JP2005227786A - 低いベンディング損失を有する光ファイバー - Google Patents

低いベンディング損失を有する光ファイバー Download PDF

Info

Publication number
JP2005227786A
JP2005227786A JP2005035742A JP2005035742A JP2005227786A JP 2005227786 A JP2005227786 A JP 2005227786A JP 2005035742 A JP2005035742 A JP 2005035742A JP 2005035742 A JP2005035742 A JP 2005035742A JP 2005227786 A JP2005227786 A JP 2005227786A
Authority
JP
Japan
Prior art keywords
optical fiber
core
clad
residual stress
bending loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005035742A
Other languages
English (en)
Inventor
Se-Ho Park
世 鎬 朴
Jin-Haing Kim
鎭 杏 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2005227786A publication Critical patent/JP2005227786A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27FDOVETAILED WORK; TENONS; SLOTTING MACHINES FOR WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES
    • B27F1/00Dovetailed work; Tenons; Making tongues or grooves; Groove- and- tongue jointed work; Finger- joints
    • B27F1/02Making tongues or grooves, of indefinite length
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B25/00Feeding devices for timber in saw mills or sawing machines; Feeding devices for trees
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B29/00Gripping, clamping, or holding devices for the trunk or log in saw mills or sawing machines; Travelling trunk or log carriages
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/225Matching coefficients of thermal expansion [CTE] of glass layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile

Abstract

【課題】低いベンディング損失を有する光ファイバーを提供する。
【解決手段】光伝送媒質のコアと、コアを取り巻くクラッドと、を含む光ファイバーであって、コアの半径aとコアの中心からの半径rとの比(r/a)に対して、(r/a)=0.8〜1.1で軸応力の最小値と(r/a)=1.0〜1.2で軸応力の最大値との差の絶対値が示すコアとクラッドとの境界面の残留応力不連続性が20.0MPa以下であることを特徴とする。
【選択図】 図6

Description

本発明は、光ファイバーに関し、特に、低いベンディング損失を有する光ファイバーに関するものである。
一般に、光ファイバーの製造工程は、母材(Preform)製造工程と引き出し(Drawing)工程と大きくに分けられる。引き出し工程において、引き出し温度は、光ファイバーのコアとクラッドとの境界面で発生する残留応力(residual stress)に大きな影響を与える。このような残留応力の変化は、様々な光特性に影響を及ぼすため、引き出し温度により残留応力を制御し、或いは、残留応力が引き出し温度に影響されないように光ファイバの組成を構成することが、大変に重要である。
しかしながら、アクセス網(Access Network)、FTTH(Fiber-to-the-Home)、LAN(Local Area Network)、又はWAN(Wide Area Network)の光伝送媒質として主に使用される光ファイバー(10Mbps,100Mbps,1Gbps,及び10Gbpsのイーサネット(登録商標)用光ファイバーを含む)は、その設置及び運用において、導管、建物、又は複雑な事務室内に設けられる場合に、多くの湾曲部を通過することとなる。この湾曲部は、通信の一つの重要な要素である損失に影響を与えてはならない。
図1は、代表的なグレーデッドインデックス(graded index)分布を有する光ファイバー(以下、“屈折率分布光ファイバー”とする)を説明するための図である。屈折率分布光ファイバー110は、コア120と、このコア120を取り巻くクラッド130とを含む。このコア120の屈折率分布は、次の数式1に表される。屈折率分布光ファイバー110の重要な光特性の一つであるモード帯域幅(modal bandwidth)は、この数式1におけるα値の影響を大きく受ける。
Figure 2005227786
上記の数式1で、nは、屈折率分布光ファイバー110のコア120の屈折率を示し、nは、コア120の中心(r=0)での屈折率を示し、Δは、相対屈折率差(Relative index difference)を示し、aは、コア120の半径を示し、rは、コア120の中心から測定された半径を示し、αは、コア形状係数(core form factor)を示す。αは、コア120とクラッド130との境界面(r/a=1)での残留応力の不連続性に敏感な影響を受ける。特に、コア120とクラッド130の組成の差、或いは、加熱温度、冷却速度、引き出し速度のような光ファイバーの引き出し条件は、残留応力の不連続性(discontinuity)に大きな影響を及ぼす。
光ファイバーのベンディング損失に関する従来の技術としては、主に、コアとクラッドの屈折率構造を変化させることによって、単一モード光ファイバーのベンディング損失を減少させる方法が開示されている。しかしながら、この従来の技術において、残留応力の不連続性を制御する方法は開示されていない。
特許文献1には、グレーデッドインデックス型のコアを有する単一モード光ファイバーの製造方法が開示されている。特許文献2には、クラッド領域の一部に低下領域(depressed region)又は孤立トレンチ(isolated trench)を有する構造が開示されている。特許文献3には、クラッド領域に上昇領域(increased region)及び低下領域を有する構造が開示されている。特許文献4には、内部コアの屈折率を高くして零分散波長は維持しつつ、MFD(Mode Field Diameter)を減少し、或いはコア及びクラッド間の境界面で拡散テール(diffusion tail)効果を減少させることによって、不要な遮断波長とMFDの増加を抑制し、又は外部領域にリング(ring)構造を適用して外部コア屈折率の増加による零分散波長の増加を抑制する方法が開示されている。特許文献5には、コアとクラッドの屈折率差は減少させ、零分散波長より大きな遮断波長を有するように仮想単一モード(virtual single mode)構造で二重モード(dual mode)又は多重モード(multi mode)を支援可能な構造が開示されている。
上述したように、従来の光ファイバーは、引き出し条件に従うコアとクラッドとの間の境界面で残留応力の変化が大きいという問題点があった。さらに、従来の光ファイバーは、最近のアクセス網、FTTH、LAN、或いはWANで発生する小さいベンディング(約10mmの直径)において、ベンディング損失が大きいという問題点があった。
米国特許第4412722号明細書 米国特許第4838643号明細書 米国特許第5032001号明細書 米国特許第5278931号明細書 米国特許第5175785号明細書
本発明の目的は、低いベンディング損失を有する光ファイバーを提供することにある。
また、本発明の他の目的は、加熱温度、引き出し速度、冷却速度のような引き出し条件に、敏感でない光ファイバーを提供することにある。
上記の目的を達成するために本発明による光ファイバーは、光伝送媒質のコアと、コアを取り巻くクラッドと、を含み、コアの半径aとコアの中心からの半径rとの比を(r/a)とした場合の、(r/a)=0.8〜1.1における軸応力の最小値と、(r/a)=1.0〜1.2における軸応力の最大値との差の絶対値によって表される、コアとクラッドとの境界面の残留応力の不連続性が20.0MPa以下であることを特徴とする。
本発明による光ファイバーは、ベンディング損失が非常に低いため、アクセス網、FTTH、LAN、又はWANのような複雑な垂直又は水平配線、狭い導管などに設置及び運用に適合するという利点を有する。なお、光ファイバーは、1Gbps以上の伝送速度を有する通信網に使用するのに適合した光特性を有する。
また、本発明による光ファイバーは、引き出し条件に敏感でないため、均一の品質の光ファイバーを連続的に製造することができるという効果がある。
以下、添付の図面を参照して本発明の望ましい実施形態を詳細に説明する。
以下の説明において、関連した公知の機能や構成に関する具体的な説明が、本発明の要旨を不明確にすると判断された場合には、その詳細な説明を省略する。
図2は、グレーデッドインデックス分布を有する光ファイバー(以下、“屈折率分布光ファイバー”とする)の残留応力の不一致を説明するための図である。屈折率分布光ファイバーは、コアとクラッドとを含む。図2において、zは、伝搬軸(propagation axis)、eは、コアモード(core mode)の固有ベクトル(eigenvector)、eは、クラッドモード(cladding mode)の固有ベクトル、bは、コアの複屈折ベクトル(birefringence vector)、bは、クラッドの複屈折ベクトル、をそれぞれ示す。
上記コアモードの固有ベクトルは、下記の数式2を満たす。
Figure 2005227786
ここで、i≠jであり、i及びjは1又は2である。このとき、1は、コアモードを、2は、クラッドモードを、それぞれ示す。さらに、コアモードの固有ベクトルとクラッドモードの固有ベクトルは、下記の数式3の関係を有する。
Figure 2005227786
ここで、i≠jであり、i及びjはそれぞれ1又は2である。
複屈折によるコアモードとクラッドモードとのカップリング(coupling)は、下記の数式4で与えられる。
Figure 2005227786
ここで、i≠jであり、i及びjはそれぞれ1又は2である。そして、Hは、複屈折に対するモードカップリングハミルトニアン(Hamiltonian)演算子である。
したがって、ベンディング損失αは、下記の数式5で与えられる。
Figure 2005227786
ここで、i≠jで、i及びjは、それぞれ1又は2である。そして、rはベンディング半径(bending radius)を、rは臨界ベンディング半径(critical bending radius)を、それぞれ示す。
上記の数式5で、コアとクラッドとの複屈折差|b−b|が大きいほど、ベンディング損失αが大きいことがわかる。また、同一のベンディング損失αに対しては、コアとクラッドとの複屈折差|b−b|が大きいほど、臨界ベンディング半径rが大きいことがわかる。臨界ベンディング半径rが大きいほど、ラインの設置及び運用の際に、ベンディング損失αが増加する可能性がかなり高く、設置条件が制限される可能性もある。したがってベンディング損失αを減少させるために、コアとクラッドとの複屈折差|b−b|を低くするべきである。
一般的に、コアとクラッドとの境界付近で|e・|eが最大になるため、コアとクラッドとの境界面での複屈折差|b−b|が、ベンディング損失αを支配する要素であることがわかる。したがって、ベンディング損失αの減少のためには、コアとクラッドとの境界面で、複屈折差|b−b|を減少させる必要がある。
光ファイバー内の複屈折の分布は、コアとクラッドの組成と残留応力により異なる。例えば、複屈折係数が大きな物質を添加した場合や、光ファイバーの引き出し中にコアとクラッドとの粘度(viscosity)に差がある場合には、コアとクラッドとの間に複屈折差が生じる。コアとクラッドとの複屈折差は、下記の数式6で与えられる。
Figure 2005227786
ここで、bは、添加物質による複屈折寄与度であり、bは、残留応力による複屈折寄与度である。P、Geのように分極度(polarizability)の高い物質は、bの寄与度が大きい。一方、加熱温度や、引き出し速度や、冷却速度などの光ファイバー引き出し条件は、bの寄与度が大きい。
光ファイバー母材を溶融して引き出す工程で、コアとクラッドとの冷却速度の差が発生すると、コアとクラッドに印加される引き出し張力に差が生じ、この引き出し張力は、光ファイバーが冷却して硬化する場合に、残留応力として残存することとなる。Ge、P、F、Cl等の添加物質は、ガラス転移温度を低めて硬化を遅延させ、熱収縮(thermal contraction)の程度を大きくする。コアとクラッドの添加物質の密度が相異なる場合には、硬化速度と熱収縮の程度が異なることとなるため、境界面に残留応力の不連続性が発生する。したがって、コアとクラッドの間の組成の差による熱収縮や冷却速度やガラス転移速度の差と同様に、加熱速度や引き出し速度や冷却速度を含む引き出し条件は、bの値へ寄与することとなる。
下記の表1は、多様な屈折率分布を有する光ファイバーのコアとクラッドとの境界面での残留応力の不連続性の程度を示す。表1上の多重モード屈折率分布型の光ファイバーは、コアとクラッドの直径が同一であって、コアとクラッドの組成は相異なる。例えば、コアは、8.5±1.5μm、12.5±1.5μm、15.0±1.5μm、25.0±1.5μm、31.25±1.5μmの半径を有し、クラッドは62.5±2.5μmの半径を有する。
Figure 2005227786
上記の表1で、“蒸着クラッド”とは、クラッドとコアとの間に蒸着されるクラッドを意味する。このときのコアとクラッドとの境界面は、コアと蒸着クラッドとの境界面である。例1−1乃至例1−3では、コアは80〜100wt%のSiOと0〜20wt%のGeOとから構成される。
残留応力の連続とは、(r/a)=0.8〜1.1での軸応力(axial stress)の最小値と、(r/a)=1.0〜1.2での軸応力の最大値との差の絶対値によって表されるコアとクラッドとの境界面における残留応力の不連続性が、20.0MPa以下の場合を意味する。
また、残留応力の不連続とは、(r/a)=0.8〜1.1での軸応力(axial stress)の最小値と、(r/a)=1.0〜1.2での軸応力の最大値との差の絶対値によって表されるコアとクラッドとの境界面における残留応力の不連続性が、20.0MPaより大きい場合を意味する。
このとき、“a”は、屈折率分布光ファイバーのコアの半径であり、“r”は、コアの中心からの半径である。
米国特許公開公報第2002/126944号には、上記のような残留応力による複屈折値を測定する方法が開示されている。但し、この方法で測定した複屈折値は、上記の数式6において、Ge、Pなどのコアの組成による寄与(b)と残留応力の寄与(b)との合計に比例することとなる。したがって、本実施形態においては、数式6の複屈折値の合計を、上記の方法によって測定した軸応力値に代替する。
図3は、ベンディング損失の測定装置200を示す図である。測定装置200は、白色光源210と、屈折率マッチングオイル220と、測定対象の光ファイバー230と、OSA(Optical Spectrum Analyzer)240とを含む。ベンディング損失の測定は、測定対象の光ファイバー230を、5mmの半径を有する円筒に15回程巻き、前後の損失値を測定することにより行なわれる。なお、光ファイバー230の巻き回数は、15回に限られるものではなく、測定方法に伴い適宜変更されうるものである。白色光源210からの出力光は、屈折率マッチングオイル220を経て、クラッドに進むモードが除去された後に、OSA240に入力する。このとき、測定対象の光ファイバー230の測定長さは、3mである。なお、測定長さは、3mに限られるものではなく、測定方法に伴い適宜変更されうるものである。
以下、図4〜図10を参照して、上記の表1に示した例の特性を比較して説明する。
図4は、例3−3による低い残留応力の不連続性を有する光ファイバーのベンディング損失曲線310と、例3−1による高い残留応力の不連続性を有する光ファイバーのベンディング損失曲線320とを示す図である。850±10nmの波長帯域で、低い残留応力の不連続性を有する光ファイバー310は、高い不連続性を有する光ファイバー320より、約1.6dB程度低いベンディング損失を有する。
図5は、例3−3による低い残留応力の不連続性を有する光ファイバーのベンディング損失曲線410と、例3−1による高い残留応力の不連続性を有する光ファイバーのベンディング損失曲線420とを示す図である。1300±10nmの波長帯域で、低い不連続性を有する光ファイバー410は、高い不連続性を有する光ファイバー420より、約1.5dB程度低いベンディング損失を有する。
図6は、上記の表1における例1−1の残留応力分布を示す図である。コアとクラッドとの境界面(r/a=1.0)で残留応力の不連続性は、約2〜3MPa程度である。
図7は、上記の表1における例3−3の残留応力分布を示す図である。コアとクラッドとの境界面で残留応力の不連続性は、約25〜30MPaである。
図8は、上記の表1における例4の残留応力分布を示す図である。コアとクラッドとの境界面で残留応力の不連続性は、約25〜30MPaである。
図9は、例3−1乃至例3−3による高い残留応力の不連続性を有する光ファイバーの引き出し温度による残留応力分布曲線を示す図である。 例3−1による第1の曲線530は、引き出し温度が2100℃であり、 例3−2による第2の曲線520は、引き出し温度が2150℃であり、 例3−3による第3の曲線510は、引き出し温度が2200℃である。引き出し温度が減少する場合には、コアとクラッドとの境界面(r/a=1.0)で残留応力の不連続性は、約25MPaから約80MPaに増加した。
図10は、光ファイバーの引き出し工程中において、加熱温度(又は引き出し温度)に応じた残留応力の不連続性へのコア組成の影響を示す図である。加熱温度が2100〜2200℃に増加するとき、例3−1乃至例3−3の残留応力の不連続性の値620は、約80MPaから約25MPaに変化する。一方、例1−1乃至例1−3の残留応力の不連続性の値610は、加熱温度の増加が変化した場合その変化量は約10MPa未満である。したがって、例1−1乃至例1−3による光ファイバーは、引き出し工程中の母材の形状変化や、使用時間増による加熱炉の劣化などより、加熱温度が変動する場合においても、残留応力の不連続性の変動を最小化することができる。また、上記の作用によって、グレーデッドインデックス分布の均一、且つ精密な制御が可能となり、それによって、1Gbps級以上の伝送が可能な光ファイバーの製造が可能となる。
代表的なグレーデッドインデックス分布の光ファイバーを示す図である。 グレーデッドインデックス分布を有する光ファイバーの残留応力の不一致を説明するための図である。 ベンディング損失の測定装置を示す図である。 本発明の実施形態による特性値を示す図である。 本発明の実施形態によるベンディング損失曲線を示す図である。 本発明の実施形態による残留応力分布を示す図である。 本発明の実施形態による残留応力分布を示す図である。 本発明の実施形態による残留応力分布を示す図である。 本発明の実施形態による光ファイバーの引き出し温度による残留応力分布曲線を示す図である。 本発明の実施形態によるコア組成の影響を示す図である。

Claims (12)

  1. 光伝送媒質のコアと、
    前記コアを取り巻くクラッドと、を含む光ファイバーであって、
    前記コアの半径aと、前記コアの中心からの半径rとの比を、(r/a)とした場合の、
    (r/a)=0.8〜1.1における軸応力の最小値と、
    (r/a)=1.0〜1.2における軸応力の最大値と、の差の絶対値によって表される前記コアと前記クラッドとの境界面の残留応力の不連続性が、20.0MPa以下であることを特徴とする光ファイバー。
  2. 前記コアは、グレーデッドインデックス分布を有することを特徴とする請求項1記載の光ファイバー。
  3. 前記光ファイバーは、多重モード光ファイバーを含むことを特徴とする請求項1又は2記載の光ファイバー。
  4. 前記コアは、80〜100wt%のSiO2と、0〜20wt%のGeO2とを含んで構成されることを特徴とする請求項1記載の光ファイバー。
  5. 前記クラッドは、SiO2で構成されることを特徴とする請求項1記載の光ファイバー。
  6. 前記光ファイバーは、1Gbps以上の伝送速度に適用されることを特徴とする請求項1記載の光ファイバー。
  7. 前記光ファイバーは、半径5mmの円筒に15回巻くことにより測定された場合に、2.0dB以下のベンディング損失を有することを特徴とする請求項1記載の光ファイバー。
  8. 光伝送媒質であって、SiO2とGeOとから構成されるコアと、
    前記コアを取り巻き、SiO2で構成されるクラッドと、
    を含むことを特徴とする光ファイバー。
  9. 前記コアは、グレーデッドインデックス分布を有することを特徴とする請求項8記載の光ファイバー。
  10. 前記光ファイバーは、多重モード光ファイバーを含むことを特徴とする請求項8又は9記載の光ファイバー。
  11. 前記コアは、80〜100wt%のSiO2と、0〜20wt%のGeO2とを含んで構成されることを特徴とする請求項8記載の光ファイバー。
  12. 前記クラッドは、SiO2で構成されることを特徴とする請求項8記載の光ファイバー。
JP2005035742A 2004-02-13 2005-02-14 低いベンディング損失を有する光ファイバー Abandoned JP2005227786A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040009520A KR100594062B1 (ko) 2004-02-13 2004-02-13 낮은 잔류 응력 불연속성을 갖는 광섬유

Publications (1)

Publication Number Publication Date
JP2005227786A true JP2005227786A (ja) 2005-08-25

Family

ID=34698985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035742A Abandoned JP2005227786A (ja) 2004-02-13 2005-02-14 低いベンディング損失を有する光ファイバー

Country Status (5)

Country Link
US (1) US7231121B2 (ja)
EP (1) EP1564570A1 (ja)
JP (1) JP2005227786A (ja)
KR (1) KR100594062B1 (ja)
CN (1) CN1316269C (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022479A1 (ja) * 2007-08-13 2009-02-19 The Furukawa Electric Co., Ltd. 光ファイバおよび光ファイバテープならびに光インターコネクションシステム
JP2013190790A (ja) * 2012-03-14 2013-09-26 Sumitomo Electric Ind Ltd マルチモード光ファイバ
JP2013235264A (ja) * 2012-05-08 2013-11-21 Sumitomo Electric Ind Ltd マルチモード光ファイバ

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070240454A1 (en) 2006-01-30 2007-10-18 Brown David P Method and apparatus for continuous or batch optical fiber preform and optical fiber production
US8107784B2 (en) * 2007-06-15 2012-01-31 Ofs Fitel, Llc Reduced bend sensitivity and catastrophic bend loss in single mode optical fibers and method of making same
US8385701B2 (en) * 2009-09-11 2013-02-26 Corning Incorporated Low bend loss optical fiber
EP2556332A4 (en) 2010-04-09 2017-03-15 Intuitive Surgical Operations, Inc. Strain sensing with optical fiber rosettes
CN102122991B (zh) * 2010-12-15 2013-10-23 江苏大学 一种光纤通信系统
US8873917B2 (en) 2011-05-20 2014-10-28 Corning Incorporated Low bend loss optical fiber
JP6128496B2 (ja) 2011-08-19 2017-05-17 コーニング インコーポレイテッド 低曲げ損失光ファイバ
US9188736B2 (en) 2013-04-08 2015-11-17 Corning Incorporated Low bend loss optical fiber
US8824848B1 (en) * 2013-06-10 2014-09-02 Sumitomo Electric Industries, Ltd. Multimode optical fiber including a core and a cladding
US9586853B2 (en) 2014-07-09 2017-03-07 Corning Incorporated Method of making optical fibers in a reducing atmosphere
US9650281B2 (en) 2014-07-09 2017-05-16 Corning Incorporated Optical fiber with reducing hydrogen sensitivity
CN105549149A (zh) * 2014-10-31 2016-05-04 住友电气工业株式会社 多模光纤及其制造方法
JP6951852B2 (ja) * 2017-03-27 2021-10-20 古河電気工業株式会社 光ファイバ及び光ファイバの製造方法
EP4109150A4 (en) * 2020-02-21 2023-06-28 Sumitomo Electric Industries, Ltd. Optical fiber

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358181A (en) 1977-09-29 1982-11-09 Corning Glass Works Gradient index optical waveguide and method of making
US4478623A (en) 1979-01-02 1984-10-23 Corning Glass Works Method of making optimal index profile for multicomponent nonlinear glass optical waveguide
CA1170876A (en) 1980-12-29 1984-07-17 Koichi Abe Fiber with coarse index gradient
JPS57145043A (en) 1981-03-05 1982-09-07 Nippon Telegr & Teleph Corp <Ntt> Production of optical fiber
US4566754A (en) * 1981-04-08 1986-01-28 British Telecommunications Optical fibres
JPS60204641A (ja) 1984-03-30 1985-10-16 Sumitomo Electric Ind Ltd 光フアイバ心線の製造方法
JPS62270903A (ja) 1986-05-19 1987-11-25 Fujitsu Ltd 光フアイバ
US5175785A (en) * 1991-05-02 1992-12-29 Ensign-Bickford Optical Technologies, Inc. Optical waveguides having reduced bending loss and method of making the same
JPH10260330A (ja) * 1997-03-18 1998-09-29 Furukawa Electric Co Ltd:The 分散シフト光ファイバ
EP0884614A1 (en) * 1997-06-13 1998-12-16 Sumitomo Electric Industries, Ltd. Optical fiber
US6922495B2 (en) * 1997-06-16 2005-07-26 Novera Optics, Inc. Optical fiber cladding with low polarization-dependent coupling
EP1046069A1 (fr) * 1998-09-17 2000-10-25 Alcatel Fibre optique a rapport optimise entre l'aire effective et la pente de dispersion pour systemes de transmission a fibre optique a multiplexage en longueurs d'onde
AU758337B2 (en) 1999-02-22 2003-03-20 Corning Incorporated A multimode fiber and method for forming it
KR100326302B1 (ko) 2000-03-13 2002-03-08 윤종용 광섬유의 잔여 응력 및 포토일래스틱 효과 측정을 위한측정장치 및 그 방법
US6625370B2 (en) * 2000-08-22 2003-09-23 Nippon Telegraph And Telephone Corporation Optical waveguide and fabricating method thereof, and optical waveguide circuit
AU773229B2 (en) * 2000-08-28 2004-05-20 Sumitomo Electric Industries, Ltd. Optical fiber and method of making the same
FR2815419B1 (fr) * 2000-10-16 2003-10-03 Cit Alcatel Fibre pour la compensation de dispersion chromatique en bande d'une fibre monomode
EP1410073A4 (en) * 2001-04-12 2005-11-09 Omniguide Comm Inc FIBER OPERATOR WITH HIGH INDEX CONTRAST AND APPLICATIONS
US6738548B2 (en) 2001-04-19 2004-05-18 Teracomm Research, Inc Reduced four-wave mixing optical fiber for wavelength-division multiplexing
CN1310045C (zh) * 2002-10-01 2007-04-11 古河电气工业株式会社 光纤、光传送线路以及光纤的制造方法
CN1310047C (zh) * 2002-12-18 2007-04-11 古河电气工业株式会社 光纤和使用它的光传送路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022479A1 (ja) * 2007-08-13 2009-02-19 The Furukawa Electric Co., Ltd. 光ファイバおよび光ファイバテープならびに光インターコネクションシステム
US7878712B2 (en) 2007-08-13 2011-02-01 The Furukawa Electric Co., Ltd. Optical fiber, optical fiber ribbon, and optical interconnection system
JP2013190790A (ja) * 2012-03-14 2013-09-26 Sumitomo Electric Ind Ltd マルチモード光ファイバ
JP2013235264A (ja) * 2012-05-08 2013-11-21 Sumitomo Electric Ind Ltd マルチモード光ファイバ

Also Published As

Publication number Publication date
EP1564570A1 (en) 2005-08-17
US20050180709A1 (en) 2005-08-18
KR20050081327A (ko) 2005-08-19
CN1316269C (zh) 2007-05-16
CN1654995A (zh) 2005-08-17
KR100594062B1 (ko) 2006-06-30
US7231121B2 (en) 2007-06-12

Similar Documents

Publication Publication Date Title
JP2005227786A (ja) 低いベンディング損失を有する光ファイバー
JP6817957B2 (ja) フッ素および塩素が共ドープされたコア領域を有する低損失光ファイバ
JP5685028B2 (ja) 改善した曲げ損失を有するマルチモード光ファイバ
JP5604028B2 (ja) 単一モード光ファイバ
JP5802383B2 (ja) 高帯域マルチモード光ファイバおよび光ファイバシステム
JP5945441B2 (ja) マルチモード光ファイバ
JP5674593B2 (ja) 低損失光ファイバ、およびその製造方法
US8687936B2 (en) Optical fiber, optical transmission system, and method of making optical fiber
JP6527973B2 (ja) 光ファイバ
JP2012203416A (ja) 曲げ耐性マルチモード光ファイバ
JP2011170347A (ja) 短いカットオフ波長を有するノンゼロ分散シフト光ファイバ
JP2011118392A (ja) 曲げ損失が低減された高帯域幅マルチモード光ファイバ
EP1488261A1 (en) Low bend loss optical fiber and components made therefrom
JP2021503630A (ja) 2種類以上のハロゲンが共ドープされたコアを有する低損失の光ファイバ
JP6671389B2 (ja) 極低減衰の単一モード光ファイバ
WO2015109861A1 (zh) 一种具有兼容性的小弯曲半径单模光纤
JP2013235264A (ja) マルチモード光ファイバ
JP2010181641A (ja) 光ファイバ
CN106291808A (zh) 一种超低衰减大有效面积单模光纤
CN107608023A (zh) 一种阶跃型超低衰减少模光纤
JPWO2019172197A1 (ja) 光ファイバ
CN107193082A (zh) 一种超低衰减单模光纤
CN106997073A (zh) 一种超低衰减大有效面积单模光纤
WO2023240880A1 (zh) 一种多波段衰减平坦光纤
JPS62297808A (ja) 分散シフト光フアイバ

Legal Events

Date Code Title Description
A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070912