JP2005225970A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP2005225970A
JP2005225970A JP2004035781A JP2004035781A JP2005225970A JP 2005225970 A JP2005225970 A JP 2005225970A JP 2004035781 A JP2004035781 A JP 2004035781A JP 2004035781 A JP2004035781 A JP 2004035781A JP 2005225970 A JP2005225970 A JP 2005225970A
Authority
JP
Japan
Prior art keywords
epoxy resin
fused silica
resin composition
average particle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004035781A
Other languages
Japanese (ja)
Other versions
JP5153050B2 (en
Inventor
Atsunori Nishikawa
敦准 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004035781A priority Critical patent/JP5153050B2/en
Publication of JP2005225970A publication Critical patent/JP2005225970A/en
Application granted granted Critical
Publication of JP5153050B2 publication Critical patent/JP5153050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for sealing semiconductors excellent in fluidity, moldability and solder resistance. <P>SOLUTION: The epoxy resin composition for sealing semiconductors comprises an epoxy resin, a phenolic resin, a curing accelerator, fused silica having an average particle size of 5-40 μm and fused silica having an average particle size of 0.1-3 μm and a silanol group density on the surface thereof of larger than 2.1 pieces/nm<SP>2</SP>and not larger than 4.0 pieces/nm<SP>2</SP>. The semiconductor device is obtained by sealing a semiconductor device by using the same. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、流動性、硬化性、成形性、耐半田性に優れた半導体封止用エポキシ樹脂組成物及びこれを用いた半導体装置に関するものである。   The present invention relates to an epoxy resin composition for semiconductor encapsulation excellent in fluidity, curability, moldability, and solder resistance, and a semiconductor device using the same.

IC、LSI等の半導体素子の封止方法としてエポキシ樹脂組成物のトランスファー成形が低コスト、大量生産に適しており、採用されて久しく、信頼性の点でもエポキシ樹脂や硬化剤であるフェノール樹脂の改良により特性の向上が図られてきた。しかし、近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体の高集積化も年々進み、また、半導体装置の表面実装化が促進されるなかで、半導体封止用エポキシ樹脂組成物への要求は益々厳しいものとなってきている。このため、従来からのエポキシ樹脂組成物では解決出来ない問題点も出てきている。
その最大の問題点は、表面実装の採用により半導体装置が半田浸漬或いは半田リフロー工程で急激に200℃以上の高温にさらされ、吸湿した水分が爆発的に気化する際の応力により、半導体装置にクラックが発生したり、半導体素子、リードフレーム、インナーリード上の各種メッキされた各接合部分とエポキシ樹脂組成物の硬化物の界面で剥離が生じたりして、信頼性が著しく低下する現象である。
Transfer molding of an epoxy resin composition as a sealing method for semiconductor elements such as IC and LSI is suitable for mass production at low cost and has been used for a long time. Improvements have been made to improve properties. However, due to the recent trend toward smaller, lighter, and higher performance electronic devices, higher integration of semiconductors has progressed year by year, and semiconductor device epoxy has been promoted as surface mounting of semiconductor devices has been promoted. The demand for resin compositions has become increasingly severe. For this reason, the problem which cannot be solved with the conventional epoxy resin composition has also come out.
The biggest problem is that by adopting surface mounting, the semiconductor device is suddenly exposed to a high temperature of 200 ° C. or higher in the solder dipping or solder reflow process, and the moisture when moisture absorbed explosively vaporizes the semiconductor device. This is a phenomenon in which reliability is significantly reduced due to the occurrence of cracks or peeling at the interface between various plated joints on the semiconductor element, lead frame, and inner lead and the cured product of the epoxy resin composition. .

半田処理による信頼性低下を改善するために、エポキシ樹脂組成物中の無機質充填材の充填量を増加させることで低吸湿化、高強度化、低熱膨張化を達成し耐半田性を向上させ、低溶融粘度の樹脂を使用して、成形時に低粘度で高流動性を維持させる手法がある(例えば、特許文献1参照。)。この手法を用いることにより耐半田クラック性がかなり改良されるが、無機充填材の充填割合の増加と共に、流動性が犠牲になりパッケージ内に空隙が生じやすくなる欠点があった。そこで平均粒径の異なる充填材を併用して流動性を維持する手法(例えば、特許文献2参照)が提案されているが、しかし十分良好な半導体封止用エポキシ樹脂組成物は得られるには至っていない。   In order to improve the reliability degradation due to the soldering process, by increasing the filling amount of the inorganic filler in the epoxy resin composition, it achieves low moisture absorption, high strength, low thermal expansion and improves solder resistance, There is a technique of using a low melt viscosity resin to maintain a high fluidity at a low viscosity during molding (see, for example, Patent Document 1). By using this method, the solder crack resistance is considerably improved. However, as the filling rate of the inorganic filler is increased, the fluidity is sacrificed and voids are easily generated in the package. Thus, a technique for maintaining fluidity by using fillers having different average particle diameters has been proposed (for example, see Patent Document 2). However, a sufficiently good epoxy resin composition for semiconductor encapsulation can be obtained. Not reached.

特開昭64−65116号公報(2〜7頁)JP-A 64-65116 (pages 2 to 7) 特開平8−20673号公報(2〜6頁)JP-A-8-20673 (pages 2 to 6)

本発明は、流動性、成形性に優れ、熱時強度が高い特性を有する半導体封止用エポキシ樹脂組成物及び耐半田性に優れた半導体装置を提供するものである。   The present invention provides an epoxy resin composition for semiconductor encapsulation having excellent fluidity and moldability and high heat strength characteristics, and a semiconductor device excellent in solder resistance.

本発明は、
[1] (A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)平均粒径が5〜40μmの溶融シリカ及び(E)平均粒径が0.1〜3μmで、その表面のシラノール基密度が2.1個/nm2より大きく、4.0個/nm2以下であることを特徴とする半導体封止用エポキシ樹脂組成物、
[2] 前記の平均粒径が5〜40μmの溶融シリカ(D)の表面のシラノール基密度が、1.0個/nm2より大きく、4.0個/nm2以下である第[1]項に記載の半導体封止用エポキシ樹脂組成物、
[3] 前記溶融シリカ(D)と前記溶融シリカ(E)の配合比が(D)/(E)=97/3〜75/25であり、(D)と(E)を合わせた配合割合が、全エポキシ組成物中の84〜94重量%である第[1]又は[2]項に記載の半導体封止用エポキシ樹脂組成物、
[4] 第[1]〜[3]項のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
The present invention
[1] (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) fused silica having an average particle size of 5 to 40 μm, and (E) average particle size of 0.1 to 3 μm, An epoxy resin composition for encapsulating a semiconductor, wherein the surface has a silanol group density of greater than 2.1 / nm 2 and not greater than 4.0 / nm 2 ,
[2] A silanol group density on the surface of the fused silica (D) having an average particle diameter of 5 to 40 μm is greater than 1.0 / nm 2 and not greater than 4.0 / nm 2 [1] The epoxy resin composition for semiconductor encapsulation according to Item,
[3] The blending ratio of the fused silica (D) and the fused silica (E) is (D) / (E) = 97/3 to 75/25, and the blending ratio of (D) and (E). Is an epoxy resin composition for encapsulating a semiconductor according to item [1] or [2], which is 84 to 94% by weight in the total epoxy composition,
[4] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition for semiconductor sealing according to any one of [1] to [3],
It is.

本発明によれば、流動性、成形性に優れ、熱時強度が高い特性を有する半導体封止用エポキシ樹脂組成物及び耐半田性に優れた半導体装置を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor device excellent in the fluidity | moldability and moldability and the semiconductor resin excellent in the soldering resistance and the epoxy resin composition for semiconductor sealing which has the characteristic with a high heat | fever intensity | strength can be obtained.

本発明は、エポキシ樹脂、フェノール樹脂、硬化促進剤、特定の平均粒径を有する溶融シリカ、及び特定の平均粒径で特定の表面シラノール基密度を有する微粒溶融シリカを含むことにより、流動性、成形性に優れ、熱時強度が高い特性を有する半導体封止用エポキシ樹脂組成物及び耐半田性に優れた半導体装置を得ることができるものである。
以下、本発明について詳細に説明する。
The present invention includes fluidity by including an epoxy resin, a phenolic resin, a curing accelerator, fused silica having a specific average particle size, and fine fused silica having a specific surface silanol group density at a specific average particle size, It is possible to obtain an epoxy resin composition for semiconductor encapsulation and a semiconductor device excellent in solder resistance, which have excellent moldability and high thermal strength properties.
Hereinafter, the present invention will be described in detail.

本発明に用いるエポキシ樹脂は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造は特に限定するものではないが、例えばビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられ、これらは単独でも混合して用いても差し支えない。   The epoxy resin used in the present invention is a monomer, oligomer, or polymer in general having two or more epoxy groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, biphenyl type epoxy resin, bisphenol type Epoxy resin, stilbene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene modified phenol type epoxy resin And phenol aralkyl type epoxy resins (having a phenylene skeleton, a biphenylene skeleton, etc.) and the like, and these may be used alone or in combination.

本発明に用いるフェノール樹脂は、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられ、これらは単独でも混合して用いても差し支えない。   The phenol resin used in the present invention is a monomer, oligomer, or polymer in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak resin, cresol novolak Resin, dicyclopentadiene-modified phenol resin, terpene-modified phenol resin, triphenolmethane type resin, phenol aralkyl resin (having a phenylene skeleton, biphenylene skeleton, etc.), etc. These may be used alone or in combination. .

エポキシ樹脂とフェノール樹脂の配合量としては、全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数の比が0.8〜1.3であることが好ましく、この範囲を外れると、エポキシ樹脂組成物の硬化性の低下、或いは硬化物のガラス転移温度の低下、耐湿信頼性の低下等が生じる可能性がある。   As a compounding quantity of an epoxy resin and a phenol resin, it is preferable that the ratio of the number of epoxy groups of all epoxy resins and the number of phenolic hydroxyl groups of all phenol resins is 0.8 to 1.3. There is a possibility that the curability of the composition is lowered, the glass transition temperature of the cured product is lowered, and the moisture resistance reliability is lowered.

本発明で用いられる硬化促進剤としては、エポキシ基とフェノール性水酸基の反応を促進するものであれば特に限定しないが、例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物、2−メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。   The curing accelerator used in the present invention is not particularly limited as long as it accelerates the reaction between an epoxy group and a phenolic hydroxyl group. For example, 1,8-diazabicyclo (5,4,0) undecene-7 is used. Diazabicycloalkene and its derivatives, amine compounds such as tributylamine and benzyldimethylamine, imidazole compounds such as 2-methylimidazole, organic phosphines such as triphenylphosphine and methyldiphenylphosphine, tetraphenylphosphonium tetraphenylborate, Tetraphenylphosphonium ・ tetrabenzoic acid borate, tetraphenylphosphonium ・ tetranaphthoic acid borate, tetraphenylphosphonium ・ tetranaphthoyloxyborate, tetraphenylphosphonium ・ tetranaphthyloxy Tetra-substituted phosphonium tetra-substituted borate borate, and the like. These may be used in combination of two or more be used one kind alone.

本発明で用いる溶融シリカは平均粒径が5〜40μmの溶融シリカ(D)と平均粒径が0.1〜3μmである溶融シリカ(E)とを併用する。これは粗い粒子の隙間に微小な粒子が挟まれることでいわゆる「ころ」の役目を果たし、エポキシ樹脂組成物の流動性を向上させるためである。   As the fused silica used in the present invention, fused silica (D) having an average particle size of 5 to 40 μm and fused silica (E) having an average particle size of 0.1 to 3 μm are used in combination. This is because fine particles are sandwiched in the gaps between the coarse particles, thereby serving as a so-called “roller” and improving the fluidity of the epoxy resin composition.

本発明で用いる平均粒径5〜40μmの溶融シリカ(D)において、平均粒径が下限値を下回ると十分な流動性が得られず、上限値を越えると耐半田性が低下する。また、平均粒径0.1〜3μmの溶融シリカ(E)において、平均粒径が下限値を下回ると粒子同士の凝集を抑えることが難しくなり、上限値を越えると大きすぎて「ころ」の役目を果たせない。本発明に用いる無機充填材の平均粒径は、レーザー式粒度分布計((株)島津製作所製、SALD−7000)を用いて測定したものである。 In the fused silica (D) having an average particle diameter of 5 to 40 μm used in the present invention, sufficient fluidity cannot be obtained when the average particle diameter is below the lower limit value, and solder resistance is deteriorated when the upper limit value is exceeded. In addition, in fused silica (E) having an average particle size of 0.1 to 3 μm, if the average particle size is below the lower limit, it becomes difficult to suppress aggregation of the particles. Can't play a role. The average particle diameter of the inorganic filler used in the present invention is measured using a laser particle size distribution meter (SALD-7000, manufactured by Shimadzu Corporation).

本発明で用いる平均粒径5〜40μmの溶融シリカ(D)の比表面積は、特に限定するものではないが、0.8〜3.5m2/gが好ましい。下限値を下回ると耐半田性が低下する可能性があり、上限値を超えると十分な流動性が得られない可能性がある。平均粒径0.1〜3μmの溶融シリカ(E)の比表面積は、特に限定するものではないが、3.5〜7.0m2/gが好ましい。下限値を下回ると耐半田性が低下する可能性があり、上限値を超えると十分な流動性が得られない可能性がある。本発明に用いる無機充填材の比表面積は、BET式比表面積測定装置(株)ユアサアイオニクス製、モノソーブMS−17を用いて測定したものである。 The specific surface area of fused silica (D) having an average particle size of 5 to 40 μm used in the present invention is not particularly limited, but is preferably 0.8 to 3.5 m 2 / g. If the lower limit is not reached, solder resistance may be reduced, and if the upper limit is exceeded, sufficient fluidity may not be obtained. The specific surface area of fused silica (E) having an average particle size of 0.1 to 3 μm is not particularly limited, but is preferably 3.5 to 7.0 m 2 / g. If the lower limit is not reached, solder resistance may be reduced, and if the upper limit is exceeded, sufficient fluidity may not be obtained. The specific surface area of the inorganic filler used in the present invention is measured using a monosorb MS-17 manufactured by Yuasa Ionics Co., Ltd.

本発明で用いる平均粒径0.1〜3μmの溶融シリカ(E)の表面におけるシラノール基密度は、2.1個/nm2より大きく、4.0個/nm2以下であることが必須である。下限値を下回ると、粒子同士の凝集力が強くなり、十分な分散状態が得られない。また反応点が少ない為、十分な強度が得られず、耐半田性が悪化する。上限値を越えると、親水性が強すぎる為、樹脂とのなじみが悪くなり、流動性が悪化する傾向があり、また溶融シリカが水分を吸収し易くなり、熱時のエポキシ樹脂組成物硬化物の強度を低下させる。溶融シリカ表面のシラノール基密度を制御する方法としては特に制限は無く、またよく分からない点も多いが、例えば、保管条件を調整して、吸湿、乾燥防止を行う方法や、使用直前に加湿処理によってシラノール基密度を増加させる、加熱処理によってシラノール基密度を減少させる等を行うなどすればよい。 The silanol group density on the surface of the fused silica (E) having an average particle diameter of 0.1 to 3 μm used in the present invention must be larger than 2.1 / nm 2 and not larger than 4.0 / nm 2. is there. Below the lower limit, the cohesive force between the particles becomes strong, and a sufficiently dispersed state cannot be obtained. Moreover, since there are few reaction points, sufficient intensity | strength cannot be obtained and solder resistance deteriorates. If the upper limit is exceeded, the hydrophilicity is too strong, so the familiarity with the resin will be poor and the fluidity will tend to deteriorate, and the fused silica will easily absorb moisture, and the epoxy resin composition cured when heated Reduce the strength. The method for controlling the silanol group density on the surface of the fused silica is not particularly limited, and there are many points that are not well understood.For example, the storage conditions are adjusted to prevent moisture absorption and drying, or the moisture treatment is performed immediately before use. The silanol group density may be increased by heating, or the silanol group density may be decreased by heat treatment.

本発明で用いる平均粒径5〜40μmの溶融シリカ(D)の表面におけるシラノール基密度は、特に限定するものではないが、1.0個/nm2より大きく、4.0個/nm2以下であることが好ましい。下限値を下回ると、反応点が少ない為、十分な強度が得られず、耐半田性が悪化する可能性があり、上限値を超えると親水性が強すぎる為、樹脂とのなじみが悪くなり、流動性が悪化する傾向があり、また溶融シリカが水分を吸収し易くなり、熱時のエポキシ樹脂組成物硬化物の強度を低下させる可能性がある。 The silanol group density on the surface of the fused silica (D) having an average particle diameter of 5 to 40 μm used in the present invention is not particularly limited, but is larger than 1.0 / nm 2 and not larger than 4.0 / nm 2. It is preferable that Below the lower limit, there are few reaction points, so sufficient strength may not be obtained, and solder resistance may be deteriorated. When the upper limit is exceeded, hydrophilicity is too strong, so the familiarity with the resin will deteriorate. The fluidity tends to deteriorate, and the fused silica tends to absorb moisture, which may reduce the strength of the cured epoxy resin composition when heated.

本発明で用いる溶融シリカの表面シラノール基密度の測定は、以下の要領で行う。溶融シリカに大過剰のヘキサメチルジシラザンを加え、200℃で2時間放置して、溶融シリカ表面のシラノール基とヘキサメチルジサラザンを完全に反応させ、残留分を除去したものを試料とする。その後、試料をるつぼに入れ700℃で3時間放置して十分に灰化させ、その減少量をメチル基として計算し、溶融シリカ表面のシラノール基と反応したヘキサメチルジシラザン量を求め、シラノール基密度を算出する。すなわち計算方法は、
シラノール基密度=減少量÷{(CH33の分子量}×アボガドロ数÷比表面積
である。
The surface silanol group density of the fused silica used in the present invention is measured in the following manner. A large excess of hexamethyldisilazane is added to the fused silica, and the mixture is allowed to stand at 200 ° C. for 2 hours to completely react the silanol groups on the surface of the fused silica with hexamethyldisalazane, and the residue is removed. After that, the sample was put in a crucible and allowed to stand at 700 ° C. for 3 hours to be sufficiently incinerated. The amount of decrease was calculated as a methyl group, and the amount of hexamethyldisilazane reacted with the silanol group on the fused silica surface was determined. Calculate the density. In other words, the calculation method is
Silanol group density = reduction amount ÷ {molecular weight of (CH 3 ) 3 } × Avocado number ÷ specific surface area.

本発明に用いる溶融シリカの配合は、特に限定するものではないが、平均粒径5〜40μmの溶融シリカ(D)と平均粒径0.1〜3μmの溶融シリカ(E)との割合が、(D)/(E)=97/3〜75/25であることが好ましい。平均粒径0.1〜3μmの溶融シリカの割合が、下限値を下回ると流動性が低下し、上限値を上回ると吸湿率の上昇に伴い耐半田性が低下する等の問題が生じるので好ましくない。溶融シリカ(D)と溶融シリカ(E)の両方を合わせた配合割合は、全エポキシ樹脂組成物中に84〜94重量%が好ましい。下限値を下回ると吸湿率の上昇に伴い耐半田性が低下し、上限値を越えると金線変形及びパッドシフト等の問題が生じるので好ましくない。   The blending of the fused silica used in the present invention is not particularly limited, but the ratio of fused silica (D) having an average particle size of 5 to 40 μm and fused silica (E) having an average particle size of 0.1 to 3 μm is It is preferable that (D) / (E) = 97/3 to 75/25. If the ratio of the fused silica having an average particle size of 0.1 to 3 μm is less than the lower limit value, the fluidity decreases, and if the ratio exceeds the upper limit value, problems such as a decrease in solder resistance accompanying an increase in the moisture absorption rate are preferable. Absent. The blending ratio of both the fused silica (D) and the fused silica (E) is preferably 84 to 94% by weight in the total epoxy resin composition. If the lower limit is not reached, the solder resistance decreases with an increase in the moisture absorption rate. If the upper limit is exceeded, problems such as deformation of the gold wire and pad shift are not preferable.

本発明のエポキシ樹脂組成物には、溶融シリカと樹脂との接着性を高めるために必要に応じてカップリング剤を使用する。カップリング剤とは、通常無機物質の表面処理に用いられているカップリング剤を指す。例えばアミノシラン、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシランカップリング剤や、チタネートカップリング剤、アルミニウムカップリング剤、アルミニウム/ジルコニウムカップリング剤等が挙げられるが、最も好適に使用されるものとしてはシランカップリング剤であり、より好ましく使用されるものとしてはアミノシラン、エポキシシラン、メルカプトシラン、ウレイドシランが挙げられ、これらを例示すると、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N−フェニルγ-アミノプロピルトリエトキシシラン、N−フェニルγ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-6-(アミノヘキシル)3-アミノプロピルトリメトキシシラン、N-(3-(トリメトキシシリルプロピル)-1,3-ベンゼンジメタナン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシランなどが挙げられ、これらは単独でも混合して用いても差し支えない。また、カップリング剤は、予め水或いは必要に応じて酸又はアルカリを添加して、加水分解処理して用いてもよい。
カップリング剤は、溶融シリカの表面のシラノール基と反応し、溶融シリカの表面に固着することにより、その効果を発揮すると考えられている。また、シラノール基と反応して固着したカップリング剤分子を起点にしてカップリング剤同士が自己縮合して溶融シリカの表面を被覆すると考えられる。
In the epoxy resin composition of the present invention, a coupling agent is used as necessary in order to enhance the adhesion between the fused silica and the resin. A coupling agent refers to the coupling agent currently used for the surface treatment of an inorganic substance normally. Examples include amino silane, epoxy silane, mercapto silane, alkyl silane, ureido silane, vinyl silane and other silane coupling agents, titanate coupling agents, aluminum coupling agents, aluminum / zirconium coupling agents, etc. Examples of the silane coupling agent include aminosilane, epoxy silane, mercaptosilane, and ureidosilane. Examples of these include γ-aminopropyltriethoxysilane, γ-amino. Propyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-phenylγ-aminopropyltriethoxysilane, N -Phenyl γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-6- (aminohexyl) 3-aminopropyltrimethoxysilane, N- (3- (trimethoxysilyl) Propyl) -1,3-benzenedimethanane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4 epoxy cyclohexyl) ) Ethyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, etc., and these may be used alone or in combination. Depending on the conditions, acid or alkali may be added and hydrolyzed.
The coupling agent is considered to exhibit its effect by reacting with the silanol groups on the surface of the fused silica and adhering to the surface of the fused silica. In addition, it is considered that the coupling agent molecules self-condensate from the coupling agent molecule fixed by reacting with the silanol group to cover the surface of the fused silica.

本発明のエポキシ樹脂組成物は、(A)〜(E)成分を必須とし、必要に応じてカップリング剤を添加するが、更にこれ以外に、カーボンブラック等の着色剤、結晶シリカ、タルク、アルミナ、窒化珪素、窒化アルミ等の無機充填材、天然ワックス、合成ワックス等の離型剤及び、ゴム等の低応力添加剤、臭素化エポキシ樹脂や三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、ほう酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤等の添加剤を適宜配合しても差し支えない。
本発明のエポキシ樹脂組成物は、(A)〜(E)成分の他、必要に応じて添加する添加物をミキサー等を用いて十分に均一に混合した後、更に熱ロール又はニーダー等で溶融混練し、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の各種の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。
The epoxy resin composition of the present invention comprises the components (A) to (E) as essential, and a coupling agent is added as necessary. In addition, a colorant such as carbon black, crystalline silica, talc, Inorganic fillers such as alumina, silicon nitride and aluminum nitride, release agents such as natural wax and synthetic wax, and low stress additives such as rubber, brominated epoxy resin and antimony trioxide, aluminum hydroxide, magnesium hydroxide, Additives such as flame retardants such as zinc borate, zinc molybdate, and phosphazene may be appropriately blended.
In addition to the components (A) to (E), the epoxy resin composition of the present invention is sufficiently melted with a hot roll or a kneader after thoroughly mixing the additives to be added as necessary using a mixer or the like. It is obtained by kneading, pulverizing after cooling.
The epoxy resin composition of the present invention is used to encapsulate various electronic components such as semiconductor elements, and to manufacture semiconductor devices by conventional molding methods such as transfer molding, compression molding, and injection molding. do it.

以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
なお、実施例及び比較例で用いた溶融シリカの内容について以下に示す。
Examples of the present invention are shown below, but the present invention is not limited thereto. The blending ratio is parts by weight.
In addition, it shows below about the content of the fused silica used by the Example and the comparative example.

溶融シリカ1(平均粒径24μm、比表面積2.2m2/g、表面シラノール基密度1.9個/nm2
溶融シリカ2(平均粒径29μm、比表面積2.0m2/g、表面シラノール基密度2.7個/nm2
溶融シリカ3(平均粒径38μm、比表面積1.2m2/g、表面シラノール基密度3.5個/nm2
溶融シリカ4(平均粒径13μm、比表面積3.2m2/g、表面シラノール基密度1.3個/nm2
Fused silica 1 (average particle size 24 μm, specific surface area 2.2 m 2 / g, surface silanol group density 1.9 / nm 2 )
Fused silica 2 (average particle size 29 μm, specific surface area 2.0 m 2 / g, surface silanol group density 2.7 / nm 2 )
Fused silica 3 (average particle size 38 μm, specific surface area 1.2 m 2 / g, surface silanol group density 3.5 / nm 2 )
Fused silica 4 (average particle size 13 μm, specific surface area 3.2 m 2 / g, surface silanol group density 1.3 / nm 2 )

溶融シリカ5(平均粒径0.5μm、比表面積4.8m2/g、表面シラノール基密度2.4個/nm2
溶融シリカ6(平均粒径0.6μm、比表面積5.1m2/g、表面シラノール基密度3.7個/nm2
溶融シリカ7(平均粒径1.8μm、比表面積3.8m2/g、表面シラノール基密度2.2個/nm2
溶融シリカ8(平均粒径1.5μm、比表面積4.4m2/g、表面シラノール基密度3.6個/nm2
溶融シリカ9(平均粒径0.3μm、比表面積6.7m2/g、表面シラノール基密度2.5個/nm2
溶融シリカ10(平均粒径2.4μm、比表面積3.6m2/g、表面シラノール基密度2.3個/nm2
溶融シリカ11(平均粒径0.5μm、比表面積5.8m2/g、表面シラノール基密度1.9個/nm2
溶融シリカ12(平均粒径0.5μm、比表面積5.6m2/g、表面シラノール基密度4.3個/nm2
溶融シリカ13(平均粒径1.6μm、比表面積4.3m2/g、表面シラノール基密度1.8個/nm2
Fused silica 5 (average particle size 0.5 μm, specific surface area 4.8 m 2 / g, surface silanol group density 2.4 pcs / nm 2 )
Fused silica 6 (average particle size 0.6 μm, specific surface area 5.1 m 2 / g, surface silanol group density 3.7 / nm 2 )
Fused silica 7 (average particle size 1.8 μm, specific surface area 3.8 m 2 / g, surface silanol group density 2.2 / nm 2 )
Fused silica 8 (average particle size 1.5 μm, specific surface area 4.4 m 2 / g, surface silanol group density 3.6 / nm 2 )
Fused silica 9 (average particle size 0.3 μm, specific surface area 6.7 m 2 / g, surface silanol group density 2.5 / nm 2 )
Fused silica 10 (average particle size 2.4 μm, specific surface area 3.6 m 2 / g, surface silanol group density 2.3 / nm 2 )
Fused silica 11 (average particle size 0.5 μm, specific surface area 5.8 m 2 / g, surface silanol group density 1.9 / nm 2 )
Fused silica 12 (average particle size 0.5 μm, specific surface area 5.6 m 2 / g, surface silanol group density 4.3 / nm 2 )
Fused silica 13 (average particle size 1.6 μm, specific surface area 4.3 m 2 / g, surface silanol group density 1.8 / nm 2 )

実施例1
エポキシ樹脂1:ジャパンエポキシレジン(株)製、YX−4000、エポキシ当量190g/eq、融点105℃、以下、E−1という。 56.0重量部
フェノール樹脂1:三井化学(株)製、XLC−LL、水酸基当量165g/eq、軟化点79℃、以下H−1という。 48.0重量部
1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという)
5.0重量部
溶融シリカ1 780.0重量部
溶融シリカ5 100.0重量部
カップリング剤(γ−グリシドキシプロピルトリメトキシシラン) 3.0重量部
カーボンブラック 3.0重量部
カルナバワックス 5.0重量部
を混合し、熱ロールを用いて、95℃で8分間混練して冷却後粉砕し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を、以下の方法で評価した。結果を表1に示す。
Example 1
Epoxy resin 1: manufactured by Japan Epoxy Resin Co., Ltd., YX-4000, epoxy equivalent 190 g / eq, melting point 105 ° C., hereinafter referred to as E-1. 56.0 parts by weight Phenol resin 1: manufactured by Mitsui Chemicals, Inc., XLC-LL, hydroxyl group equivalent 165 g / eq, softening point 79 ° C., hereinafter referred to as H-1. 48.0 parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU)
5.0 parts by weight fused silica 1 780.0 parts by weight fused silica 5 100.0 parts by weight Coupling agent (γ-glycidoxypropyltrimethoxysilane) 3.0 parts by weight Carbon black 3.0 parts by weight Carnauba wax 5 0.0 parts by weight were mixed, kneaded at 95 ° C. for 8 minutes using a hot roll, cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.

評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用金型を用いて、金型温度175℃、圧力6.9MPa、硬化時間120秒で測定した。単位はcm。
Evaluation method Spiral flow: Using a spiral flow measurement mold according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., a pressure of 6.9 MPa, and a curing time of 120 seconds. The unit is cm.

熱時曲げ強度・熱時曲げ弾性率:JIS K 6911(5.17.1 成形材料)の試験条件に準じて測定した。試験片(長さ80mm、高さ4mm、幅10mm)は、金型温度175℃、注入圧力9.8MPa、硬化時間120秒でトランスファー成形機を用いて成形し、175℃、8時間で後硬化して作成した。この試験片を測定台(支点間距離64mm)に設置し、260℃に保持した槽内で6分間予熱した後測定した。単位はMPa。   Bending strength during heating / Bending elastic modulus during heating: Measured according to the test conditions of JIS K 6911 (5.17.1 molding material). A test piece (length 80 mm, height 4 mm, width 10 mm) was molded using a transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa and a curing time of 120 seconds, and post-cured at 175 ° C. for 8 hours. And created. This test piece was placed on a measurement stand (64 mm distance between supporting points), preheated in a bath maintained at 260 ° C. for 6 minutes, and then measured. The unit is MPa.

耐半田クラック:低圧トランスファー成形機を用いて、成形温度175℃、圧力8.3MPa、硬化時間120秒で、80pQFP(Cuフレーム、チップサイズ6.0mm×6.0mm)を成形し、アフターベークとして175℃、8時間加熱処理した後、85℃、相対湿度85%で120時間の加湿処理を行った後、260℃のIRリフロー処理をした。パッケージ内部の剥離とクラックを超音波探傷機で確認した。10個のパッケージ中の不良パッケージ数を示す。   Solder crack resistance: Using a low-pressure transfer molding machine, 80pQFP (Cu frame, chip size 6.0 mm × 6.0 mm) was molded at a molding temperature of 175 ° C., a pressure of 8.3 MPa, and a curing time of 120 seconds. After heat treatment at 175 ° C. for 8 hours, a humidification treatment was performed at 85 ° C. and a relative humidity of 85% for 120 hours, followed by an IR reflow treatment at 260 ° C. Peeling and cracks inside the package were confirmed with an ultrasonic flaw detector. The number of defective packages among the 10 packages is shown.

実施例2〜8、比較例1〜4
表1の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得て、実施例1と同様にして評価した。結果を表1に示す。
実施例1以外で用いた原材料を以下に示す。
Examples 2-8, Comparative Examples 1-4
According to the composition of Table 1, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.
The raw materials used other than Example 1 are shown below.

エポキシ樹脂2:日本化薬(株)製、NC3000P、軟化点58℃、エポキシ当量273、以下、E−2という。
フェノール樹脂2:明和化成(株)製、MEH−7851SS、軟化点107℃、水酸基当量204、以下、H−2という。
Epoxy resin 2: manufactured by Nippon Kayaku Co., Ltd., NC3000P, softening point 58 ° C., epoxy equivalent 273, hereinafter referred to as E-2.
Phenol resin 2: manufactured by Meiwa Kasei Co., Ltd., MEH-7851SS, softening point 107 ° C., hydroxyl group equivalent 204, hereinafter referred to as H-2.

Figure 2005225970
Figure 2005225970

本発明によれば、流動性、成形性に優れ、熱時強度が高い特性を有する半導体封止用エポキシ樹脂組成物を得ることができるため、より高いレベルの耐半田性が要求される半導体装置に好適に用いられる。   According to the present invention, it is possible to obtain an epoxy resin composition for semiconductor encapsulation having excellent fluidity and moldability and high thermal strength characteristics. Therefore, a semiconductor device that requires a higher level of solder resistance. Is preferably used.

Claims (4)

(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)平均粒径が5〜40μmの溶融シリカ及び(E)平均粒径が0.1〜3μmで、その表面のシラノール基密度が2.1個/nm2より大きく、4.0個/nm2以下である溶融シリカを含むことを特徴とする半導体封止用エポキシ樹脂組成物。 (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) fused silica having an average particle size of 5 to 40 μm, and (E) average particle size of 0.1 to 3 μm An epoxy resin composition for encapsulating a semiconductor, comprising fused silica having a silanol group density of greater than 2.1 / nm 2 and less than 4.0 / nm 2 . 前記の平均粒径が5〜40μmの溶融シリカ(D)の表面のシラノール基密度が、1.0個/nm2より大きく、4.0個/nm2以下である請求項1に記載の半導体封止用エポキシ樹脂組成物。 2. The semiconductor according to claim 1, wherein the surface of the fused silica (D) having an average particle diameter of 5 to 40 μm has a silanol group density of more than 1.0 / nm 2 and not more than 4.0 / nm 2. An epoxy resin composition for sealing. 前記溶融シリカ(D)と前記溶融シリカ(E)の配合比が(D)/(E)=97/3〜75/25であり、(D)と(E)を合わせた配合割合が、全エポキシ組成物中の84〜94重量%である請求項1又は2に記載の半導体封止用エポキシ樹脂組成物。 The blending ratio of the fused silica (D) and the fused silica (E) is (D) / (E) = 97/3 to 75/25, and the blending ratio of (D) and (E) is all The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, which is 84 to 94% by weight in the epoxy composition. 請求項1〜3のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。 A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition for semiconductor sealing according to claim 1.
JP2004035781A 2004-02-12 2004-02-12 Epoxy resin composition and semiconductor device Expired - Lifetime JP5153050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035781A JP5153050B2 (en) 2004-02-12 2004-02-12 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035781A JP5153050B2 (en) 2004-02-12 2004-02-12 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2005225970A true JP2005225970A (en) 2005-08-25
JP5153050B2 JP5153050B2 (en) 2013-02-27

Family

ID=35000937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035781A Expired - Lifetime JP5153050B2 (en) 2004-02-12 2004-02-12 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP5153050B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248007A (en) * 2007-03-29 2008-10-16 Admatechs Co Ltd Inorganic powder for addition to resin composition, and resin composition
JP2008248004A (en) * 2007-03-29 2008-10-16 Admatechs Co Ltd Inorganic powder for addition to resin composition, and resin composition
JP2012227448A (en) * 2011-04-21 2012-11-15 Nippon Shokubai Co Ltd Amorphous silica particle
JP2012227449A (en) * 2011-04-21 2012-11-15 Nippon Shokubai Co Ltd Amorphous silica particle
JP2013203928A (en) * 2012-03-29 2013-10-07 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing, electronic equipment and method for manufacturing electronic equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200125A (en) * 1993-01-06 1994-07-19 Nippon Steel Chem Co Ltd Low-pressure transfer molding material for semiconductor sealing
JPH08208882A (en) * 1995-12-04 1996-08-13 Denki Kagaku Kogyo Kk Filler for semiconductor sealing resin
JP2001220495A (en) * 2000-02-08 2001-08-14 Mitsubishi Rayon Co Ltd Liquid epoxy resin sealing material and semiconductor device
JP2002037619A (en) * 2000-07-26 2002-02-06 Toagosei Co Ltd Method of preparing active silica
JP2002038028A (en) * 2000-07-26 2002-02-06 Toagosei Co Ltd Photocurable resin composition
JP2002322243A (en) * 2001-04-26 2002-11-08 Sumitomo Bakelite Co Ltd Method of production for epoxy resin composition and semiconductor device
JP2003213094A (en) * 2002-01-29 2003-07-30 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003277583A (en) * 2002-03-25 2003-10-02 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200125A (en) * 1993-01-06 1994-07-19 Nippon Steel Chem Co Ltd Low-pressure transfer molding material for semiconductor sealing
JPH08208882A (en) * 1995-12-04 1996-08-13 Denki Kagaku Kogyo Kk Filler for semiconductor sealing resin
JP2001220495A (en) * 2000-02-08 2001-08-14 Mitsubishi Rayon Co Ltd Liquid epoxy resin sealing material and semiconductor device
JP2002037619A (en) * 2000-07-26 2002-02-06 Toagosei Co Ltd Method of preparing active silica
JP2002038028A (en) * 2000-07-26 2002-02-06 Toagosei Co Ltd Photocurable resin composition
JP2002322243A (en) * 2001-04-26 2002-11-08 Sumitomo Bakelite Co Ltd Method of production for epoxy resin composition and semiconductor device
JP2003213094A (en) * 2002-01-29 2003-07-30 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003277583A (en) * 2002-03-25 2003-10-02 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248007A (en) * 2007-03-29 2008-10-16 Admatechs Co Ltd Inorganic powder for addition to resin composition, and resin composition
JP2008248004A (en) * 2007-03-29 2008-10-16 Admatechs Co Ltd Inorganic powder for addition to resin composition, and resin composition
JP2012227448A (en) * 2011-04-21 2012-11-15 Nippon Shokubai Co Ltd Amorphous silica particle
JP2012227449A (en) * 2011-04-21 2012-11-15 Nippon Shokubai Co Ltd Amorphous silica particle
JP2013203928A (en) * 2012-03-29 2013-10-07 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing, electronic equipment and method for manufacturing electronic equipment

Also Published As

Publication number Publication date
JP5153050B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP4665336B2 (en) Epoxy resin composition manufacturing method and semiconductor device
JP4967353B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP5153050B2 (en) Epoxy resin composition and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4561227B2 (en) Semiconductor sealing resin composition and semiconductor device
JP2003105064A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP4691886B2 (en) Epoxy resin composition and semiconductor device
JP4539118B2 (en) Epoxy resin composition and semiconductor device
JP5347979B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2003105059A (en) Epoxy resin composition and semiconductor device
JP2002241581A (en) Epoxy resin composition and semiconductor device
JP2006143784A (en) Epoxy resin composition and semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP2006176555A (en) Epoxy resin composition and semiconductor device
JP4736406B2 (en) Epoxy resin composition and semiconductor device
JP3919162B2 (en) Epoxy resin composition and semiconductor device
JP4254265B2 (en) Epoxy resin composition and semiconductor device
JP2003213095A (en) Epoxy resin composition and semiconductor device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP2005336362A (en) Epoxy resin composition and semiconductor device
JP4765159B2 (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5153050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150