27 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2015025993A (ja) * 2013-07-29 2015-02-05 京セラドキュメントソリューションズ株式会社 光走査装置及び画像形成装置
JP2019008034A (ja) * 2017-06-21 2019-01-17 京セラドキュメントソリューションズ株式会社 光走査装置及び該光走査装置を備えた画像形成装置
JP2019008033A (ja) * 2017-06-21 2019-01-17 京セラドキュメントソリューションズ株式会社 光走査装置及び該光走査装置を備えたカラー画像形成装置

Also Published As

Publication number Publication date
JP4340557B2 (ja) 2009-10-07

Similar Documents

Publication Publication Date Title
US7936494B2 (en) Optical scanning device and image forming apparatus
JP2007156259A (ja) 光走査装置及び画像形成装置
JP4574477B2 (ja) 光走査装置及び画像形成装置
JP2007206653A (ja) 光走査装置、及び画像形成装置
JP4322703B2 (ja) 光走査装置、および多色画像形成装置
JP2004333994A (ja) 光走査装置および画像形成装置
JP4965142B2 (ja) 光走査装置および画像形成装置
JP2007171626A (ja) 光走査装置・画像形成装置
JP4673056B2 (ja) 光走査装置・画像形成装置・走査線変化補正方法
JP4349483B2 (ja) 光走査装置および画像形成装置
JP4523440B2 (ja) 多色画像形成装置
JP2006198896A (ja) 多色画像形成装置
JP2008112041A (ja) 走査式光学装置及び画像形成装置
JP4340557B2 (ja) 光走査装置および多色画像形成装置
JP4027870B2 (ja) 光走査装置および画像形成装置
JP4903455B2 (ja) 光走査装置および画像形成装置
JP2010169829A (ja) 光走査装置及び画像形成装置
JP5879898B2 (ja) アクチュエータ、光走査装置及び画像形成装置
JP4596942B2 (ja) 光走査装置および画像形成装置
JP4949633B2 (ja) 光走査装置及び画像形成装置
JP5659659B2 (ja) 光走査装置及び画像形成装置
JP2008076458A (ja) 光走査装置と画像形成装置
JP2005292377A (ja) 光走査装置・画像形成装置
JP2008191582A (ja) 多色画像形成装置
JP2010217200A (ja) 光走査装置および画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees