JP4665336B2 - Epoxy resin composition manufacturing method and semiconductor device - Google Patents

Epoxy resin composition manufacturing method and semiconductor device Download PDF

Info

Publication number
JP4665336B2
JP4665336B2 JP2001129886A JP2001129886A JP4665336B2 JP 4665336 B2 JP4665336 B2 JP 4665336B2 JP 2001129886 A JP2001129886 A JP 2001129886A JP 2001129886 A JP2001129886 A JP 2001129886A JP 4665336 B2 JP4665336 B2 JP 4665336B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
inorganic filler
component
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001129886A
Other languages
Japanese (ja)
Other versions
JP2002322243A (en
Inventor
範之 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001129886A priority Critical patent/JP4665336B2/en
Publication of JP2002322243A publication Critical patent/JP2002322243A/en
Application granted granted Critical
Publication of JP4665336B2 publication Critical patent/JP4665336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無機質充填剤の高充填化により優れた半田性を有し、流動性に優れ、凝集物を殆ど含まない半導体封止用エポキシ樹脂組成物の製造方法、半導体封止用エポキシ樹脂組成物、及び半導体装置に関するものである。
【0002】
【従来の技術】
IC、LSI等の半導体素子の封止方法としてエポキシ樹脂組成物のトランスファー成形が低コスト、大量生産に適しており、採用されて久しく、信頼性の点でもエポキシ樹脂や硬化剤であるフェノール樹脂の改良により特性の向上が図られてきた。
しかし、近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体の高集積化も年々進み、又半導体装置の表面実装化が促進されるなかで、半導体封止用エポキシ樹脂組成物への要求は益々厳しいものとなってきている。このため、従来からのエポキシ樹脂組成物では解決出来ない問題点も出てきている。その最大の問題点は、表面実装の採用により半導体装置が半田浸漬或いは半田リフロー工程で急激に200℃以上の高温にさらされ、吸湿した水分が爆発的に気化する際の応力により、半導体装置にクラックが発生したり、半導体素子、リードフレーム、インナーリード上の各種メッキされた各接合部分とエポキシ樹脂組成物の硬化物の界面で剥離が生じたりして、信頼性が著しく低下する現象である。
【0003】
半田リフロー処理による信頼性低下を改善するために、エポキシ樹脂組成物中の無機質充填剤の充填量を増加させることで低吸湿化、高強度化、低熱膨張化を達成し耐半田性を向上させ、低溶融粘度の樹脂を使用して、成形時に低粘度で高流動性を維持させる手法がある。ところがエポキシ樹脂組成物に無機質充填剤を多量に配合すると成形時のエポキシ樹脂組成物の溶融粘度が高くなり、流動性が悪化し充填不良等の問題が生じるので、エポキシ樹脂組成物の溶融粘度を極力低くする必要がある。エポキシ樹脂組成物の溶融粘度を維持し、無機質充填剤を高充填化するためには、粒径の大きい充填剤と粒径の小さい充填剤を併用すること、即ち粒度分布の広いものを用いることが知られている。又樹脂と無機質充填剤との界面を制御するため、無機質充填剤をシランカップリング剤で表面処理する方法が知られているが、これらの方法でも成形時の溶融粘度の低下が不十分であると共に、無機質充填剤の凝集物が多量に発生して成形時にゲート詰まりを起こし、パッケージ未充填が発生するという問題がある。
【0004】
これらの問題点を改良する手法として、特許第3033445号公報には、平均粒径の異なる充填剤を併用する場合、粒径の大きい方のみをアルコキシ基含有シラン又はその部分加水分解物で処理し、粒径の小さい方をアルコキシ基含有シラン又はその部分加水分解物で表面処理せずにこれらを混合することが提案されており、凝集物及び流動性の点である程度改良されている。しかし、アルコキシ基含有シラン又はその部分加水分解物で処理した粒径の大きい充填剤とアルコキシ基含有シラン又はその部分加水分解物で表面処理しない粒径の小さい充填剤を直接混合するため、粒径の大きい充填剤表面のカップリング剤が粒径の小さい充填剤と容易に接触し、粒径が小さい充填剤にカップリング剤が多量に付着するため、充填剤の凝集を完全に防止するには至っていない。
【0005】
【発明が解決しようとする課題】
本発明は、無機質充填剤の高充填化により優れた半田性を有し、流動性に優れ、凝集物を殆ど含まず成形時に未充填のない半導体封止用エポキシ樹脂組成物の製造方法、半導体封止用エポキシ樹脂組成物、及び半導体装置を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、(1)(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D−1)平均粒径3μm以上の無機質充填剤をカップリング剤で処理した表面処理充填剤及び(D−2)表面処理されていない平均粒径2μm以下の無機質充填剤が、重量比で[(D−1)/(D−2)]=100/(1〜45)であって、(A)〜(C)成分の1種以上と(D−1)成分を混合して得られた混合物と、更に残余の(A)〜(C)成分、(D−2)成分とを混合後、加熱混練することを特徴とする半導体封止用エポキシ樹脂組成物の製造方法、(2)(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D−1)平均粒径3μm以上の無機質充填剤をカップリング剤で処理した表面処理充填剤及び(D−2)表面処理されていない平均粒径2μm以下の無機質充填剤が、重量比で[(D−1)/(D−2)]=100/(1〜45)であって、(A)〜(C)成分の1種以上と(D−2)成分を混合して得られた混合物と、更に残余の(A)〜(C)成分、(D−1)成分とを混合後、加熱混練することを特徴とする半導体封止用エポキシ樹脂組成物の製造方法、(3)第(1)項又は(2)項記載の製造方法により得られたものであることを特徴とする半導体封止用エポキシ樹脂組成物、(4)第(3)項記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、である。
【0007】
【発明の実施の形態】
本発明に用いられるエポキシ樹脂としては、1分子内に2個以上のエポキシ基を有するモノマー、オリゴマー、ポリマー全般を指し、例えばオルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型(フェニレン骨格又はジフェニレン骨格を有する)エポキシ樹脂等挙げられ、これらは単独でも混合して用いてもよい。
【0008】
本発明に用いられるフェノール樹脂としては、1分子内に2個以上のフェノール性水酸基を有するモノマー、オリゴマー及びポリマー全般を指し、例えばフェノールノボラック樹脂、フェノールアラルキル(フェニレン骨格又はジフェニレン骨格を有する)樹脂、ナフトールアラルキル(フェニレン骨格又はジフェニレン骨格を有する)樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、ナフトール樹脂等が挙げられ、これらは単独でも混合して用いてもよい。全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数の当量比=0.7〜1.5の範囲が好ましく、この範囲を外れると、エポキシ組成物の硬化性の低下、或いは硬化物のガラス転移温度の低下、耐湿信頼性の低下等が生じるので好ましくない。
【0009】
本発明に用いられる硬化促進剤は、エポキシ基と硬化剤とフェノール性水酸基との硬化反応を促進させるものであればよく、例えばトリブチルアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のアミン系化合物、テトラフェニルホスホニウム・テトラフェニルボレート、トリフェニルホスフィン等の有機リン化合物、2−メチルイミダゾール類等のイミダゾール化合物が挙げられ。硬化促進剤の配合量は、特に限定されないが、全エポキシ樹脂組成物中に0.05〜1重量%程度とすることが好ましい。
【0010】
本発明に用いられる(D−1)成分の無機質充填剤の平均粒径は3μm以上、好ましくは5〜30μmの範囲が望ましい。平均粒径が3μmより小さいと(D−2)成分のより小さい平均粒径の無機質充填剤と併用した効果が発現しない。一方30μmを越えると成形時に狭小部における充填性が低下するため好ましくない。
本発明に用いられる無機質充填剤としては、通常封止材料に用いられている溶融シリ力、結晶性シリ力、アルミナ、窒化ケイ素、窒化アルミニウム等を挙げることができる。無機質充填剤の形状としては、破砕状でも球状でもかまわないが、耐半田クラック性を向上させるために高充填し、その他、流動特性、機械強度及び熱的特性のバランスの点から球状溶融シリカが好ましい。
【0011】
無機質充填剤を処理するカップリング剤としては、従来公知のものが使用可能であり、シラン系、チタン系、アルミニウム系があるが好ましいものとしては、例えばγ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトトリメトキシシラン、ビス(3−トリエトキシシリルプロピル)テトラスルファン、γ−アミノプロピルトリエトキシシラン、ビス(3−トリメトキシシリルプロピル)アミン、メチル−3−[2−(3−トリメトキシシリルプロピルアミノ)エチルアミノ]プロピオネート、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、[3−(2−アミノエチル)アミノプロピル]トリメトキシシラン、N−6−(アミノヘキシル)−3−アミノプロピルトリメトキシシラン、N−[3−(トリメトキシシリル)プロピル]−1,3−ベンゼンジメタナミン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−(ビニルベンジルメチルアミノ)−プロピルトリメトキシシラン、1,3,5−トリス(3−トリメトキシシリルプロピル)イソシアヌレート等が挙げられ、これらの部分加水分解物も用いることができ、これらは単独でも混合して用いてもよい。
カップリング剤の使用量としては、平均粒径は3μm以上の無機質充填剤100重量部に対して0.1〜1重量部が好ましく、より好ましくは0.2〜0.8重量部の範囲である。0.1重量部より使用量が少ないと、表面処理充填剤を配合した場合、カップリング剤処理の効果が殆ど発現されず、一方1重量部より使用量が多いと、凝集物ができやすくなり、成形時にゲート詰まりによるパッケージ未充填が発生するおそれがあり好ましくない。
【0012】
(D−1)成分の表面処理充填剤を作成する方法としては、特に制限されないが、ヘンシェルミキサー等の公知の混合機に入れた無機質充填剤にスプレー等の散布手段でカップリング剤を散布し、その後無機質充填剤を混合して得ることができる。より凝集物を少なくするためには室温で数日間放置したり或いは熱処理したりした後、100〜200メッシュの篩を通して凝集物を除くことが好ましい。
【0013】
一方(D−2)成分の無機質充填剤の平均粒径は2μm以下、好ましくは0.2〜2μmである。本発明に用いる無機質充填剤としては、従来公知の無機質充填剤を使用でき、例えば破砕状や球状の溶融シリ力、結晶性シリ力の他、アルミナ、窒化ケイ素、窒化アルミニウム等を挙げることができる。又平均粒径、材質、形状の異なる2種以上の無機質充填剤を併用してもよい。
【0014】
(D−2)成分の無機質充填剤の配合量は、(D−1)成分の表面処理充填剤100重量部に対して1〜45重量部、好ましくは5〜30重量部の範囲が望ましい。配合量が1重量部未満だと、エポキシ樹脂組成物とした場合の成形温度での溶融粘度を十分に低くすることができず、45重量部を越えると経済的に不利になったり、凝集が起こりやすくなったり、成形時の溶融粘度が高くなったりして好ましくない。
【0015】
(D−1)成分の表面処理充填剤と(D−2)成分の無機質充填剤は、直接混合せず、(A)〜(C)成分の1種以上と(D−1)成分を混合して得られた混合物と、更に残余の(A)〜(C)成分、(D−2)成分とを混合し、(D−1)成分が(D−2)成分に直接接触しないように混合するか或いは(A)〜(C)成分の1種以上と(D−2)成分を混合して得られた混合物と、更に残余の(A)〜(C)成分、(D−1)成分とを混合し、(D−2)成分が(D−1)成分に直接接触しないように混合する必要がある。このようにして混合すると(D−1)成分の表面処理充填剤の表面のカップリング剤が、(D−2)成分の無機質充填剤に接触せず、無機質充填剤の凝集を効果的に防ぐことができる。(D−1)成分と(D−2)成分を直接混合すると、(D−1)成分の表面処理充填剤の表面のカップリング剤が、(D−1)成分と接触し、このカップリング剤によって充填剤の凝集が多発し、成形時にゲート詰まりによるパッケージ未充填が発生する。又成形温度における溶融粘度が高くなり、金線変形を引き起こすおそれがあるため好ましくない。
(D−1)成分又は(D−2)成分と(A)〜(C)成分の1種以上とを混合する前工程においては、(A)〜(C)の必須成分以外のその他の添加物を添加して混合してもよく、又(A)〜(C)成分とその他の添加物の全量を(D−1)成分又は(D−2)と混合してもよい。本発明では、(D−1)成分と(D−2)成分を必須とするが、必要によっては(D−1)成分と(D−2)成分以外のカップリング剤処理されていない無機質充填剤を添加してもよい。これらの混合方法は、特に限定しないが、例えばヘンシェルミキサーやボールミル等の公知の混合機を用いればよい。
【0016】
本発明の製造方法により得られたエポキシ樹脂組成物は、成形時の溶融粘度が低く、良好な流動性を維持し凝集物が殆ど発生しないので、半導体封止用エポキシ樹脂組成物として極めて有用である。
本発明に用いる(D−1)成分と(D−2)成分の合計配合量は、全エポキシ樹脂組成物中70〜95重量%が好ましく、より好ましくは75〜93重量%が望ましい。70重量%未満では、エポキシ樹脂組成物の硬化物の吸湿量が増加し、しかも半田リフロー処理温度での機械強度が低下するため、半導体装置にクラックが発生し易くなり好ましくない。95重量%を越えるとエポキシ組成物の成形時の流動性が低下し、未充填や半導体素子のシフト、パッドシフトが発生し易くなり好ましくない。
【0017】
本発明のエポキシ樹脂組成物には、(A)〜(D−2)成分の他に、必要に応じてγ−グリシドキシプロピルトリメトキシ等のカップリング剤、カーボンブラック等の着色剤、リン化合物等の難燃剤、シリコーンオイル、シリコーンゴム等の低応力成分、天然ワックス、合成ワックス、パラフィン等の離型剤、酸化防止剤等の各種添加剤を配合することができる。
本発明のエポキシ樹脂組成物は、(A)〜(C)成分の1種以上と(D−1)又は(D−2)成分を混合して得られた混合物と、更に残余の(A)〜(C)成分、(D−2)成分又は(D−1)とを常温で均一混合した後、更に熱ロール又はニーダー等で溶融混練し、冷却して封止材料とすることができる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形硬化すればよい。
【0018】
【実施例】
以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。
配合単位は重量部とする。
実施例及び比較例における無機質充填剤の処理方法及び原料の混合方法を以下に示す。
無機質充填剤の処理方法
(A)方法:表1のAの無機質充填剤のみをヘンシェルミキサーに仕込み5分間混合した後、表1に示す配合量のγ−アミノプロピルトリエトキシシランをスプレーにて噴霧した後、10分間混合し、室温で1日放置後に100メッシュ篩で処理した。処理品のことを、以下(A)という。
(A+B)方法:表1のA、Bの無機質充填剤をヘンシェルミキサーに仕込み5分間混合した後、表1に示す配合量のγ−アミノプロピルトリエトキシシランをスプレーにて噴霧した後、10分間混合し、室温で1日放置後に100メッシュ篩で処理した。処理品のことを、以下(A+B)という。
【0019】
各成分の混合方法
表1の(A)〜Eの成分の内、混合方法1に示された成分のみをヘンシェルミキサーを用いて5分間混合した後、混合方法2に示された成分を配合し5分間混合する。実施例3の混合方法3は、更にE成分を配合し5分間混合した。
【0020】
実施例1
オルソクレゾールノボラック型エポキシ樹脂(軟化点55℃、エポキシ当量196g/eq)
10.3重量部
フェノールノボラック樹脂(軟化点81℃、水酸基当量104g/eq)
5.5重量部

トリフェニルホスフィン 0.1重量部
カーボンブラック 0.2重量部
三酸化アンチモン 1.5重量部
臭素化フェノールノボラック型エポキシ樹脂 1.5重量部
カルナバワックス 0.3重量部
γ−グリシドキシプロピルトリメトキシシラン 0.2重量部
前記方法で得られた無機質充填剤(A) 70.4重量部
無機質充填材B 10.0重量部
を表1の混合方法で混合した後、80℃で二軸ロールを用いて混練し、冷却後粉砕し、組成物を得た。得られた組成物を以下の方法で評価した。結果を表1に示す。
【0021】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で測定した。単位はcm。
溶融粘度:(株)島津製作所製・高化式フローテスターCFT−500Cを用いて175℃、10kg荷重における粘度を測定した。単位はPa・s。
凝集物:組成物の粉体(2mm以下)約100g前後精秤し、アセトン200mlに溶解したものを65メッシュ篩にアセトンで洗浄しながら通したときの篩上の重量を計り、組成物の中の凝集物の含有量とした。単位は%。
パッケージ未充填:低圧トランスファー成形機を用いて、成形温度175℃、注入圧力100kg/cm2で80pQFP(パッケージサイズ14×20×2.7mm、ゲートサイズ幅0.8mm、深さ0.35mm)を24パッケージ成形し、未充填を起こしたパッケージ数を観察した。
【0022】
実施例2〜7、比較例1〜4
表1、表2の処方に従って配合し、実施例1と同様にして組成物を得て、実施例1と同様にして評価した。結果を表1、表2に示す。
【0023】
【表1】

Figure 0004665336
【0024】
【表2】
Figure 0004665336
【0025】
【発明の効果】
本発明に従うと、流動性に優れ、凝集物を殆ど含まず成形時に未充填のない半導体封止用エポキシ樹脂組成物の製造方法、この製造方法により得られる半導体封止用エポキシ樹脂組成物、及び無機充填剤の高充填化による半田特性に優れた半導体装置を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an epoxy resin composition for semiconductor encapsulation, which has excellent solderability due to high filling of an inorganic filler, excellent fluidity, and contains almost no aggregates, and an epoxy resin composition for semiconductor encapsulation And a semiconductor device.
[0002]
[Prior art]
Transfer molding of an epoxy resin composition as a sealing method for semiconductor elements such as IC and LSI is suitable for mass production at low cost and has been used for a long time. Improvements have been made to improve properties.
However, due to the recent trend toward smaller, lighter, and higher performance electronic devices, semiconductors have become more highly integrated and surface mounting of semiconductor devices has been promoted. The demand for compositions has become increasingly severe. For this reason, the problem which cannot be solved with the conventional epoxy resin composition has also come out. The biggest problem is that by adopting surface mounting, the semiconductor device is suddenly exposed to a high temperature of 200 ° C. or higher in the solder dipping or solder reflow process, and the moisture when moisture absorbed explosively vaporizes the semiconductor device. This is a phenomenon in which reliability is significantly reduced due to the occurrence of cracks or peeling at the interface between various plated joints on the semiconductor element, lead frame, and inner lead and the cured product of the epoxy resin composition. .
[0003]
In order to improve reliability degradation due to solder reflow treatment, the amount of inorganic filler in the epoxy resin composition is increased to achieve low moisture absorption, high strength, and low thermal expansion, thereby improving solder resistance. There is a technique in which a low melt viscosity resin is used to maintain a low viscosity and high fluidity during molding. However, when a large amount of an inorganic filler is added to the epoxy resin composition, the melt viscosity of the epoxy resin composition at the time of molding becomes high, resulting in problems such as poor fluidity and poor filling, so the melt viscosity of the epoxy resin composition is reduced. It is necessary to make it as low as possible. In order to maintain the melt viscosity of the epoxy resin composition and to increase the inorganic filler, use a filler having a large particle size and a filler having a small particle size, that is, using a material having a wide particle size distribution. It has been known. In addition, in order to control the interface between the resin and the inorganic filler, methods of surface treatment of the inorganic filler with a silane coupling agent are known, but even these methods are insufficient in reducing the melt viscosity at the time of molding. At the same time, there is a problem in that a large amount of inorganic filler agglomerates are generated, causing gate clogging during molding, resulting in unfilled packages.
[0004]
As a technique for improving these problems, Japanese Patent No. 3033445 discloses that when fillers having different average particle diameters are used in combination, only the larger particle diameter is treated with an alkoxy group-containing silane or a partial hydrolyzate thereof. It has been proposed that the smaller particle size is not surface-treated with an alkoxy group-containing silane or a partial hydrolyzate thereof, and these are mixed to some extent in terms of agglomerates and fluidity. However, since the large particle size filler treated with the alkoxy group-containing silane or its partial hydrolyzate and the small particle size filler not surface-treated with the alkoxy group-containing silane or its partial hydrolyzate are directly mixed, The coupling agent on the surface of the large filler can easily come into contact with the filler having a small particle size, and a large amount of the coupling agent adheres to the filler having a small particle size. Not reached.
[0005]
[Problems to be solved by the invention]
The present invention relates to a method for producing an epoxy resin composition for semiconductor encapsulation, having excellent solderability due to high filling of an inorganic filler, excellent fluidity, hardly containing aggregates, and not filled during molding , and semiconductor An epoxy resin composition for sealing and a semiconductor device are provided.
[0006]
[Means for Solving the Problems]
In the present invention, (1) (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D-1) surface treatment filling in which an inorganic filler having an average particle size of 3 μm or more is treated with a coupling agent. And (D-2) inorganic filler having an average particle diameter of 2 μm or less that is not surface-treated is [(D-1) / (D-2)] = 100 / (1-45) by weight ratio. A mixture obtained by mixing one or more of the components (A) to (C) and the component (D-1), and the remaining components (A) to (C) and (D-2) (2) (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D-1) Surface treatment filler obtained by treating an inorganic filler having an average particle size of 3 μm or more with a coupling agent, and (D-2) surface treatment. The inorganic filler having an average particle diameter of 2 μm or less is [(D-1) / (D-2)] = 100 / (1 to 45) by weight ratio, and 1 of the components (A) to (C) A mixture obtained by mixing at least the seed and the component (D-2), and the remaining components (A) to (C) and the component (D-1) are mixed and then heat-kneaded. A method for producing an epoxy resin composition for semiconductor encapsulation, (3) an epoxy resin composition for semiconductor encapsulation, which is obtained by the production method according to item (1) or (2), (4) A semiconductor device, wherein a semiconductor element is sealed using the epoxy resin composition for sealing a semiconductor according to (3) .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin used in the present invention refers to monomers, oligomers, and polymers generally having two or more epoxy groups in one molecule. For example, orthocresol novolac type epoxy resin, phenol novolac type epoxy resin, dicyclopentadiene modified phenol Type epoxy resin, naphthol type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type (having a phenylene skeleton or diphenylene skeleton) epoxy resin, and the like. These may be used alone or in combination.
[0008]
The phenol resin used in the present invention refers to monomers, oligomers and polymers generally having two or more phenolic hydroxyl groups in one molecule, such as phenol novolac resin, phenol aralkyl (having a phenylene skeleton or diphenylene skeleton) resin, Examples thereof include naphthol aralkyl (having a phenylene skeleton or diphenylene skeleton) resin, terpene-modified phenol resin, dicyclopentadiene-modified phenol resin, naphthol resin, and the like. These may be used alone or in combination. The equivalent ratio of the number of epoxy groups of all epoxy resins and the number of phenolic hydroxyl groups of all phenol resins is preferably in the range of 0.7 to 1.5. If the ratio is outside this range, the curability of the epoxy composition is reduced, or the cured product This is not preferable because the glass transition temperature is lowered and the moisture resistance reliability is lowered.
[0009]
The curing accelerator used in the present invention only needs to accelerate the curing reaction of the epoxy group, the curing agent, and the phenolic hydroxyl group. For example, tributylamine, 1,8-diazabicyclo (5,4,0) undecene- Amine compounds such as 7; organophosphorus compounds such as tetraphenylphosphonium / tetraphenylborate and triphenylphosphine; and imidazole compounds such as 2-methylimidazoles. Although the compounding quantity of a hardening accelerator is not specifically limited, It is preferable to set it as about 0.05 to 1 weight% in all the epoxy resin compositions.
[0010]
The average particle diameter of the inorganic filler of the component (D-1) used in the present invention is 3 μm or more, preferably 5 to 30 μm. When the average particle diameter is smaller than 3 μm, the effect of using the inorganic filler having a smaller average particle diameter of the component (D-2) is not exhibited. On the other hand, if it exceeds 30 μm, the filling property in the narrow portion is lowered during molding, which is not preferable.
Examples of the inorganic filler used in the present invention include melting sill force, crystalline sill force, alumina, silicon nitride, aluminum nitride and the like that are usually used for sealing materials. The shape of the inorganic filler may be crushed or spherical, but it is highly filled to improve solder crack resistance, and spherical fused silica is also used from the viewpoint of balance of flow characteristics, mechanical strength and thermal characteristics. preferable.
[0011]
As the coupling agent for treating the inorganic filler, conventionally known coupling agents can be used, and there are silane-based, titanium-based, and aluminum-based ones. Preferred examples include γ-glycidoxypropyltrimethoxysilane, γ -Mercaptotrimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfane, γ-aminopropyltriethoxysilane, bis (3-trimethoxysilylpropyl) amine, methyl-3- [2- (3-trimethoxy Silylpropylamino) ethylamino] propionate, N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, [3- (2-aminoethyl) aminopropyl] trimethoxysilane, N-6- (aminohexyl) -3-aminopropyltrimethoxysilane, N [3- (trimethoxysilyl) propyl] -1,3-benzenedimethanamine, N-phenyl-γ-aminopropyltrimethoxysilane, N- (vinylbenzylmethylamino) -propyltrimethoxysilane, 1,3 5-tris (3-trimethoxysilylpropyl) isocyanurate etc. are mentioned, These partial hydrolysates can also be used and these may be used individually or in mixture.
The amount of the coupling agent used is preferably 0.1 to 1 part by weight, more preferably 0.2 to 0.8 part by weight with respect to 100 parts by weight of the inorganic filler having an average particle diameter of 3 μm or more. is there. When the amount used is less than 0.1 parts by weight, the effect of the coupling agent treatment is hardly expressed when a surface treatment filler is blended, while when the amount used is more than 1 part by weight, agglomerates are easily formed. This is not preferable because there is a possibility that the package will not be filled due to gate clogging during molding.
[0012]
(D-1) The method of preparing the component surface treatment filler is not particularly limited, but the coupling agent is sprayed on the inorganic filler in a known mixer such as a Henschel mixer by spraying means. Then, it can be obtained by mixing an inorganic filler. In order to further reduce the aggregates, it is preferable to leave the aggregates at room temperature for several days or heat-treat them, and then remove the aggregates through a 100-200 mesh sieve.
[0013]
On the other hand, the average particle size of the inorganic filler (D-2) is 2 μm or less, preferably 0.2 to 2 μm. As the inorganic filler used in the present invention, conventionally known inorganic fillers can be used. For example, in addition to crushed or spherical melt shear force, crystalline shear force, alumina, silicon nitride, aluminum nitride and the like can be mentioned. . Two or more inorganic fillers having different average particle sizes, materials, and shapes may be used in combination.
[0014]
The amount of the inorganic filler (D-2) component is 1 to 45 parts by weight, preferably 5 to 30 parts by weight, per 100 parts by weight of the surface treatment filler (D-1). If the blending amount is less than 1 part by weight, the melt viscosity at the molding temperature in the case of an epoxy resin composition cannot be sufficiently lowered, and if it exceeds 45 parts by weight, it becomes economically disadvantageous or agglomeration occurs. This is not preferable because it tends to occur and the melt viscosity at the time of molding increases.
[0015]
The surface treatment filler of component (D-1) and the inorganic filler of component (D-2) are not mixed directly, but one or more of components (A) to (C) are mixed with component (D-1). And the remaining (A) to (C) component and (D-2) component are mixed so that the (D-1) component does not directly contact the (D-2) component. Or a mixture obtained by mixing one or more of the components (A) to (C) and the component (D-2), and the remaining components (A) to (C), (D-1) It is necessary to mix the components so that the component (D-2) does not directly contact the component (D-1). When mixed in this way, the coupling agent on the surface of the (D-1) component surface treatment filler does not come into contact with the (D-2) component inorganic filler, and effectively prevents aggregation of the inorganic filler. be able to. When the component (D-1) and the component (D-2) are directly mixed, the coupling agent on the surface of the surface treatment filler of the component (D-1) comes into contact with the component (D-1), and this coupling Aggregation of fillers frequently occurs due to the agent, and unfilled packages due to gate clogging occur during molding. In addition, the melt viscosity at the molding temperature is increased, which may cause deformation of the gold wire, which is not preferable.
In the previous step of mixing the component (D-1) or the component (D-2) and one or more of the components (A) to (C), other additions other than the essential components (A) to (C) Products may be added and mixed, or the total amount of components (A) to (C) and other additives may be mixed with component (D-1) or (D-2). In the present invention, the (D-1) component and the (D-2) component are essential, but if necessary, the inorganic filler not treated with a coupling agent other than the (D-1) component and the (D-2) component An agent may be added. These mixing methods are not particularly limited. For example, a known mixer such as a Henschel mixer or a ball mill may be used.
[0016]
The epoxy resin composition obtained by the production method of the present invention has a low melt viscosity at the time of molding, maintains good fluidity, and hardly generates agglomerates. Therefore, it is extremely useful as an epoxy resin composition for semiconductor encapsulation. is there.
70-95 weight% is preferable in all the epoxy resin compositions, and, as for the total compounding quantity of (D-1) component and (D-2) component used for this invention, More preferably, 75-93 weight% is desirable. If it is less than 70% by weight, the moisture absorption of the cured product of the epoxy resin composition increases, and the mechanical strength at the solder reflow processing temperature decreases, so that cracks are likely to occur in the semiconductor device, which is not preferable. If it exceeds 95% by weight, the fluidity at the time of molding of the epoxy composition is lowered, and unfilling, semiconductor element shift, and pad shift are liable to occur.
[0017]
In addition to the components (A) to (D-2), the epoxy resin composition of the present invention includes a coupling agent such as γ-glycidoxypropyltrimethoxy, a colorant such as carbon black, phosphorus Various additives such as flame retardants such as compounds, low stress components such as silicone oil and silicone rubber, mold release agents such as natural wax, synthetic wax and paraffin, and antioxidants can be blended.
The epoxy resin composition of the present invention comprises a mixture obtained by mixing one or more of the components (A) to (C) and the component (D-1) or (D-2), and the remaining (A). The component (C), the component (D-2) or the component (D-1) is uniformly mixed at room temperature, and then melt-kneaded with a hot roll or a kneader and cooled to obtain a sealing material.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it may be molded and cured by a molding method such as a transfer mold, a compression mold, or an injection mold.
[0018]
【Example】
Examples of the present invention are shown below, but the present invention is not limited thereto.
The blending unit is parts by weight.
The processing method of the inorganic filler and the mixing method of the raw materials in Examples and Comparative Examples are shown below.
Method of treating inorganic filler (A) Method: After charging only the inorganic filler of A in Table 1 into a Henschel mixer and mixing for 5 minutes, spraying γ-aminopropyltriethoxysilane in the blending amount shown in Table 1 by spraying After mixing, the mixture was mixed for 10 minutes, allowed to stand at room temperature for 1 day, and then treated with a 100 mesh sieve. The processed product is hereinafter referred to as (A).
(A + B) Method: The inorganic fillers A and B in Table 1 were charged into a Henschel mixer and mixed for 5 minutes, and then the γ-aminopropyltriethoxysilane having the blending amount shown in Table 1 was sprayed on the spray for 10 minutes. After mixing and leaving at room temperature for 1 day, it was treated with a 100 mesh sieve. The treated product is hereinafter referred to as (A + B).
[0019]
Mixing method of each component Of the components (A) to E in Table 1, only the components shown in the mixing method 1 are mixed for 5 minutes using a Henschel mixer, and then the components shown in the mixing method 2 are blended. Mix for 5 minutes. In the mixing method 3 of Example 3, the E component was further blended and mixed for 5 minutes.
[0020]
Example 1
Orthocresol novolac type epoxy resin (softening point 55 ° C., epoxy equivalent 196 g / eq)
10.3 parts by weight Phenol novolac resin (softening point 81 ° C., hydroxyl group equivalent 104 g / eq)
5.5 parts by weight

Triphenylphosphine 0.1 part by weight Carbon black 0.2 part by weight Antimony trioxide 1.5 part by weight Brominated phenol novolac type epoxy resin 1.5 part by weight Carnauba wax 0.3 part by weight γ-glycidoxypropyltrimethoxy Silane 0.2 part by weight Inorganic filler (A) obtained by the above method 70.4 parts by weight
After mixing 10.0 parts by weight of the inorganic filler B by the mixing method shown in Table 1, the mixture was kneaded using a biaxial roll at 80C, pulverized after cooling, and a composition was obtained. The obtained composition was evaluated by the following methods. The results are shown in Table 1.
[0021]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes. The unit is cm.
Melt viscosity: Viscosity at 175 ° C. and 10 kg load was measured using a Koka-type flow tester CFT-500C manufactured by Shimadzu Corporation. The unit is Pa · s.
Aggregate: A powder of the composition (less than 2 mm) is weighed about 100 g, and the weight of the composition dissolved in 200 ml of acetone is passed through a 65 mesh sieve while washing with acetone. It was set as content of the aggregate. Units%.
Unfilled package: 80 pQFP (package size 14 x 20 x 2.7 mm, gate size width 0.8 mm, depth 0.35 mm) at a molding temperature of 175 ° C and an injection pressure of 100 kg / cm 2 using a low-pressure transfer molding machine 24 packages were molded and the number of unfilled packages was observed.
[0022]
Examples 2-7, Comparative Examples 1-4
They were blended according to the formulations shown in Tables 1 and 2, compositions were obtained in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
[0023]
[Table 1]
Figure 0004665336
[0024]
[Table 2]
Figure 0004665336
[0025]
【The invention's effect】
According to the present invention, a method for producing an epoxy resin composition for semiconductor encapsulation that is excellent in fluidity, contains almost no aggregates, and is not filled at the time of molding, an epoxy resin composition for semiconductor encapsulation obtained by this production method, and It is possible to obtain a semiconductor device having excellent solder characteristics by increasing the filling of the inorganic filler.

Claims (4)

(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D−1)平均粒径3μm以上の無機質充填剤をカップリング剤で処理した表面処理充填剤及び(D−2)表面処理されていない平均粒径2μm以下の無機質充填剤が、重量比で[(D−1)/(D−2)]=100/(1〜45)であって、(A)〜(C)成分の1種以上と(D−1)成分を混合して得られた混合物と、更に残余の(A)〜(C)成分、(D−2)成分とを混合後、加熱混練することを特徴とする半導体封止用エポキシ樹脂組成物の製造方法。  (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D-1) a surface treatment filler obtained by treating an inorganic filler having an average particle size of 3 μm or more with a coupling agent, and (D-2) The inorganic filler having an average particle diameter of 2 μm or less that is not surface-treated is [(D-1) / (D-2)] = 100 / (1 to 45) in a weight ratio, and (A) to (C ) Mixing the mixture obtained by mixing one or more of the components and the component (D-1), and the remaining components (A) to (C) and (D-2), and then kneading with heating. The manufacturing method of the epoxy resin composition for semiconductor sealing characterized by these. (A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D−1)平均粒径3μm以上の無機質充填剤をカップリング剤で処理した表面処理充填剤及び(D−2)表面処理されていない平均粒径2μm以下の無機質充填剤が、重量比で[(D−1)/(D−2)]=100/(1〜45)であって、(A)〜(C)成分の1種以上と(D−2)成分を混合して得られた混合物と、更に残余の(A)〜(C)成分、(D−1)成分とを混合後、加熱混練することを特徴とする半導体封止用エポキシ樹脂組成物の製造方法。  (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D-1) a surface treatment filler obtained by treating an inorganic filler having an average particle size of 3 μm or more with a coupling agent, and (D-2) The inorganic filler having an average particle diameter of 2 μm or less that is not surface-treated is [(D-1) / (D-2)] = 100 / (1 to 45) in a weight ratio, and (A) to (C ) Mixing one or more components and (D-2) component, and the remaining (A) to (C) and (D-1) components, and then kneading with heating. The manufacturing method of the epoxy resin composition for semiconductor sealing characterized by these. 請求項1又は2記載の製造方法により得られたものであることを特徴とする半導体封止用エポキシ樹脂組成物。An epoxy resin composition for semiconductor encapsulation, which is obtained by the production method according to claim 1 or 2. 請求項3記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。 A semiconductor device obtained by sealing a semiconductor element using the epoxy resin composition for sealing a semiconductor according to claim 3 .
JP2001129886A 2001-04-26 2001-04-26 Epoxy resin composition manufacturing method and semiconductor device Expired - Fee Related JP4665336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001129886A JP4665336B2 (en) 2001-04-26 2001-04-26 Epoxy resin composition manufacturing method and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001129886A JP4665336B2 (en) 2001-04-26 2001-04-26 Epoxy resin composition manufacturing method and semiconductor device

Publications (2)

Publication Number Publication Date
JP2002322243A JP2002322243A (en) 2002-11-08
JP4665336B2 true JP4665336B2 (en) 2011-04-06

Family

ID=18978350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001129886A Expired - Fee Related JP4665336B2 (en) 2001-04-26 2001-04-26 Epoxy resin composition manufacturing method and semiconductor device

Country Status (1)

Country Link
JP (1) JP4665336B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781063B2 (en) * 2003-07-11 2010-08-24 Siemens Energy, Inc. High thermal conductivity materials with grafted surface functional groups
JP5153050B2 (en) * 2004-02-12 2013-02-27 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
US20050274774A1 (en) 2004-06-15 2005-12-15 Smith James D Insulation paper with high thermal conductivity materials
US7776392B2 (en) 2005-04-15 2010-08-17 Siemens Energy, Inc. Composite insulation tape with loaded HTC materials
US7553781B2 (en) 2004-06-15 2009-06-30 Siemens Energy, Inc. Fabrics with high thermal conductivity coatings
US20050277721A1 (en) 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation High thermal conductivity materials aligned within resins
US7651963B2 (en) 2005-04-15 2010-01-26 Siemens Energy, Inc. Patterning on surface with high thermal conductivity materials
US7846853B2 (en) 2005-04-15 2010-12-07 Siemens Energy, Inc. Multi-layered platelet structure
US7781057B2 (en) 2005-06-14 2010-08-24 Siemens Energy, Inc. Seeding resins for enhancing the crystallinity of polymeric substructures
US7851059B2 (en) 2005-06-14 2010-12-14 Siemens Energy, Inc. Nano and meso shell-core control of physical properties and performance of electrically insulating composites
US8357433B2 (en) 2005-06-14 2013-01-22 Siemens Energy, Inc. Polymer brushes
US7955661B2 (en) 2005-06-14 2011-06-07 Siemens Energy, Inc. Treatment of micropores in mica materials
US7655295B2 (en) * 2005-06-14 2010-02-02 Siemens Energy, Inc. Mix of grafted and non-grafted particles in a resin
JP5256610B2 (en) * 2005-12-28 2013-08-07 日立化成株式会社 Epoxy resin molding material for device sealing and electronic component device
TWI602873B (en) * 2012-06-11 2017-10-21 味之素股份有限公司 Resin composition
JP6311514B2 (en) * 2014-07-29 2018-04-18 日本ゼオン株式会社 Method for producing conjugated diene rubber

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186724A (en) * 1987-01-28 1988-08-02 Toshiba Corp Epoxy resin composition and semiconductor device sealed therewith
JPH04342719A (en) * 1991-05-21 1992-11-30 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH0820673A (en) * 1994-07-05 1996-01-23 Shin Etsu Chem Co Ltd Inorganic filler for resin and epoxy resin composition
JPH08165329A (en) * 1994-12-14 1996-06-25 Sumitomo Chem Co Ltd Epoxy resin composition and resin-sealed semiconductor device
JPH08198941A (en) * 1995-01-24 1996-08-06 Toshiba Chem Corp Epoxy resin composition and device for sealing semiconductor
JPH0940755A (en) * 1995-07-28 1997-02-10 Nippon Steel Chem Co Ltd Resin composition for semiconductor sealing and semiconductor device sealed therewith
JPH09188802A (en) * 1996-01-09 1997-07-22 Toshiba Chem Corp Sealing resin composition and device comprising sealed electronic component
JPH10251376A (en) * 1997-03-12 1998-09-22 Hitachi Chem Co Ltd Molding material for sealing and electronic part
JP2000063636A (en) * 1998-08-19 2000-02-29 Tatsumori:Kk Epoxy resin composition for semiconductor sealing and semiconductor sealed therewith

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186724A (en) * 1987-01-28 1988-08-02 Toshiba Corp Epoxy resin composition and semiconductor device sealed therewith
JPH04342719A (en) * 1991-05-21 1992-11-30 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH0820673A (en) * 1994-07-05 1996-01-23 Shin Etsu Chem Co Ltd Inorganic filler for resin and epoxy resin composition
JPH08165329A (en) * 1994-12-14 1996-06-25 Sumitomo Chem Co Ltd Epoxy resin composition and resin-sealed semiconductor device
JPH08198941A (en) * 1995-01-24 1996-08-06 Toshiba Chem Corp Epoxy resin composition and device for sealing semiconductor
JPH0940755A (en) * 1995-07-28 1997-02-10 Nippon Steel Chem Co Ltd Resin composition for semiconductor sealing and semiconductor device sealed therewith
JPH09188802A (en) * 1996-01-09 1997-07-22 Toshiba Chem Corp Sealing resin composition and device comprising sealed electronic component
JPH10251376A (en) * 1997-03-12 1998-09-22 Hitachi Chem Co Ltd Molding material for sealing and electronic part
JP2000063636A (en) * 1998-08-19 2000-02-29 Tatsumori:Kk Epoxy resin composition for semiconductor sealing and semiconductor sealed therewith

Also Published As

Publication number Publication date
JP2002322243A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JP4665336B2 (en) Epoxy resin composition manufacturing method and semiconductor device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP3033445B2 (en) Inorganic filler for resin and epoxy resin composition
JP2000080285A (en) Thermosetting resin composition and semiconductor device using the same
JP3192953B2 (en) Epoxy resin molding material for semiconductor encapsulation and method for producing the same
JP2004018803A (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP2003105064A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP5153050B2 (en) Epoxy resin composition and semiconductor device
JP3919162B2 (en) Epoxy resin composition and semiconductor device
JP2003105059A (en) Epoxy resin composition and semiconductor device
JP3867956B2 (en) Epoxy resin composition and semiconductor device
JP4691886B2 (en) Epoxy resin composition and semiconductor device
JP3973139B2 (en) Epoxy resin composition and semiconductor device
JP2003213095A (en) Epoxy resin composition and semiconductor device
JP2000169671A (en) Epoxy resin composition and semiconductor device
JP4539118B2 (en) Epoxy resin composition and semiconductor device
JPH04296046A (en) Resin-sealed semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP2002241585A (en) Epoxy resin composition and semiconductor device
JP2006143784A (en) Epoxy resin composition and semiconductor device
JP4254265B2 (en) Epoxy resin composition and semiconductor device
JP3976390B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation, epoxy resin composition for semiconductor encapsulation, and semiconductor device obtained thereby
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2000186183A (en) Epoxy resin composition for sealing and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4665336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees