JP2005192358A - インバータ装置およびモータ制御方法 - Google Patents

インバータ装置およびモータ制御方法 Download PDF

Info

Publication number
JP2005192358A
JP2005192358A JP2003432709A JP2003432709A JP2005192358A JP 2005192358 A JP2005192358 A JP 2005192358A JP 2003432709 A JP2003432709 A JP 2003432709A JP 2003432709 A JP2003432709 A JP 2003432709A JP 2005192358 A JP2005192358 A JP 2005192358A
Authority
JP
Japan
Prior art keywords
phase
current
motor
signal
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003432709A
Other languages
English (en)
Other versions
JP4396270B2 (ja
Inventor
Shigeki Ikeda
成喜 池田
Tsugunori Sakata
世紀 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2003432709A priority Critical patent/JP4396270B2/ja
Publication of JP2005192358A publication Critical patent/JP2005192358A/ja
Application granted granted Critical
Publication of JP4396270B2 publication Critical patent/JP4396270B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】 モータを駆動するインバータ装置において、1つのシャント抵抗で直流側の電流を検出することによりモータ電流を正確に検出する。
【解決手段】 スイッチ回路101は、U相〜W相用のブリッジ回路を備える。スイッチ回路101の入力側には直流電源111が接続されており、その出力側にはモータ112に接続されている。シャント抵抗Rは、スイッチ回路101の入力側に設けられており、U相〜W相用のブリッジ回路を介して流れる電流の総和を検出する。制御回路10は、スイッチ回路101を制御するために生成される変調信号の位相および変調率に基づいて、検出すべきモータ電流の相を選択する。その選択に応じて、シャント抵抗Rを介して流れる電流からモータ電流を検出する。
【選択図】 図1

Description

本発明は、インバータ装置およびモータ制御方法に係わり、特に、モータに電力を供給するためのインバータ装置および3相同期モータを制御する方法に係わる。
直流電源の出力を交流に変換して負荷に供給するインバータ装置は、様々な用途に広く利用されている。
図15(a)は、既存のインバータ装置の一例の基本構成を示す図である。なお、ここでは、インバータ装置に接続する負荷は、3相モータ(例えば、DCブラシレスモータ)であるものとする。また、モータの回転数は、位置センサレス制御(正弦波ベクトル制御)により制御されるものとする。
スイッチ回路101は、直流電源111に接続されており、U相用ブリッジ回路、V相用ブリッジ回路、W相用ブリッジ回路を備える。各ブリッジ回路は、それぞれ、互いに直列に接続された1組のスイッチ素子を備えている。そして、各ブリッジ回路の出力が、モータ112に接続されている。
制御回路102は、指定された回転数でモータ112が駆動されるように、スイッチ回路101の各スイッチ素子を制御する。ここで、位置センサレス制御では、モータ電流を直接的に検出することなくモータの回転が制御される。このため、このインバータ装置においては、各ブリッジ回路に対してそれぞれシャント抵抗Ru〜Rwが設けられている。そして、これらのシャント抵抗Ru〜Rwを利用してU相電流、V相電流、W相電流をモニタし、それらの電流値からモータ位置を推定しながらモータ112を制御するように構成されている。
ところが、図15(a)に示すインバータ装置では、各相ごとにシャント抵抗が設けられているので、製造コストが上昇するとともに、回路サイズが大きくなってしまう。このため、近年では、図15(b)に示すように、スイッチ回路101に対して1つのシャント抵抗Rを設け、そのシャント抵抗Rを利用してインバータ装置の直流側を流れる電流を検出し、その検出した電流値からU相電流、V相電流、W相電流を推定する方式が提案されている(例えば、特許文献1、2)。
図16は、図15(b)に示すインバータ装置の動作を説明する図である。ここでは、U相〜W相のブリッジ回路の下アームスイッチ素子の状態、およびシャント抵抗Rを介して流れる電流が描かれている。なお、各ブリッジ回路の上アームスイッチ素子および下アームスイッチ素子は、それぞれ、同時にオン状態になることがないように交互に駆動される。
図16において、例えば、U相の下アームスイッチ素子がオン状態であり、且つV相およびW相の下アームスイッチ素子がオフ状態であるときは(この場合、U相の上アームスイッチ素子はオフ状態であり、且つV相およびW相の上アームスイッチ素子はオン状態である)、シャント抵抗Rを介して流れる電流は、U相のモータ電流に相当する。また、U相およびV相の下アームスイッチ素子がオン状態であり、且つW相の下アームスイッチ素子がオフ状態であるときは(この場合、U相およびV相の上アームスイッチ素子はオフ状態であり、且つW相の上アームスイッチ素子はオン状態である)、シャント抵抗Rを介して流れる電流は、W相のモータ電流に相当する。
このように、図16に示す動作期間においては、シャント抵抗Rを介して流れる電流に基づいて、U相およびW相のモータ電流を検出することができる。すなわち、このインバータ装置は、単位時間ごとにシャント抵抗Rの両端電圧を2回検出し、3相のうちの2相分のモータ電流を検出する。さらに、その2相分のモータ電流(図16に示す例では、U相およびW相のモータ電流)に基づいて、残りの相のモータ電流(図16に示す例では、V相のモータ電流)を推定する。そして、制御回路102は、上述のようにして検出または推定した各相のモータ電流に基づいてモータ位置を推定しながらモータ112を制御する。
特開2002−95263号公報(図1、図7、図8、段落0028、0050〜0057) 特開平10−201288号公報(図1)
図15(b)に示すインバータ装置においては、上述のように、単位時間ごとにシャント抵抗Rの両端電圧を2回検出する。このとき、シャント抵抗Rの両端電圧値は、通常、A/D変換器によりデジタルデータに変換されてマイコン(制御回路102)に与えられる。したがって、シャント抵抗Rの両端電圧を検出するためには、その電圧値が一定時間以上保持されている必要がある。
しかし、スイッチ回路101の各スイッチ素子を制御するための制御信号(PWM信号)のタイミングによっては、シャント抵抗Rの両端電圧を検出するための時間を十分に確保できないことがある。図16に示す例では、W相のモータ電流を検出するための時間が十分に確保されていない。
このように、1つのシャント抵抗で直流側の電流を検出することによりモータ電流を検出または推定しながらモータを駆動する従来のインバータ装置においては、電流を正確に検出できないことがあった。そして、この結果、モータを正確に制御できないことがあった。
本発明の目的は、3相交流を生成するインバータ装置において、1つのシャント抵抗で直流側の電流を検出することにより負荷電流を正確に検出することである。また、本発明の他の目的は、上記インバータ装置を用いてモータを正確に制御できるようにすることである。
本発明のインバータ装置は、直流電源の出力を3相交流に変換する装置であって、上記直流電源に接続され複数のスイッチ素子を含むスイッチ回路と、上記直流電源と上記スイッチ回路との間に設けられた電流センサと、上記電流センサを用いて負荷電流を検出し、その検出した負荷電流に基づいて上記複数のスイッチ素子をオン/オフ制御するための制御信号を生成する制御手段、を備える。そして、上記制御手段は、上記3相交流を生成するための変調信号を定義する変調率およびその変調信号の位相に基づいて、上記3相のうちから負荷電流を検出すべき相を選択する。
上記インバータ装置において、変調信号の変調率および位相が決まると、スイッチ回路を構成する各スイッチ素子を制御するための制御信号が決まる。また、その制御信号に応じて各スイッチ素子の動作が決まると、各相の負荷電流が決まる。他方、スイッチ回路の状態によっては、電流センサを用いて検出される直流側の電流が、3相の負荷電流の中のある1つの相の負荷電流を表す場合がある。すなわち、直流側で電流をモニタすることにより、交流側の負荷電流を検出できる時間領域が断続的に存在する。ところが、これらの時間領域の長さが短い場合には、負荷電流を正確に検出することができない。
そこで、制御手段は、直流側の電流に基づいて交流側の負荷電流を検出できる各時間領域が十分に長くなるような相を、変調信号の変調率および位相に基づいて選択しておく。
そして、その選択された相の負荷電流を検出する。
なお、上記インバータ装置において、上記電流センサは、1つのシャント抵抗で構成されるようにしてもよい。また、上記制御手段は、基準周期信号と各相の変調信号とを比較することにより上記制御信号としてのPWM信号を生成するようにしてもよい。さらに、上記スイッチ回路に接続される負荷が3相モータである場合には、上記変調率は、上記3相モータの回転数を指示する回転数指令値と上記3相モータの回転数との誤差に基づいて決定されるものであってもよい。
本発明のモータ制御方法は、スイッチ回路を含むインバータ装置を使用して3相モータを制御する方法であって、3相交流を生成するための変調信号を定義する変調率およびその3相交流の位相に基づいて上記3相のうちから負荷電流を検出すべき2相を選択し、直流電源と上記スイッチ回路との間に設けられる1つのシャント抵抗を利用して上記選択した2相のモータ電流を検出し、それら検出した負荷電流に基づいて上記スイッチ回路を制御するための制御信号を生成する。
本発明によれば、直流側の電流に基づいて交流側の負荷電流を検出できる各時間領域が十分に長くなるような相を選択し、その相の負荷電流を検出するので、負荷電流を確実または正確に検出できる。
また、電流センサを1つのシャント抵抗で実現できるので、インバータ装置自体の小型化を図ることができる。
さらに、モータ電流を確実または正確に検出できるので、その電流に基づいてモータの位置および回転数を正確に制御できる。
図1は、本発明の実施形態のインバータ装置1の構成図である。ここで、インバータ装置1の基本構成は、図15(b)に示した従来のインバータ装置と同じであり、スイッチ回路101、電流センサとしてのシャント抵抗R、制御回路10を備える。ただし、制御回路10は、従来のインバータ装置に設けられている制御回路102とは異なる。
インバータ装置1に接続する負荷は、モータ(例えば、3相のDCブラシレスモータ)112であるものとする。また、モータ112の回転数は、位置センサレス制御(正弦波ベクトル制御)により制御されるものとする。
スイッチ回路101は、直流電源111に接続されており、U相用ブリッジ回路、V相用ブリッジ回路、W相用ブリッジ回路を備える。各ブリッジ回路は、それぞれ、互いに直列に接続された1組のスイッチ素子を備えている。すなわち、U相用ブリッジ回路は、上アームスイッチ素子31Hおよび下アームスイッチ素子31Lを備える。同様に、V相用ブリッジ回路は、上アームスイッチ素子32Hおよび下アームスイッチ素子32Lを備えており、W相用ブリッジ回路は、上アームスイッチ素子33Hおよび下アームスイッチ素子33Lを備えている。そして、各ブリッジ回路の出力が、モータ112に接続されている。
図2は、インバータ装置1における電流検出について説明する図である。なお、スイッチ回路101を構成するスイッチ素子31H、31L、32H、32L、33H、33Lは、それぞれ制御回路10により制御される。
図2(a)に示す例では、上アームスイッチ素子31Hがオン状態であり、且つ上アームスイッチ素子32H、33Hがオフ状態である(このとき、下アームスイッチ素子31Lがオフ状態であり、且つ下アームスイッチ素子32L、33Lがオン状態である)。この場合、電流は以下の経路で流れる。直流電源111→上アームスイッチ素子31H→モータ112のU相コイル→モータ112のV相/W相コイル→下アームスイッチ素子32L、33L→シャント抵抗R→直流電源111。したがって、シャント抵抗Rを介して流れる電流は、モータ112のU相電流Iuに相当する。すなわち、シャント抵抗Rの両端電圧からU相電流Iuを検出できる。
図2(b)に示す例では、上アームスイッチ素子31H、32Hがオン状態であり、且つ上アームスイッチ素子33Hがオフ状態である(このとき、下アームスイッチ素子31L、32Lがオフ状態であり、且つ下アームスイッチ素子33Lがオン状態である)。この場合、電流は以下の経路で流れる。直流電源111→上アームスイッチ素子31H、32H→モータ112のU相/V相コイル→モータ112のW相コイル→下アームスイッチ素子33L→シャント抵抗R→直流電源111。したがって、シャント抵抗Rを介して流れる電流は、モータ112のW相電流Iwに相当する。すなわち、シャント抵抗Rの両端電圧からW相電流Iwを検出できる。
なお、スイッチ回路101からモータ112へ向かう方向を「正」、モータ112からスイッチ回路101へ向かう方向を「負」と呼ぶことにする。例えば、図2(a)に示す例では、シャント抵抗Rの両端電圧から「+Iu」が検出される。また、図2(b)に示す例では、シャント抵抗Rの両端電圧から「−Iw」が検出される。
このように、スイッチ回路101の状態に決まると、シャント抵抗Rを介して流れる電流に基づいて検出可能なモータ電流の「相(U相、V相、W相)」が一意に決まる。スイッチ回路101の状態と検出可能なモータ電流の「相」との関係を図3に示す。
図4は、制御回路10の構成を示す図である。なお、制御回路10は、例えば、予め記述されたプログラムを実行するCPU、およびそのCPUにより使用されるメモリ等により実現される。
電流検出部11は、A/D変換器を備え、シャント抵抗Rの両端電圧をデジタルデータとして取り込む。なお、電流検出部11は、図3に示すテーブルを備えており、シャント抵抗Rの両端電圧値を、PWM信号生成部18の出力に対応する相のモータ電流として取り込む。このとき、電流検出部11は、キャリア周期ごとにU相電流、V相電流、W相電流のうちの2つを検出する。ただし、電流検出部11は、相選択部20により選択された相のモータ電流のみを検出する。
電流推定部12は、電流検出部11により検出された2相分のモータ電流に基づいて、他の相のモータ電流を推定する。たとえば、電流検出部11によりU相電流およびV相電流が検出されたときは、電流推定部12は、それらの電流値に基づいてW相電流を推定する。ここで、3相のモータ電流のうちの2相分の電流値から残りの1相分のモータ電流を推定する技術は公知であり、ここではその説明を省略する。
回転数推定部13は、電流推定部12により得られた3相分のモータ電流に基づいて、モータ112の回転数を推定する。なお、モータ電流に基づいてモータの回転数を推定する技術は公知である。誤差計算部14は、外部から与えられる回転数指令値と回転数推定部13により推定された回転数との誤差を求める。なお、回転数指令値は、例えば、ユーザにより与えられる。変調率制御部15は、誤差計算部14により求められた誤差に基づいて、後述する変調信号を定義する情報である変調率を決定する。
キャリア信号生成部16は、スイッチ回路101の各スイッチ素子をスイッチングするためのキャリア信号(基準周期信号)を生成する。ここで、キャリア信号は、予め決められた一定の周波数の周期信号であって、例えば、電圧値が直線的に上昇する期間と直線的に減少する期間から1周期分の波形が構成される信号(この場合、しばしば「三角波信号」と呼ばれる。)である。
変調信号生成部17は、スイッチ回路101に与えられるPWM信号のデューティを指定する変調信号を生成する。ここで、変調信号は、U相変調信号、V相変調信号、W相変調信号から構成される。なお、U相変調信号、V相変調信号、W相変調信号は、特に限定されるものではないが、一例としては、互いに120度ずつ位相がシフトしたサイン波により実現される。
PWM信号生成部18は、キャリア信号および変調信号に基づいて、スイッチ回路101を構成する各スイッチ素子を制御するためのPWM信号を生成する。ここで、例えば、U相用ブリッジ回路の上アームスイッチ素子31Hを制御するためのPWM信号は、キャリア信号およびU相変調信号から生成される。また、U相用ブリッジ回路の下アームスイッチ素子31Lを制御するためのPWM信号は、上アームスイッチ素子31Hを制御するためのPWM信号の論理を反転させることにより生成される。そして、PWM信号の生成は、V相およびW相についても同様である。なお、各ブリッジ回路を構成する1組のスイッチ素子が同時にオン状態になることを回避するために、それぞれデッドタイムが設けられている。駆動部19は、各PWM信号に基づいてスイッチ回路101を構成する各スイッチ素子を駆動するための駆動信号を生成する。
相選択部20は、上記変調信号の変調率およびその変調信号の位相に基づいて、U相、V相、W相のうちからモータ電流を検出すべき2相を選択し、その結果を電流検出部11に通知する。そして、電流検出部11は、その通知に従って、シャント抵抗Rを利用して得られる電流値を取り込むか否かを判断する。例えば、相選択部20が、モータ電流を検出すべき相として「U相」および「V相」を選択したものとする。この場合、電流検出部11は、U相電流またはV相電流を検出するタイミングを指示する信号をPWM信号生成部18から受け取ったときは、シャント抵抗Rの両端電圧値を「U相電流」または「V相電流」として取り込む。しかし、W電流を検出するタイミングを指示する信号をPWM信号生成部18から受け取ったときは、シャント抵抗Rの両端電圧値を取り込まないようにする。すなわち、相選択部20により選択された相以外の電流は検出しない。
なお、上記構成の制御回路10は、誤差計算部14により得られる誤差がゼロになるようにPWM信号を生成する。この結果、モータ112の回転数は、指令値に一致する。
図5は、PWM信号生成部18の動作を説明する図である。ここで、U相変調信号、V相変調信号、W相変調信号は、互いに120度ずつ位相がシフトしたサイン波により実現されている。
PWM信号生成部18は、所定時間間隔ごとに、キャリア信号および各変調信号のレベルを比較する。そして、ここでは、各PWM信号は、キャリア信号のレベルが対応する変調信号のレベルよりも高いときに「L」を表し、キャリア信号のレベルが対応する変調信号のレベルよりも低いときに「H」を表している。ただし、各PWM信号は、キャリア信号のレベルが対応する変調信号のレベルよりも高いときに「H」を表し、キャリア信号のレベルが対応する変調信号のレベルよりも低いときに「L」を表すようにしてもよい。
図6は、変調信号の変調率および位相について説明する図である。ここでは、図5に示した変調信号の変調率が変化した場合の波形が描かれている。
上述したように、変調信号の変調率は、例えば、モータ回転数の指令値とモータ回転数の推定値との誤差に基づいて変調率制御部15により決定される。一例としては、モータ回転数の推定値が指令値よりも低かったときは、変調率を現在の値よりも所定値だけ大きくする。反対に、モータ回転数の推定値が指令値よりも高かったときは、変調率を現在の値よりも所定値だけ小さくする。そして、この処理を所定時間毎に繰り返すことにより、モータ回転数を指令値に一致させるための適切な変調率が得られる。
変調信号生成部17は、変調率に応じた変調信号を生成する。この実施例では、変調率は、変調信号として生成されるサイン波の振幅を指定するものとする。例えば、図6に示す例では、図5に示した例と比較して大きな変調率が与えられ、その結果大きな振幅の変調信号が生成されている。なお、キャリア信号は、その周波数および波形が固定されているものとする。また、キャリア信号の周波数は、一般に、変調信号のそれと比べて遙かに高速である。
上述のようにして変調率が変わることにより変調信号の振幅が変わると、それに応じて各相のPWM信号もそれぞれ変化することになる。たとえば、図5および図6において、対応するPWM信号のデューティがそれぞれ互いに異なっている。そして、各相のPWM信号が変化すると、それに応じてスイッチ回路101を構成する各スイッチ素子の状態が変わるので、図3に示したように、検出可能な相電流(U相電流、V相電流、W相電流)も異なることになる。よって、変調率制御部15は、誤差に基づいて決定した変調率を相選択部20に通知する。
また、変調信号生成部17は、変調信号を生成する際に、その変調信号の位相を表す情報を相選択部20に通知する。ここで、上述の実施例の変調信号は、サイン波を記述した数式により表される。そして、変調信号生成部17は、その数式に基づいて、所定時間ごとに位相および対応する振幅値のデジタルデータを出力する。すなわち、このデータ列により変調信号が現される。そして、相選択部20は、変調信号生成部17から通知される情報に基づいて、変調信号の現在の位相を認識する。具体的には、相選択部20は、たとえば、図6に示すように、1周期分の変調信号を12個の位相領域0〜位相領域11に分割し、変調信号の現在の位相がどの位相領域に属するのかを検出する。
相選択部20は、通知された変調信号の変調率および位相に基づいて、シャント抵抗Rを用いてモータ電流を検出すべき相を選択する。ここで、「モータ電流を検出すべき相」とは、例えば、各キャリア周期内で図3に示す6状態のうちのいずれかが所定時間以上継続するような相をいう。そして、相選択部20は、例えば、以下の2つの判定結果に基づいてモータ電流を検出すべき相を選択する。
判定基準1:変調信号の変調率が予め決められた閾値よりも大きいか否か
判定基準2:変調信号の現在の位相が位相領域0〜11の中のいずれの領域に属するか
そして、電流検出部11は、相選択部20によって選択された相のモータ電流を検出する。なお、相を選択する方法については、後述の実施例において説明する。
図7は、電流検出部11のブロック図である。図7において、U相用サンプルホールド回路41、V相用サンプルホールド回路42、W相用サンプルホールド回路43には、それぞれシャント抵抗Rの両端電圧が与えられる。ここで、シャント抵抗Rの両端電圧は、不図示のアンプにより増幅された後にこれらのサンプルホールド回路41〜43に与えられるようにしてもよい。
デコーダ44には、相選択部20から通知される相情報、およびPWM信号生成部18により生成されるスイッチ制御信号(上述したPWM信号、またはその一部に相当する)が与えられる。ここで、スイッチ制御信号は、スイッチ回路101を構成する各スイッチ素子のオン/オフ状態を指示する。また、デコーダ44は、図3に示すテーブルを備えている。そして、デコーダ44は、与えられるスイッチ信号に基づいて電流を検出すべき相を認識し、対応するサンプルホールド回路41〜43にホールド指示を送る。例えば、スイッチ制御信号が図3に示すテーブルの上から2番目の状態を示していた場合は、デコーダ44は、W相サンプルホールド回路43に対してホールド指示を与える。これにより、W相サンプルホールド回路43は、シャント抵抗Rの両端電圧を「W相モータ電流Iw」として取り込み、電流推定部12に通知する。
ただし、デコーダ44は、ホールド指示を生成する際、相選択部20から通知される相情報を参照する。すなわち、デコーダ44は、スイッチ制御信号に基づいて得られる「電流を検出すべき相」が、相情報により通知された「相」であった場合に限り、ホールド指示を生成する。例えば、相選択部20により「U相、V相」が選択されていたとすると、スイッチ制御信号に基づいて「W相」が得られたとしても、ホールド指示を生成しない。これは、図16を参照しながら言及した問題点を回避するためである。すなわち、電流検出をするために十分な時間が得られない相についての電流検出を行うことなく、電流検出をするために十分な時間が得られる相についてのみ電流検出を行うようにすることを実現するものである。
このように、実施形態のインバータ装置では、相選択部20により選択された相についてのみモータ電流の検出を行う。したがって、モータ電流を検出すべき相を適切に選択すれば、不十分なモニタ時間での電流検出を回避することができ、常に、正確な電流検出が可能になる。以下、電流検出可能な相の選択方法について、実施例を参照しながら説明する。
図8〜図9は、実施例のインバータ装置において生成される変調信号を示す図である。ここで、図8(a)、図8(b)、図9(a)、および図9(b)は、それぞれ変調率が「1.0」「0.8」「0.5」「0.2」である場合の1周期分の変調信号の波形を示している。
図5〜図6に示した例では、変調信号がサイン波である場合を示したが、本実施例の変調信号は、「2相変調」と呼ばれる方式で生成されるものとする。2相変調では、1周期の変調信号の位相(モータの電気角に相当する)が6等分され、各位相領域においてそれぞれ所定の1つの変調信号が「0」又は「1」に固定される。例えば、図8〜図9に示す例では、位相が30度〜90度の領域においては、W相変調信号が「1」に固定され、U相変調信号およびV相変調信号がそれぞれ「0」〜「1」の間で変化している。また、例えば、位相が90度〜150度の領域においては、V相変調信号が「0」に固定され、U相変調信号およびW相変調信号がそれぞれ「0」〜「1」の間で変化している。
なお、ある変調信号が「0」に固定されている期間は、その変調信号およびキャリア信号に基づいて生成されるPWM信号のデューティは0パーセントになる。また、ある変調信号が「1」に固定されている期間は、その変調信号およびキャリア信号に基づいて生成されるPWM信号のデューティは100パーセントになる。すなわち、これらの期間は、スイッチ回路101におけるスイッチング回数が少なくなる。よって、2相変調方式においては、スイッチング損失が少なくなり、低消費電力化が図れる。
図10〜図12は、図8〜図9に示した変調信号の変調率と検出可能なモータ電流との関係を表している。ここで、図10、図11、図12は、それぞれ、変調率が「1.0」「0.6」「0.2」の場合の関係を示している。また、図10〜図12では、図13に示す「位相領域6」における状態が描かれている。なお、図13に示す位相領域0〜位相領域11は、1周期分の変調信号を30度ずつ分割することによって得られる。さらに、この実施例では、キャリア信号および各相の変調信号によって生成されるU相用PWM信号、V相用PWM信号、W相用PWM信号は、互いに120度ずつその位相がシフトされている。
図13に示す位相領域6では、U相変調信号が「1」に固定されている。したがって、この期間は、図10〜図12に示すように、PWM−U(上)信号(上アームスイッチ素子31Hを制御するためのPWM信号)のデューティは0パーセントになる。一方、PWM−U(下)信号(下アームスイッチ素子31Lを制御するためのPWM信号)のデューティは100パーセントになる。すなわち、この期間は、上アームスイッチ素子31Hは常にオフ状態であり、下アームスイッチ素子31Lは常にオン状態である。
PWM−V(上)信号(上アームスイッチ素子32Hを制御するためのPWM信号)、PWM−V(下)信号(下アームスイッチ素子32Lを制御するためのPWM信号)、PWM−W(上)信号(上アームスイッチ素子33Hを制御するためのPWM信号)、およびPWM−W(下)信号(下アームスイッチ素子33Lを制御するためのPWM信号)のデューティは、それぞれ、対応する変調信号に応じて時々刻々と変化していく。また、これらのPWM信号のデューティは、変調信号の変調率に依存する。
スイッチ回路101を構成する各スイッチ素子31H、31L、32H、32L、33H、33Lは、これらのPWM信号によって制御される。そして、これら6個のスイッチ素子の状態が決まると、図3に示したように、シャント抵抗Rを利用して検出可能なモータ電流が一意に決まる。例えば、図10の時刻Aにおいては、スイッチ回路101を構成するスイッチ素子の状態は以下の通りである。
U相上アームスイッチ素子31H:オフ
U相下アームスイッチ素子31L:オン
W相上アームスイッチ素子33H:オン
W相下アームスイッチ素子33L:オフ
V相上アームスイッチ素子32H:オン
V相下アームスイッチ素子32L:オフ
そして、この場合、シャント抵抗Rを利用して検出可能なモータ電流は、「−Iu」である。
また、例えば、図10の時刻Bにおいては、スイッチ回路101を構成するスイッチ素子の状態は以下の通りである。
U相上アームスイッチ素子31H:オフ
U相下アームスイッチ素子31L:オン
W相上アームスイッチ素子33H:オン
W相下アームスイッチ素子33L:オフ
V相上アームスイッチ素子32H:オフ
V相下アームスイッチ素子32L:オン
そして、この場合、シャント抵抗Rを利用して検出可能なモータ電流は、「+Iw」である。なお、図10〜図12において、各相のモータ電流(U相電流、V相電流、W相電流)が検出可能な期間をHレベルで示している。
位相領域6において変調信号の変調率が高いときは、図10に示すように、その領域内の全期間に渡って、各キャリア周期内でU相およびV相のモータ電流(−Iu、+Iw)を検出できる。これに対して、変調率が低いときは、図12に示すように、その領域内の全期間に渡って、各キャリア周期内でV相およびW相のモータ電流(+Iv、+Iw)を検出できる。なお、変調率が中間レベルのときは、図11に示すように、各キャリア周期においてU相、V相およびW相のモータ電流(−Iu、+Iv、+Iw)を検出できる。なお、「電流を検出できる」とは、直流側の電流に基づいて3相の交流の中の所定の相の電流を検出できる期間が、各キャリア周期内で一定時間(例えば、シャント抵抗Rの両端電圧値をデジタルデータに変換するためのA/D変換器の動作時間)よりも長いことをいうものとする。
したがって、相選択部20は、変調信号の位相(または、位相領域)およびその変調信号の変調率が通知されれば、いずれのキャリア周期においてもシャント抵抗Rを用いてモータ電流を確実に検出できる「相(U相、V相、W相)」を選択できる。すなわち、この手法に基づいて電流検出を行えば、常に、3相交流のうちの2相分のモータ電流を確実に検出できる。
このように、上述の実施例では、図13に示す位相領域6において、変調信号の変調率が大きいときは、検出すべきモータ電流として「−Iu」及び「+Iw」が選択され、変調信号の変調率が小さいときは、「+Iv」及び「+Iw」が選択される。同様に、他の位相領域においても、それぞれ、変調信号の変調率に応じて検出可能な相を予め求めることができる。各位相領域について、電流検出可能な相を求めた結果を図14に示す。
なお、図14に示すテーブルは、例えば、相選択部20に中に格納されるようにしてもよい。この場合、相選択部20は、変調率制御部15において決定された変調率、およびPWM信号生成部18により生成されたスイッチ制御信号を受け取ると、それらに対応する「相」を図14に示すテーブルから取り出す。そして、そのようにして選択した相情報を電流検出部11へ通知する。
ただし、図14に示す関係は、メモリ等に記憶しておく必要はなく、電流検出可能な相を求めるための式や手順に則って、順次、「相」を選択するようにしてもよい。
この実施例において、変調信号の変調率を判断するための閾値は、例えば、「0.6」及び「0.7」である。ここで、2つの閾値を設定する理由は、相選択動作にヒステリシスを持たせるためである。そして、例えば、変調信号の位相が「位相領域3」に属している期間に、変調率が0.6よりも小さかったとすると、相選択部20は、検出可能な相電流として「−Iu」および「−Iw」を選択する。これに対して、この期間に、変調率が0.7よりも大きかったとすると、検出可能な相電流として「+Iv」および「−Iw」が選択される。
また、実施形態のインバータ装置では、上述のように、変調信号の位相および変調率に基づいて検出可能なモータ電流の相が決まる。したがって、図4において、相選択部20は、変調信号の変調率を表す情報を変調率制御部15から受け取り、変調信号の位相を表す情報を変調信号生成部17から受け取ると、図14に示すテーブルを参照して相選択を行い、その結果を電流検出部11に通知する。そして、電流検出部11は、U相〜W相のモータ電流のなかから通知された2相分のモータ電流を検出し、電流推定部12は、それら2相分のモータ電流に基づいて残りの相のモータ電流を推定する。
なお、変調信号の位相は、モータの電気角に相当する。すなわち、実施形態のインバータ装置では、駆動すべきモータの電気角および変調信号の変調率に基づいて検出可能なモータ電流の相を決めていることになる。
ところで、図3に示したように、スイッチ回路101を構成するすべてのスイッチ素子の状態を認識すれば、モータ電流を検出可能な相を一意に特定できる。しかし、PWM信号により制御されるスイッチ回路101の状態が保持される時間は、しばしば、電流を検出するために十分な時間(例えば、A/D変換器の動作時間)よりも短くなってしまう。このため、従来のインバータ装置では、あるキャリア周期においてモータ電流を検出できなかったときは、前回のキャリア周期で検出したモータ電流から現在のモータ電流を推定したり、PWM信号のデューティを強制的に変更する等の措置がとられていた。したがって、このようにして得られたモータ電流値に基づいてモータ制御を行うと、回転の安定性が損なわれることがあった。
これに対して、本発明のインバータ装置では、各キャリア周期において、常に、モータ電流を確実に且つ正確に検出できるので、変調信号に基づいて生成されるPWM信号をそのまま使用することができ、モータの位置推定、回転制御が正確である。
本発明の実施形態のインバータ装置の構成図である。 インバータ装置における電流検出について説明する図である。 スイッチ回路の状態と検出されるモータ電流の関係を示す図である。 制御回路の構成を示す図である。 PWM信号生成部の動作を説明する図である。 変調信号の変調率および位相について説明する図である。 電流検出部のブロック図である。 実施例のインバータ装置において生成される変調信号を示す図(その1)である。 実施例のインバータ装置において生成される変調信号を示す図(その2)である。 変調信号の変調率と検出可能なモータ電流との関係を示す例(その1)である。 変調信号の変調率と検出可能なモータ電流との関係を示す例(その2)である。 変調信号の変調率と検出可能なモータ電流との関係を示す例(その3)である。 変調信号の位相について説明する図である。 変調信号の位相、変調率、検出可能なモータ電流の関係を示す図である。 (a)及び(b)は、既存のインバータ装置の一例の基本構成を示す図である。 図15(b)に示すインバータ装置の動作を説明する図である。
符号の説明
1 インバータ装置
10 制御回路
11 電流検出部
12 電流推定部
13 回転数推定部
14 誤差計算部
15 変調率制御部
16 キャリア信号生成部
17 変調信号生成部
18 PWM信号生成部
19 駆動部
20 相選択部
31H、31L、32H、32L、33H、33L スイッチ素子
41 U相用サンプルホールド回路
42 V相用サンプルホールド回路
43 W相用サンプルホールド回路
44 デコーダ
101 スイッチ回路
111 直流電源
112 モータ


Claims (5)

  1. 直流電源の出力を3相交流に変換するインバータ装置であって、
    上記直流電源に接続され、複数のスイッチ素子を含むスイッチ回路と、
    上記直流電源と上記スイッチ回路との間に設けられた電流センサと、
    上記電流センサを用いて負荷電流を検出し、その検出した負荷電流に基づいて上記複数のスイッチ素子をオン/オフ制御するための制御信号を生成する制御手段、
    を備え、
    上記制御手段は、上記3相交流を生成するための変調信号を定義する変調率およびその変調信号の位相に基づいて、上記3相のうちから負荷電流を検出すべき相を選択する
    ことを特徴とするインバータ装置。
  2. 上記電流センサは、1つのシャント抵抗である
    ことを特徴とする請求項1に記載のインバータ装置。
  3. 上記制御手段は、基準周期信号と各相の変調信号とを比較することにより、上記制御信号としてのPWM信号を生成する
    ことを特徴とする請求項1に記載のインバータ装置。
  4. 上記スイッチ回路に接続される負荷は3相モータであり、
    上記変調率は、上記3相モータの回転数を指示する回転数指令値と上記3相モータの回転数との誤差に基づいて決定される
    ことを特徴とする請求項1に記載のインバータ装置。
  5. スイッチ回路を含むインバータ装置を使用して3相モータを制御する方法であって、
    3相交流を生成するための変調信号を定義する変調率およびその変調信号の位相に基づいて、上記3相のうちから負荷電流を検出すべき2相を選択し、
    直流電源と上記スイッチ回路との間に設けられる1つのシャント抵抗を利用して上記選択した2相のモータ電流を検出し、
    それら検出した負荷電流に基づいて上記スイッチ回路を制御するための制御信号を生成する
    ことを特徴とするモータ制御方法。


JP2003432709A 2003-12-26 2003-12-26 インバータ装置およびモータ制御方法 Expired - Fee Related JP4396270B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003432709A JP4396270B2 (ja) 2003-12-26 2003-12-26 インバータ装置およびモータ制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003432709A JP4396270B2 (ja) 2003-12-26 2003-12-26 インバータ装置およびモータ制御方法

Publications (2)

Publication Number Publication Date
JP2005192358A true JP2005192358A (ja) 2005-07-14
JP4396270B2 JP4396270B2 (ja) 2010-01-13

Family

ID=34790325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003432709A Expired - Fee Related JP4396270B2 (ja) 2003-12-26 2003-12-26 インバータ装置およびモータ制御方法

Country Status (1)

Country Link
JP (1) JP4396270B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082355A (ja) * 2005-09-15 2007-03-29 Mitsubishi Electric Corp インバータ制御装置
JP2007129877A (ja) * 2005-11-07 2007-05-24 Toshiba Corp モータ制御装置およびファンモータ
WO2009063886A1 (ja) 2007-11-16 2009-05-22 Daikin Industries, Ltd. モータ電流算出装置ならびに空気調和装置
WO2009063927A1 (ja) 2007-11-16 2009-05-22 Daikin Industries, Ltd. モータ電流検出装置ならびに空気調和装置
JP2011097677A (ja) * 2009-10-27 2011-05-12 Mitsubishi Electric Corp モーター駆動装置
CN102624327A (zh) * 2011-01-28 2012-08-01 株式会社丰田自动织机 逆变器单元
US8400083B2 (en) 2007-10-23 2013-03-19 Daikin Industries, Ltd. Current detecting device, air conditioning apparatus, correction constant calculating system and correction constant calculating method
KR101301491B1 (ko) * 2007-03-24 2013-08-29 삼성전자주식회사 모터의 제어장치와 이를 이용하는 세탁기 및 이를 이용하는세탁기의 제어방법
KR20140052138A (ko) * 2012-10-19 2014-05-07 학교법인 두원학원 전류 검출용 션트저항을 포함하는 전동기용 인버터장치
US9531309B2 (en) 2013-07-23 2016-12-27 Aisin Aw Co., Ltd. Drive device
US9634590B2 (en) 2013-07-23 2017-04-25 Aisin Aw Co., Ltd. Drive device
US9634589B2 (en) 2013-07-23 2017-04-25 Aisin Aw Co., Ltd. Drive device
CN109729757A (zh) * 2016-08-08 2019-05-07 爱信精机株式会社 马达控制装置
JP2022177815A (ja) * 2021-05-18 2022-12-01 ダイキン工業株式会社 電流検出方法、および電力変換装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4643404B2 (ja) * 2005-09-15 2011-03-02 三菱電機株式会社 インバータ制御装置
JP2007082355A (ja) * 2005-09-15 2007-03-29 Mitsubishi Electric Corp インバータ制御装置
JP2007129877A (ja) * 2005-11-07 2007-05-24 Toshiba Corp モータ制御装置およびファンモータ
KR101301491B1 (ko) * 2007-03-24 2013-08-29 삼성전자주식회사 모터의 제어장치와 이를 이용하는 세탁기 및 이를 이용하는세탁기의 제어방법
US8400083B2 (en) 2007-10-23 2013-03-19 Daikin Industries, Ltd. Current detecting device, air conditioning apparatus, correction constant calculating system and correction constant calculating method
WO2009063886A1 (ja) 2007-11-16 2009-05-22 Daikin Industries, Ltd. モータ電流算出装置ならびに空気調和装置
WO2009063927A1 (ja) 2007-11-16 2009-05-22 Daikin Industries, Ltd. モータ電流検出装置ならびに空気調和装置
US9093915B2 (en) 2007-11-16 2015-07-28 Daikin Industries, Ltd. Motor current detecting device and air conditioning apparatus
JP2011097677A (ja) * 2009-10-27 2011-05-12 Mitsubishi Electric Corp モーター駆動装置
JP2012157212A (ja) * 2011-01-28 2012-08-16 Toyota Industries Corp インバータ装置
DE102012201184A1 (de) 2011-01-28 2012-08-02 Kabushiki Kaisha Toyota Jidoshokki Invertereinheit
US8604732B2 (en) 2011-01-28 2013-12-10 Kabushiki Kaisha Toyota Jidoshokki Inverter unit
KR101344613B1 (ko) 2011-01-28 2013-12-26 가부시키가이샤 도요다 지도숏키 인버터 장치
CN102624327A (zh) * 2011-01-28 2012-08-01 株式会社丰田自动织机 逆变器单元
KR20140052138A (ko) * 2012-10-19 2014-05-07 학교법인 두원학원 전류 검출용 션트저항을 포함하는 전동기용 인버터장치
US9531309B2 (en) 2013-07-23 2016-12-27 Aisin Aw Co., Ltd. Drive device
US9634590B2 (en) 2013-07-23 2017-04-25 Aisin Aw Co., Ltd. Drive device
US9634589B2 (en) 2013-07-23 2017-04-25 Aisin Aw Co., Ltd. Drive device
CN109729757A (zh) * 2016-08-08 2019-05-07 爱信精机株式会社 马达控制装置
CN109729757B (zh) * 2016-08-08 2022-04-08 株式会社爱信 马达控制装置
JP2022177815A (ja) * 2021-05-18 2022-12-01 ダイキン工業株式会社 電流検出方法、および電力変換装置

Also Published As

Publication number Publication date
JP4396270B2 (ja) 2010-01-13

Similar Documents

Publication Publication Date Title
JP2005192335A (ja) インバータ装置およびモータ制御方法
JP4396270B2 (ja) インバータ装置およびモータ制御方法
JP4985395B2 (ja) 電流制御装置とその電流オフセット補正方法
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
JP2002291284A (ja) 電動機の電流検出方法及び制御装置
JP2010011540A (ja) モータ制御装置
JPWO2014024460A1 (ja) モータ制御装置
JP2005269880A (ja) 3相電圧型pwmインバータ装置
JP2005045848A (ja) 交流電動機の制御装置,交流電動機の制御方法及びモジュール
JP5109354B2 (ja) モータインバータ装置及びその制御方法
US6362593B1 (en) Apparatus and method for compensating dead time of motor
JP2007110811A (ja) インバータ装置とその制御方法
JP2008172948A (ja) ブラシレスモータの制御装置
KR20040024446A (ko) 전동기의 제어 장치
JP4178946B2 (ja) インバータ装置及びモータ電流検出方法
JP6024245B2 (ja) インバータ制御装置
WO2020059814A1 (ja) モータ制御装置、モータシステム及びインバータ制御方法
WO2020095390A1 (ja) モータ駆動装置およびそれを用いた空気調和機
JP2012182874A (ja) モータ制御装置
JP2004208395A (ja) インバータの電流検出装置
JP2008043048A (ja) モータ駆動用インバータ制御装置
JP4578500B2 (ja) インバータ制御装置並びに冷凍空調装置
US10381969B2 (en) Control device and control method
JP2008160915A (ja) モータ駆動用インバータ制御装置および該装置を用いた機器
JP2012205370A (ja) モータの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4396270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees