JP2005187325A - 水素と電気を同時に発生させるシステム及び方法 - Google Patents

水素と電気を同時に発生させるシステム及び方法 Download PDF

Info

Publication number
JP2005187325A
JP2005187325A JP2004371816A JP2004371816A JP2005187325A JP 2005187325 A JP2005187325 A JP 2005187325A JP 2004371816 A JP2004371816 A JP 2004371816A JP 2004371816 A JP2004371816 A JP 2004371816A JP 2005187325 A JP2005187325 A JP 2005187325A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel
combustion
enriched stream
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004371816A
Other languages
English (en)
Other versions
JP5051974B2 (ja
Inventor
Andrei Colibaba-Evulet
アンドレイ・コリババ−エヴレト
Balachandara Varatharajan
バラチャンドラ・バラサラジャン
Chellappa Balan
シェラパ・バラン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2005187325A publication Critical patent/JP2005187325A/ja
Application granted granted Critical
Publication of JP5051974B2 publication Critical patent/JP5051974B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0877Methods of cooling by direct injection of fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/678Aviation using fuels of non-fossil origin

Abstract

【課題】 電気と水素を同時に発生させるシステムは、燃料濃厚混合物を燃焼させ、水素を豊富に含有する部分酸化燃焼生成物を生成する一次燃焼システムに関する。
【解決手段】 システムは、部分酸化燃焼生成物の中へ燃料及び蒸気を噴射して(82,84)、混合生成物流れを生成する少なくとも1つの噴射システムを具備する。混合生成物流れは、水素濃縮流れ(28)を生成するために改質装置(16)において改質される。水素濃縮流れの少なくとも一部は電気を発生するために二次燃焼システム(38)で燃焼され、水素濃縮流れの少なくとも第2の部分は水素を生成するために水素処理システム(40)へ送られる。
【選択図】 図1

Description

本発明は水素と電気を同時に発生させるシステム及び方法に関する。特に、本発明は、水素と電気を同時に発生させるために濃厚燃焼‐急冷‐改質装置を使用して水素濃縮燃料ガスを生成すること及び水素濃縮燃料ガスを利用することに関する。
燃料ガスは、場合によっては、ガスタービンに適する燃料源であることが知られている。通常、そのような燃料ガスは、約400℃〜約800℃の範囲の温度で触媒燃焼プロセスを使用して生成される。それらの温度が窒素酸化物の形成には低いため、窒素酸化物は良好に最小限に抑えられる。しかし、そのような低温と低圧はタービンに動力を供給するには不十分であり、タービンへの動力供給に補助バーナを採用する必要がある。燃焼触媒を含む燃焼ゾーンであって、蒸気改質作用をも示す燃焼ゾーンの中で燃焼される混合物を形成するために、触媒燃焼プロセスの中には、供給材料ガスと空気を予備混合するプロセスがある。燃焼ゾーンにおいて混合物の部分燃焼と改質が起こり、それにより、高温改質ガス流れが形成される。この高温改質ガス流れの一部は、前述の燃焼ゾーンへ再循環される。残る高温改質ガスは、燃料ガスとしてガスタービン燃焼器へ送り出される。他のプロセスにおいては、燃料ガスはアルコール及びアルデヒドを燃焼させる補助バーナとの組み合わせで燃焼される。
ガスタービンを使用して電気を発生することに関連する上記のプロセスは、無触媒プロセスを使用して改質ガス(すなわち、燃料ガス又は合成ガス)を形成できることを教示していない。更に、ガスタービンシステムは電気の需要と、改質ガスの形成と、効率を向上させる動作上の考慮事項との相互関係の問題に対処していない。一般に、システムは、定常状態にあるとき、ほぼ常時高い効率で動作する。必要とされているのは、触媒燃焼プロセスが要求されずに、タービン燃焼器で燃焼させるための改質ガスを生成する方法である。更に、必要とされているのは、プロセスをほぼ定常状態で動作させることを可能にする一方で、電気需要の変動に対応するのに適するプロセスである。
水素の経済性が明らかになるにつれて、電気と同時に水素を生成することが業界にとって好都合になるであろう。燃料から触媒改質によって水素を生成することは周知のプロセスである。必要とされているのは、水素を形成するプロセスが、事実上、電気の発生の副産物であり、電気と水素の同時発生が電気及び水素の双方の生産コストを低減し、システムの効率及び動作性の向上をもたらすような水素生成方法である。
特表平11−507428号公報
電気と水素を同時に発生させるシステムが開示され、システムは、濃厚燃料混合物を燃焼させ、水素を豊富に含有する部分酸化燃焼生成物を生成する少なくとも1つの一次燃焼システムを具備する。システムは、部分酸化燃焼生成物の中へ燃料及び蒸気を噴射して、混合生成物流れを生成する少なくとも1つの噴射システムを更に具備する。混合生成物流れは、水素濃縮流れを生成するために改質装置において改質される。水素濃縮流れの少なくとも一部は電気を発生するために二次燃焼システムで燃焼され、水素濃縮流れの少なくとも第2の部分は水素を生成するために水素処理システムへ送られる。
別の面においては、電気と水素を同時に発生させるシステムは、燃料濃厚混合物を燃焼させ、水素を豊富に含有する部分酸化燃焼生成物を生成する1つの一次燃焼システムと、部分酸化燃焼生成物の中へ燃料及び蒸気を噴射して、混合生成物流れを生成する1つの噴射システムと、混合生成物流れを改質して、水素濃縮流れを生成する少なくとも1つの改質装置とを具備する複数の繰り返し装置を具備する。システムは、水素濃縮流れの少なくとも一部を燃焼させて、電気を発生する二次燃焼システムと、水素濃縮流れの少なくとも第2の部分を受け入れて、その水素濃縮流れから水素を生成する水素処理システムとを更に具備する。1つの繰り返し装置の改質装置からの水素濃縮流れは、次の繰り返し装置の燃焼システムへ送り出される。
更に別の面においては、電気と水素を同時に発生させる方法は、燃料濃厚混合物を燃焼させ、それにより、水素を豊富に含有する部分酸化燃焼生成物を生成する工程を含む。混合生成物流れを生成するために、前記部分酸化燃焼生成物の中へ燃料及び蒸気が噴射される。方法は、混合生成物流れを改質して、水素濃縮流れを生成することを更に含む。これに続く工程は、水素濃縮流れの少なくとも一部を燃焼させて、電気を発生することと、水素濃縮流れの少なくとも第2の部分を処理して、その水素濃縮流れから水素を生成することとを含む。
本発明の上記の特徴、面及び利点並びにその他の特徴、面及び利点は、添付の図面を参照して以下の詳細な説明を読むことにより更に良く理解されるであろう。図面中、同じ図中符号は図1〜図4を通して同じ部分を表す。
本発明の理解を助けるために、以下、図1〜図4に示される本発明のいくつかの実施例及びそれを説明するために使用される特定の用語を参照する。ここで使用される用語は説明を目的としており、本発明を制限するために使用されるのではない。ここで開示される特定の構造及び機能の詳細は本発明を制限すると解釈されてはならず、単に、本発明を様々に採用することを当業者に教示するための代表的な基準である特許請求の範囲の基準として解釈されるべきである。示される支持構造及び方法のどのような変形又は変更も、また、当業者には通常明白であると思われるような、ここで示されるような本発明の原理の他の適用形態も、本発明の趣旨の範囲内に含まれると考えられる。
図1は、電気と水素を同時に発生させるシステム10の一実施例を示す。同時発生システム10は、燃料濃厚混合物を燃焼させるための少なくとも1つの一次燃焼システム14と、燃料を改質するための少なくとも1つの改質装置16とを具備する。燃料濃厚混合物を燃焼させるために、オキシダント18と燃料20の混合物が一次燃焼システム14の中へ噴射され、水素を豊富に含有する部分酸化燃焼生成物を生成する。同時発生システムは噴射システムを更に具備し、このシステムにおいては、蒸気22と燃料24が部分酸化燃焼生成物の中へ噴射されて、急冷動作により混合生成物流れ12が形成される。混合生成物流れ12は改質装置へ送り出され、改質装置は混合生成物流れ12を改質して、水素濃縮流れ26を生成する。実施例によっては、一次燃焼チャンバ14と改質装置16は共通の燃焼チャンバ46に収納されている。
水素濃縮流れの一部30は、電気を発生するために二次燃焼システム38内で燃焼される。電気は配電網44に接続されてもよい。二次燃焼システム38には補充燃料34及び補充オキシダント36が添加される。水素濃縮流れの第2の部分32は、水素を生成するために水素処理装置40へ送り出される。
図1に示されるような同時発生システム10は、現在可能であるよりも窒素酸化物(NOx)汚染物質の生成を低く抑え、炎の安定性を向上させ且つ一酸化炭素の放出を減少させた上で電気と水素を同時に発生する。この場合、炎温度は、燃料とオキシダントの理論混合比により正規化された一次燃焼システム14における燃料とオキシダントの比の尺度である当量比の関数である。当量比が1.0であるとき、化学量論的状態に到達しており、この時点で炎温度は最高である。当量比が1.0未満であるときには、燃焼器は「希薄」燃焼器であり、当量比が1.0を超えると、燃焼器は「濃厚」燃焼器である。化学量論的炎温度に達するにつれてNOxの生成は非常に急速に増加し、化学量論的炎温度から離れるにつれて、熱NOx生成は急速に減少する。
図1に戻ると、燃焼チャンバ16は燃料濃厚燃焼のための一次燃焼システム14と、一次燃焼システム14からの部分酸化燃焼生成物を改質する改質装置16とを具備する。燃料20は、ガスであってもよい。燃料20とオキシダント18は予備混合され、一次燃焼システム14の中へ噴射される。いくつかの実施例においては、燃料とオキシダントは別個に一次燃焼システム14内へ噴射されてもよい。他のいくつかの実施例では、燃料とオキシダントは一次燃焼システム14へ送り込まれる前に、部分的に又は完全に混合される。燃料20は、例えば、天然ガス、メタン、ナフサ、ブタン、プロパン、ディーゼル油、灯油、航空燃料、石炭由来燃料、生物燃料、酸素添加炭化水素供給材料及びその混合物等の、何らかの適切な気体又は液体であればよい。いくつかの実施例においては、燃料は天然ガス(NG)であるのが好ましい。天然ガスの可用性、低価格及び混合しやすい性質は熱含量の低さを補っており、そのため、天然ガスは燃焼に好ましい燃料となる。オキシダント18は、例えば、空気、酸素濃厚空気、酸素欠乏空気及び/又は純粋な酸素等の、酸素を含有する何らかの適切な気体であればよい。濃厚燃焼段においては、当量比は1より大きく、濃厚炎‐安定限界により近いのが好ましい。いくつかの実施例においては、予備混合された燃料とオキシダントは旋回翼を具備するノズルを介して一次燃焼システム14内へ噴射される。この旋回翼は、流入して来るオキシダントに回転を与える複数の旋回羽根と、回転するオキシダント流れの中で燃料を分配する複数の燃料スポークとを具備する。燃料とオキシダントは、一次燃焼システム14の内部で反応する前に、予備混合燃料ノズルの内部の環状流路で混合される。濃厚燃焼動作の後、噴射システムを使用して急冷工程で燃料24と蒸気22の噴射が実行される。いくつかの実施例においては、燃料と蒸気は、一次燃焼システム14を出る混合生成物流れ12の中へ噴射される。急冷工程で噴射される燃料24は、燃焼チャンバ46の内壁にある1列の開口部を介して燃焼チャンバ46の内部へ噴射されてもよい。燃料24は沸点の低い炭化水素供給原料、天然ガス、メタン、ナフサ、ブタン、プロパン及び/又はその混合物であればよい。いくつかの実施例においては、好ましい燃料は天然ガスであり、その大部分はメタンである。燃料と蒸気のモル比は約1:1であるのが好ましく、混合生成物流れとして指定される高温ガスの流れを生成する。混合生成物流れは改質装置16へ送り出され、そこで、相当に多くの量の水素を含む水素濃縮流れ26が生成される。いくつかの実施例においては、水素濃縮流れ26は一酸化炭素、窒素、平衡定数量の水、二酸化炭素及び未燃燃料を更に含む場合がある。水素濃縮流れ26は二次燃焼システム38及び/又は水素処理装置40へ方向転換されることが可能である。いくつかの実施例においては、水素濃縮流れ26のうちの特定の量を二次燃焼システム38及び/又は水素処理装置40へ方向転換させるために、流れ調整装置28が使用される。流れ調整装置は制御弁、又は水素濃縮流れ26のうちの所定の部分を方向転換させることができる他の何らかの装置であればよい。
ここで開示する同時発生システムでは、一次燃焼システム14及びガスタービン燃焼器54のバーナは燃料とオキシダントの予備混合された混合物を利用し、予備混合渦流システム又は予備混合非渦流システムを具備する。半径流旋回翼、軸流旋回翼及び/又は二重反転旋回翼が利用されてもよい。
別の例による同時発生システム50を示す一実施例が図2に示されている。図2において、同じ特徴は図1と同じ図中符号で示されている。同時発生システム50は、燃料濃厚混合物を燃焼させるための少なくとも1つの一次燃焼システム14と、少なくとも1つの改質装置16とを具備する。オキシダント18と燃料20の混合物は一次燃焼システム14の内部へ噴射され、そこで燃料濃厚混合物が燃焼されて、水素を豊富に含有する部分酸化燃焼生成物が生成される。いくつかの実施例においては、一次燃焼チャンバ14と改質装置16は共通する燃焼チャンバ46内に収納されている。同時発生システムは噴射システムを更に具備し、噴射システムにおいては、部分酸化燃焼生成物の中へ蒸気22と燃料24が噴射され、急冷動作により混合生成物流れ12が生成される。混合生成物流れ12は、混合生成物流れを改質する改質装置16へ送り出され、そこで水素濃縮流れ26が生成される。いくつかの実施例においては、炎温度を制御するために、蒸気の一部52は直接に一次燃焼システム14へ送られる。
水素濃縮流れの一部30は電気を発生するために二次燃焼システム38で燃焼される。発生された電気は配電網44に接続される。二次燃焼システム38には補充燃料34及び補充オキシダント36が添加される。水素濃縮流れの第2の部分32は、水素を生成するために水素処理装置40へ送り出される。
二次燃焼システム38はガスタービン燃焼器54と、同時発生タービン56と、熱回収・水蒸気再循環システム58とを更に具備する。同時発生タービン56へ送り込まれる高温ガスの熱力学的膨張によって、同時発生タービン56を駆動するための動力が発生され、駆動された同時発生タービン56は電気を発生する。同時発生タービン56からの電気は電力供給用配電網44に供給される適切な形態に転換される。
ここで開示される同時発生システムは、一次燃焼システム14における炎温度を低下させることにより、熱NOxの形成が最小限に抑制されるように当量比を制御するシステム及び方法を含む。従来のタービン燃焼器では、主にバーナの炎温度を低下させるという方法により熱NOxを制御していた。燃焼システムの総当量比は(タービン入口温度を制限し且つ効率を最大にするために)希薄でなければならないため、NOxの放出を減少させるためには、まず、より希薄な反応ゾーンを有する燃焼器を設計することである。予備混合システムにおいては、総当量比が希薄であるために、炎温度は低下する。拡散システムでは、水を噴射することにより炎温度を低下させる。炎ゾーンを希薄にすること(すなわち、炎ゾーンの当量比を減少させること)で炎の長さも短縮され、その結果、気体分子がNOx形成温度にとどまる滞留時間が短縮される。これらのメカニズムは共にNOxの形成を減少させる。しかし、全力動作状態で一次ゾーン当量比を減少させると、工業用ガスタービンにおいては燃料流量の大きな減少(40:1)、空気流量の大きな減少(30:1)及び燃料/空気比の大きな減少(5:1)が起こるため、当量比の減少は制限される。従来のガスタービンでは、燃料と空気はタービンの反応ゾーンの中へ直接に噴射される。一般に、燃焼は希薄条件の下で起こるか、あるいは理論混合比条件で又はそれに近い条件で起こり、反応ゾーン内部に相当に大きな再循環が存在している。
NOxの形成を減少させる方法の1つは、炎ゾーンにヒートシンクを導入することにより炎温度を低下させるという方法である。水と蒸気は、共に、この目標を達成するのに非常に効果的である。しかし、タービンを通過する質量流量が追加されるためにガスタービン出力は増大するのであるが、水を燃焼器温度まで加熱するために必要とされる燃料が追加されることにより、全体的な効率は損なわれてしまう。燃焼器の下流側にある高温タービンガス流路領域における付着物や腐食を防止するために、水は必然的にボイラ給水の品質でなければならない。水の噴射は、NOxの形成を減少させるための極めて有効な手段である。しかし、このNOx減少技法を使用する場合には、燃焼器はいくつかの基準を守って設計されなければならない。使用される水の有効性を最大にするために、燃焼器ヘッドエンドの内部へ水を噴射するための追加の流路を付けて燃料ノズルは設計される。従って、水は流入して来る燃焼空気と有効に混合され、それが最高温度になる場所で炎ゾーンに到達する。NOx減少のために噴射される蒸気は、水とほぼ同じ経路をたどって燃焼器ヘッドエンド内部に至る。しかし、熱NOxの形成を減少させるという点で、蒸気は水ほど有効ではない。水の高い潜熱は、炎温度を低下させるときに強力な熱シンクとして作用する。一般に、所定量のNOxを減少させる場合、制御のために要求される蒸気の質量は水の質量と比較して約1.6倍である。ガスタービンのログハードウェアの寿命を考慮すると、燃焼器内部へ噴射できる水又は蒸気の量には実際には限界がある。
燃焼器内部への水及び/蒸気の噴射はいくつかのパラメータに影響を及ぼす。第1に、蒸気を噴射する場合に比べて、水の噴射はより大きな動的作用を励起する傾向にある。燃焼ハードウェアに対する振動圧力負荷は振動強制機能として作用するので、ハードウェアの長い寿命を確保するためには、この負荷を最小にしなければならない。多数ノズル燃料システムの追加等、燃焼器構造の変形によって、動圧作用を著しく減少させることが可能である。開示される同時発生システムにおいては、ガスタービン燃焼器54ではなく、燃焼チャンバ46の内部へ水及び/又は蒸気が噴射される。このような分離により、動的振動をより有効に減衰し、大部分を隔離することができる。第2に、燃焼器に添加される水及び/又は蒸気の量が多くなるにつれて、一酸化炭素の急激な増加が観測されるポイントに到達する。通常、一酸化炭素の放出も増加することから、従来のタービン燃焼器ではこのような事態は望ましくない。しかし、開示される同時発生システムにおいては、一酸化炭素はそれほど大きな問題ではない。これは、水素濃縮流れ26が直接に同時発生タービンへ送り込まれないためである。水素濃縮流れ26の一部はガスタービン燃焼器54へ方向転換され、ガスタービン燃焼器54で酸化雰囲気と接触する。それにより、一酸化炭素は酸化される。水素濃縮流れの第2の部分は、水性ガス触媒媒体を具備する水素発生器へ導かれ、そこで一酸化炭素は二酸化炭素に転換される。第3に、水及び/又は蒸気の噴射が増加すると、燃焼器の動作の安定性が低下し、最終的には炎が吹き消されるような段階に達する。第4に、未燃炭化水素(UHCs)が増加する可能性があるが、特に煙の燃料組成を適切に選択することにより、これを最小限に抑えることができる。
図2に戻ると、いくつかの実施例においては、ガスタービン燃焼器54は希薄予備混合燃焼アセンブリ(図示せず)と、二次燃料噴射機アセンブリ又は希薄直接噴射(LDI)燃料噴射器アセンブリと、燃焼の高温補助ガスをタービンノズル及びタービンブレードへ流通させる転移部材とを具備する。希薄予備混合燃焼器アセンブリはケーシングと、複数の予備混合燃料ノズルと、スリーブ内部の内筒とを具備する。希薄予備混合燃焼器アセンブリの燃焼は内筒の内部で起こる。燃焼オキシダントは内筒の内部で流れスリーブを介して誘導され、複数の開口部を通って内筒に入る。燃焼反応は内筒の内部で起こり、ガスタービンを駆動する熱を放出する。希薄予備混合燃焼器アセンブリに対する高圧オキシダントは流れスリーブに入り、環状プレナムから転移部材緩衝スリーブに入る。この高圧オキシダントは、一連の羽根及びブレードを利用する圧縮機により供給される。各々の予備混合燃料ノズルは旋回翼を含む。旋回翼は、流入して来るオキシダントに回転を与える複数の旋回羽根と、好ましくは天然ガスである燃料を回転しているオキシダント流れに配分する複数の燃料スポークとを具備する。補充燃料34と補充オキシダント36は必要に応じて予備混合され、ガスタービン燃焼器54に添加される。そこで、燃料とオキシダントは予備混合燃料ノズル内部の環状流路で混合された後、ガスタービン燃焼器54の一次反応ゾーンの内部で反応し、高温補充ガスを生成する。一次反応ゾーンは、同様に加圧されている燃焼チャンバからの高温ガスの流れで充満されている。ガスタービン燃焼器54はガスタービンの高負荷条件、中間範囲負荷動作条件及び低負荷動作条件で動作することが可能である。動作中、供給源の組み合わせ(すなわち、水素濃縮流れ30と、ガスタービン燃焼器54で生成される高温補充ガス)が燃料とオキシダントの1:1の理論混合比より低い、言い換えれば、相対的に希薄である燃焼混合物を生成するように、炎の希薄度及び補充ガスの流量が選択される。ガスタービン燃焼器54は同時発生タービン56に動力を供給し、それにより電気を発生する。電気は、配電網44に供給されることが可能である。それにより発生される潜熱は排気ガスから回収されることが可能であり、また、それにより発生される水は熱回収・水蒸気再循環システム58を介して回収され、再循環されることが可能である。
ガスタービン燃焼器54に入る水素濃縮流れ30は燃料を豊富に含み、タービンに動力を供給するほど十分に高温ではなく、十分に加圧されていない。従って、燃料希薄炎の中で補充燃焼燃料34及び補充オキシダント36を添加される。ガスタービン燃焼器54に補充燃料及び補充オキシダントが添加された後、ガスタービン燃焼器54のガスは同時発生タービン駆動発電機56に有効に動力を与えられるほど十分に高温であり、十分に加圧されているので、その結果、効率良く電気が発生される。同時発生タービンから出る排気ガスは低圧であるが、まだ相当に多くの潜熱を含んでいる。熱交換器を使用して、この排気ガスの潜熱を回収でき、プラントにおいて、例えば、ボイラ内の水を予熱する目的で使用するためにエネルギーを保存しておくことができる。また、排気ガス中の水を保存して、水又は蒸気として再利用するか、あるいは熱交換器の媒体として使用することも可能である。
希薄条件で動作中の燃料希薄タービン燃焼器54で水素濃縮ガスを使用すると、燃焼器からの放出が減少し、燃料希薄タービン燃焼器54の安定性が改善され、タービン燃焼器のより良い動作性特性が得られる。
本発明の技法に従った一実施例において、濃厚燃焼段は1つ以上のピストン機関を具備する。
開示される同時発生システムでは、一次燃焼システム14の燃料濃厚炎は低温で動作する。燃料20とオキシダント18を予備混合することで、燃料20とオキシダント18の化学量論的混合に起因するホットスポットが存在しなくなることが保証される。その化学量論的混合は、NOxを形成する周囲の窒素を酸化するのに十分な高温まで燃焼生成物の温度を上昇させると考えられる。燃料とオキシダントの化学量論的混合は、全ての燃料を二酸化炭素と水に転換するのに十分なオキシダントと燃料の比として定義されている。開示される同時発生システムでは、炎温度を下げ且つ予備混合を行うことにより、一次燃焼システム14内のNOxの形成は最小限に抑えられる。燃料の濃厚燃焼は標準的な燃焼反応(2)ではなく、部分酸化反応(1)を促進する。
CH+1/2O → CO+2H (1)
CH+2O → CO+2HO (2)
水素が濃縮された一次燃焼システム14からの部分酸化流れは、その後に続く蒸気22及び燃料24の添加により急冷されて、混合生成物流れ12を形成する。部分酸化流れの中へ蒸気22と燃料24を噴射することにより、流れの温度は低下する。熱、燃料及び蒸気の組み合わせは、反応(3)に示されるように天然ガス等の燃料の改質を促進する。改質プロセスは改質ガス(一般に合成ガスとしても知られている)の形成に至り、このガスは濃縮水素流れ26として示されている。
CH+HO → CO+3H (3)
1つには、水素及び一酸化炭素を形成するための蒸気と天然ガスの反応(3)は吸熱反応であるので、燃焼チャンバ46内の温度は更に低下する。蒸気と燃料の添加は、窒素酸化物(NOx)の形成を抑制する。
改質装置16により生成される濃縮水素流れの第2の部分32は、水素処理装置40へと方向転換される。水素処理装置40は、水素発生器60と浄化システム62とを具備する。いくつかの実施例では、水素発生器60は、濃縮水素流れ32の水素の含有量を更に増加させるための水性ガス触媒転換器である。水素発生器60では、下記の水性ガス転化反応(4)が起こる。
CO+HO → CO+H (4)
水素発生器60から出る流れは更に水素を濃縮された状態にあり、水性ガス転化反応(4)で形成された相当に多くの量の二酸化炭素を含む。水素発生器60を出た流れは浄化システム62へ送り出される。浄化システムは、水素発生器60からの流出流れから水を分離し、それにより、乾燥改質ガスを形成する1つ以上の凝縮器/熱交換器(図示せず)を具備していてもよい。それらの熱交換器はシステム内の潜熱を回収する。回収された潜熱は、例えば、ボイラ内の水を予熱する等、プラントの様々な用途に使用されることが可能である。一実施例では、浄化システム60は水分分離装置(図示せず)を具備していてもよく、これは水を分離するための遠心分離機等の機械的装置であってもよい。更に別の実施例では、水分を吸収する少なくとも1つの分子ふるい床を使用して水を分離することができる。いくつかの実施例においては、乾燥改質ガスは水素を含有するのに加えて、窒素、一酸化炭素、二酸化炭素及び少量の気体燃料(すなわち、天然ガス)を更に含む。
浄化システム62は分離装置を更に具備し、それによる乾燥改質ガスの浄化は、圧力スイング吸着、化学吸収及び膜分離を含めて、当該技術で知られている様々な技法を適用することにより実現できる。ただし、技法は上記の方法に限定されない。
圧力スイング吸着(PSA)は、水素を含有するガスの混合物から二酸化炭素を分離するために使用できる。PSA技法では、高い部分圧力で、固体分子ふるいが水素より強力に二酸化炭素を吸着することができる。その結果、高圧で、水素を含むガスの混合物が吸着床に通されるときに混合物から二酸化炭素が除去される。減圧とパージングによって、床の再生が実現される。臨界動作には典型的なことであるが、二酸化炭素の連続分離のために複数の吸着容器が使用され、その場合、1つの吸着床が使用されている間に、その他の吸着床は再生される。
ガス流れから二酸化炭素を分離するもう1つの技法は、酸化カルシウム(CaO)及び酸化マグネシウム(MgO)、又はその組み合わせ等の酸化物を使用する化学吸収である。一実施例では、高圧、高温の条件で、COはCaOにより吸収されて炭酸カルシウム(CaCO)を形成し、それにより、ガス混合物からCOが除去される。吸収剤であるCaOは、CaCOをCaOに再び改質することができるCaCOの焼成により再生される。
乾燥改質流れからCOを分離するために使用される更に別の技法は、アミンを使用するCOの化学吸収である。乾燥改質ガスは、アミンを使用する二酸化炭素の化学吸収を利用するのに適する温度まで冷却されてもよい。この技法は、相対的に低い温度で二酸化炭素を吸収する能力を有し、濃厚溶媒の温度を上昇させることにより容易に再生されるアルカノールアミン溶媒に基づいている。この技法で使用される溶媒はトリエタノールアミン、モノエタノールアミン、ジエタノールアミン、ジイソプロパノールアミン、ジグリコールアミン及びメチルジエタノールアミンを含む。
ガス流れから二酸化炭素を分離するために、膜分離技法も使用できる。膜プロセスは一般にエネルギーの観点から吸収プロセスより効率的であると共に、操作が容易である。高温の二酸化炭素の分離に使用される膜は、COに対して選択的に作用するゼオライト膜及びセラミック膜を含む。しかし、膜技術の分離効率は低く、膜分離による二酸化炭素の完全な分離は実現できないであろう。通常、膜分離装置は高圧でより効率的に動作し、水素処理装置40において乾燥改質ガスから二酸化炭素を分離するために膜分離装置を使用するには、乾燥改質ガスを圧縮するための圧縮機が必要になる。
いくつかの実施例では、水素処理装置40内の乾燥改質ガスは、純粋な水素を得るために膜分離技法を使用する。相対的に低い温度で動作する水素選択膜として、多様なポリマーが使用できる。一実施例では、PSA装置をCO分離膜と組み合わせることにより水素の分離効率を向上させることができる。第1の工程で、PSA技法によりHが分離される。次の工程では、CO選択膜によりCOが分離される。ポリマー膜の中には、相対的に低い温度でのCO分離に適する選択透過性を示すものがある。
いくつかの実施例においては、水素浄化システム62は低温分離技法を使用してもよい。低温分離は、複数の分留物及び複数の生成物を回収することが重要である場合に使用できる。いくつかの実施例では、改質ガスの個別の成分ガスを分離するために、浄化システム62は液化装置、冷凍用冷却装置及び蒸留機器を具備する。
浄化システムから出た浄化水素流れはいくつかの方法で方向転換される。浄化水素の一部64は水素貯蔵部68に貯蔵されてもよい。浄化水素は低温加圧液体又は加圧気体として貯蔵されてもよいが、いくつかの実施例においては、カーボンナノキューブ、グラファイトカプセル封入金属、ナノ物質及び/又は他の吸収剤等の吸収剤の中で貯蔵されてもよい。更に別の実施例では、浄化水素は金属水素化物として貯蔵されてもよい。そのように貯蔵された水素は、その後、オフサイトで出荷されるか、販売されるか、あるいは同時発生システム50の内部で別の用途に利用される。貯蔵されている水素の一部72aは、補充燃料として二次燃焼システム38へ方向転換されてもよい。
更に、浄化水素の別の部分66は、1つ以上の燃料電池を具備する燃料電池システム74で利用される。燃料電池は固体酸化物燃料電池(SOFC)、陽子交換膜(PEM)燃料電池、溶融炭酸塩燃料電池、燐酸燃料電池、アルカリ燃料電池、ダイレクトメタノール燃料電池、再生燃料電池、亜鉛空気燃料電池及びプロトニックセラミック燃料電池より成る群から選択される。燃料電池システム74は水素を利用し、水素は直ちに電気に変換される。電気は、その後、必要に応じて配電網44へ送信される。PEM燃料電池又はSOFC等の燃料電池システム74における反応の副産物は水と熱であり、それらは、共に、同時発生プラントで使用するための熱回収・水蒸気再循環システム78を介して回収されることが可能である。燃料電池システム74への水素は水素貯蔵部68から流れ72bを介して供給されるか、又は水素浄化装置62から直接に供給されるかのいずれかである。
ここで開示される同時発生システムは、濃厚燃焼‐急冷‐改質装置を使用して水素を生成するシステム及び方法に関する。それらのシステム及び方法は、水素が濃縮されている部分酸化燃焼生成物である高温ガスの流れを形成する燃焼システムを利用するのが好ましい。燃焼チャンバは、少なくとも1つのc‐q‐r段を具備する濃厚燃焼‐急冷‐改質装置であり、各々のc‐q‐r段は燃焼する工程、急冷する工程及び改質する工程を含む。
図3は、濃厚燃焼‐急冷‐改質(c‐q‐r)段80の一例を示す概略図である。そのような濃厚燃焼‐急冷‐改質段80は、水素の生成を最適化するために使用されることが可能である。c‐q‐r段80は、3つの工程を含む。最初の燃焼工程90では、噴射される蒸気84が存在するところで燃料及びオキシダント82が燃焼される。オキシダントは空気、酸素濃厚空気、酸素欠乏空気又は純粋な酸素であればよい。その後、急冷工程92では、燃焼工程90の結果得られた高温ガスが追加燃料及び追加蒸気86と混合されて、燃料が非常に濃縮されている高温ガスの流れを形成する。次に、改質工程96において追加蒸気94が噴射され、それにより、混合物の平衡は水素に向かって転移する。更に水素を濃縮された高温ガスの流れは改質工程を出て、その後、別の同様なc‐q‐r段に進み、そこで更に水素が濃縮される。図4は、直列に接続された3つのc‐q‐r段80を有する濃厚燃焼‐急冷‐改質(c‐q‐r)装置100の一例を概略的に示す。各段80は高温ガスの流れにおける水素の品質、又は水素の割合(%)を改善する。複数のc‐q‐r段は水素の収量を増加させると共に、当量比を徐々に大きくするので、総当量比は1を超える。濃厚燃焼‐急冷‐改質装置は1つ以上のc‐q‐r段を具備することができ、段の数は要求される水素の収量によって決まる。
燃料とオキシダントの予備混合された混合物に加えて、燃焼チャンバ、一次燃焼システム、及び一次燃焼システムに燃料とオキシダントを供給する構成要素に構造上の制限があるために、全ての燃焼ガスが常に完全に予備混合されるとは限らないと予想される。例えば、拡散炎と予備混合炎の双方を有するバーナの場合のように、燃料とオキシダントの混合物は燃焼に先立って部分的に予備混合されることが可能である。
先に説明したように、ここで開示される水素と電気を同時に発生するシステム及び方法は、ほぼ定常状態の条件で動作しつつ、電気に対するピーク負荷需要変動に独自の方式で応答するシステムを提供する。燃料電池技術をガスタービン技術と組み合わせることにより、ピーク負荷の期間中に容易に利用可能であるバックアップ電源が作成される。電気的負荷が低いとき、燃料はより大きな割合で水素に転換されることが可能であり、燃料電池又は他の用途に後に使用されるのに備えて、その水素を貯蔵しておくことができる。電気的需要が高いときには、燃料電池をオンラインに乗せて、高い電気的需要に適応するために必要とされる電気を発生することができる。タービンシステムが障害を有する場合、又は計画に従って運転停止された場合、燃料電池はその部分バックシステムを構成することができる。電気の容量が過剰になれば、過剰な容量を使用して、相対的に安価に水素を製造することが可能である。その場合、水素は、オフサイトに配置されているか、更には移動自在であってもよい燃料電池に対する燃料供給源として使用されることが可能である。更に、過剰な水素は、オフサイトに配置されている燃料電池で使用するために、石油系燃料の場合と同様に販売、配給されることも可能である。
本発明が満たす様々な要求を達成して本発明の様々な実施例を説明した。特許請求の範囲に示される図中符号は発明の範囲を狭めようとするのではなく、発明の理解を容易にすることを意図されている。
水素と電気を同時に発生させるシステムの一例のフローチャート。 水素と電気を同時に発生させるシステムの別の例のフローチャート。 燃焼させる工程、急冷する工程及び改質する工程から成る、水素濃縮流れを形成するためのc‐q‐r段を示す概略図。 図3に示されるようなc‐q‐r段の繰り返し工程を示す概略図。
符号の説明
10…同時発生システム、12…混合生成物流れ、14…一次燃焼システム、16…改質装置、18…オキシダント、20…燃料、22…蒸気、24…燃料、26…水素濃縮流れ、28…流れ調整装置,34…補充燃料、36…補充オキシダント、38…二次燃焼システム、40…水素処理装置、44…配電網、46…燃焼チャンバ、50…同時発生システム、54…ガスタービン燃焼器、56…同時発生タービン、56…熱回収・水蒸気再循環システム、60…水素発生器、62…浄化システム、80…c‐q‐r段、100…濃厚燃焼‐急冷‐改質(c‐q‐r)装置

Claims (10)

  1. 電気と水素を同時発生させるシステム(10)において、
    燃料濃厚混合物を燃焼させ、水素を豊富に含有する部分酸化燃焼生成物を生成する少なくとも1つの一次燃焼システム(14)と、
    前記部分酸化生成物の中へ燃料(24)及び蒸気(22)を噴射して、混合生成物流れを生成する少なくとも1つの噴射システムと、
    前記混合生成物流れを改質して、水素濃縮流れ(26)を生成する少なくとも1つの改質装置(16)と、
    前記水素濃縮流れの少なくとも一部(30)を燃焼させて、電気を発生する二次燃焼システム(38)と、
    前記水素濃縮流れの少なくとも第2の部分(32)を受け入れて、その水素濃縮流れから水素を生成する水素処理装置(40)とを具備するシステム。
  2. 前記一次燃焼システム(14)は燃焼チャンバを具備し、前記燃焼チャンバは、前記燃焼チャンバに蒸気を添加させるための1列の開口部を有する請求項1記載のシステム。
  3. 前記水素濃縮流れの所定の各部分を前記二次燃焼システム(38)と、前記水素処理装置(40)とへ方向転換させる流れ調整装置(28)を更に具備する請求項1記載のシステム。
  4. 前記二次燃焼システム(38)は、電気を発生するための同時発生タービン(56)を具備する請求項1記載のシステム。
  5. 前記水素処理装置(40)は、前記水素濃縮流れ(32)を受け入れるように構成された水素発生器(60)を具備する請求項1記載のシステム。
  6. 前記燃料は天然ガス、メタン、ナフサ、ブタン、プロパン、ディーゼル油、灯油、航空燃料、石炭由来燃料、生物燃料、酸素添加炭化水素供給原料及びその混合物より成る群から選択される請求項1記載のシステム。
  7. 燃焼システム、噴射システム及び改質装置を具備する複数の繰り返し装置を更に具備し、前記水素濃縮流れは第1の繰り返し装置の前記燃焼システムへ送り出され、前記第1の繰り返し装置の前記改質装置からの第1の水素濃縮流れは第2の繰り返し装置の前記燃焼システムへ送り出されるように、前記繰り返し装置は直列に接続されている請求項1記載のシステム。
  8. 電気と水素を同時に発生させるシステムにおいて、
    燃料濃厚混合物を燃焼させ、水素を豊富に含有する部分酸化燃焼生成物を生成する1つの一次燃焼システムと、前記部分酸化燃焼生成物の中へ燃料及び蒸気を噴射して、混合生成物流れを生成する1つの噴射システムと、前記混合生成物流れを改質して、水素濃縮流れを生成する1つの改質装置とを具備する複数の繰り返し装置(80)と、
    前記水素濃縮流れの少なくとも一部を燃焼させて、電気を発生する二次燃焼システム(38)と、
    前記水素濃縮流れの少なくとも第2の部分を受け入れて、その水素濃縮流れから水素を生成する水素処理装置(40)とを具備し、
    1つの繰り返し装置の前記改質装置からの前記水素濃縮流れは次の繰り返し装置の前記燃焼システムへ送り出されるシステム。
  9. 電気と水素を同時に発生させる方法において、
    燃料濃厚混合物を燃焼させ、それにより、水素を豊富に含有する部分酸化燃焼生成物を生成する工程と、
    前記部分酸化燃焼生成物の中へ前記燃料及び蒸気を噴射して、混合生成物流れを生成する工程と、
    前記混合生成物流れを改質して、水素濃縮流れを生成する工程と、
    前記水素濃縮流れの少なくとも一部を燃焼させて、電気を発生する工程と、
    前記水素濃縮流れの少なくとも第2の部分を処理して、その水素濃縮流れから水素を生成する工程とから成る方法。
  10. 前記水素濃縮流れの前記少なくとも一部を燃焼させて、電気を発生するために二次燃焼システム(38)が利用され、前記水素濃縮流れの少なくとも前記第2の部分を処理して、水素を生成するために水素処理装置(40)が利用される請求項9記載の方法。
JP2004371816A 2003-12-24 2004-12-22 水素と電気を同時に発生させるシステム及び方法 Expired - Fee Related JP5051974B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/745,356 US20050144961A1 (en) 2003-12-24 2003-12-24 System and method for cogeneration of hydrogen and electricity
US10/745,356 2003-12-24

Publications (2)

Publication Number Publication Date
JP2005187325A true JP2005187325A (ja) 2005-07-14
JP5051974B2 JP5051974B2 (ja) 2012-10-17

Family

ID=34552871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371816A Expired - Fee Related JP5051974B2 (ja) 2003-12-24 2004-12-22 水素と電気を同時に発生させるシステム及び方法

Country Status (4)

Country Link
US (1) US20050144961A1 (ja)
EP (1) EP1547971B1 (ja)
JP (1) JP5051974B2 (ja)
CN (1) CN1654312B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517226A (ja) * 2007-01-22 2010-05-20 ロールス−ロイス・フューエル・セル・システムズ(ユーエス)インコーポレーテッド 多段燃焼器及び燃料電池システムを始動するための方法

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050241311A1 (en) 2004-04-16 2005-11-03 Pronske Keith L Zero emissions closed rankine cycle power system
US7685737B2 (en) 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US7024796B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and apparatus for manufacture of fertilizer products from manure and sewage
US7694523B2 (en) 2004-07-19 2010-04-13 Earthrenew, Inc. Control system for gas turbine in material treatment unit
US7024800B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
WO2007021909A2 (en) * 2005-08-10 2007-02-22 Clean Energy Systems, Inc. Hydrogen production from an oxyfuel combustor
GB2429516B (en) * 2005-08-27 2010-12-29 Siemens Ind Turbomachinery Ltd An apparatus for modifying the content of a gaseous fuel
US20070130830A1 (en) * 2005-12-14 2007-06-14 Balachandar Varatharajan Staged combustion for a fuel reformer
US7610692B2 (en) 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
US7802434B2 (en) * 2006-12-18 2010-09-28 General Electric Company Systems and processes for reducing NOx emissions
US7837973B2 (en) * 2007-05-08 2010-11-23 Air Products And Chemicals, Inc. Hydrogen production method
US20090031698A1 (en) * 2007-07-31 2009-02-05 O'brien & Gere Engineers Inc. Liquid and Solid Biofueled Combined Heat and Renewable Power Plants
US9464573B2 (en) * 2007-09-25 2016-10-11 Airbus Sas Method for operating a gas turbine engine, power supplying device for conducting such method and aircraft using such method
US20090241551A1 (en) * 2008-03-26 2009-10-01 Air Liquide Process And Construction Inc. Cogeneration of Hydrogen and Power
WO2009121008A2 (en) 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CA2715186C (en) 2008-03-28 2016-09-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CN102177326B (zh) 2008-10-14 2014-05-07 埃克森美孚上游研究公司 控制燃烧产物的方法与装置
CN102459850B (zh) 2009-06-05 2015-05-20 埃克森美孚上游研究公司 燃烧器系统和使用燃烧器系统的方法
EA023673B1 (ru) * 2009-11-12 2016-06-30 Эксонмобил Апстрим Рисерч Компани Система и способ для низкоэмиссионного производства электроэнергии и извлечения углеводородов
US7818969B1 (en) 2009-12-18 2010-10-26 Energyield, Llc Enhanced efficiency turbine
US8733109B2 (en) * 2010-03-29 2014-05-27 Gas Technology Institute Combined fuel and air staged power generation system
CA2801499C (en) 2010-07-02 2017-01-03 Exxonmobil Upstream Research Company Low emission power generation systems and methods
AU2011271633B2 (en) 2010-07-02 2015-06-11 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
MY160833A (en) 2010-07-02 2017-03-31 Exxonmobil Upstream Res Co Stoichiometric combustion of enriched air with exhaust gas recirculation
SG10201505211UA (en) * 2010-07-02 2015-08-28 Exxonmobil Upstream Res Co Low emission triple-cycle power generation systems and methods
MX341981B (es) 2010-07-02 2016-09-08 Exxonmobil Upstream Res Company * Combustion estequiometrica con recirculacion de gas de escape y enfriador de contacto directo.
TWI593878B (zh) 2010-07-02 2017-08-01 艾克頌美孚上游研究公司 用於控制燃料燃燒之系統及方法
US8752390B2 (en) * 2010-07-13 2014-06-17 Air Products And Chemicals, Inc. Method and apparatus for producing power and hydrogen
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
CN105736150B (zh) 2010-08-06 2018-03-06 埃克森美孚上游研究公司 优化化学计量燃烧的系统和方法
US8991188B2 (en) 2011-01-05 2015-03-31 General Electric Company Fuel nozzle passive purge cap flow
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
CN102220903B (zh) * 2011-05-30 2014-01-01 重庆大学 基于甲烷燃烧-重整的提高燃气轮机循环热力性能的方法
CN102213142B (zh) * 2011-05-30 2014-01-01 重庆大学 基于甲烷重整提高燃气轮机再热循环热效率的方法
CN104428490B (zh) 2011-12-20 2018-06-05 埃克森美孚上游研究公司 提高的煤层甲烷生产
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
WO2014133406A1 (en) 2013-02-28 2014-09-04 General Electric Company System and method for a turbine combustor
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
AU2014226413B2 (en) 2013-03-08 2016-04-28 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
WO2014145603A1 (en) * 2013-03-15 2014-09-18 Tmg Energy Systems, Inc. Integrated sustainable energy system
EP2784288B1 (de) * 2013-03-28 2020-02-19 Lumenion AG Kraftwerksanlage und Verfahren zum Erzeugen von elektrischem Strom
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
WO2023230359A1 (en) * 2022-05-26 2023-11-30 Jonathan Jay Feinstein Parallel process heating against serial combustion

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944002A (ja) * 1972-07-03 1974-04-25
JPS60215502A (ja) * 1984-03-09 1985-10-28 アンステイテユ・フランセ・デユ・ペトロール 炭化水素の間接酸化による合成ガスの新規製造方法
JPH10214631A (ja) * 1996-12-19 1998-08-11 Westinghouse Electric Corp <We> 電気を生産し水素を副生産するための装置及び方法
JPH11336511A (ja) * 1998-05-26 1999-12-07 Natl Space Dev Agency Japan(Nasda) 動力装置
JP2000511253A (ja) * 1993-10-20 2000-08-29 テキサコ・デベロップメント・コーポレーション 発電を伴う部分酸化方法
JP2001139303A (ja) * 1999-11-04 2001-05-22 Hitachi Ltd 水素・一酸化炭素混合ガスの製造方法、製造装置及びこれを備える燃料・電力併産プラント
JP2001302210A (ja) * 2000-04-14 2001-10-31 Toyota Motor Corp 燃料改質装置
JP2002021652A (ja) * 2000-07-07 2002-01-23 Nissan Motor Co Ltd 燃料改質ガスエンジンの水回収制御装置
JP2002321902A (ja) * 2001-04-24 2002-11-08 Nissan Motor Co Ltd 改質装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1137930A (en) 1966-11-04 1968-12-27 Woodall Duckham Ltd Improvements in or relating to the production of combustible gas
US5048284A (en) * 1986-05-27 1991-09-17 Imperial Chemical Industries Plc Method of operating gas turbines with reformed fuel
EP0254395B1 (en) * 1986-05-27 1990-11-22 Imperial Chemical Industries Plc Method of starting a process for the production of a gas stream containing hydrogen and carbon oxides
US5501162A (en) * 1993-07-19 1996-03-26 Kravets; Alexander Method of fuel combustion
DE19521308A1 (de) * 1995-06-12 1996-12-19 Siemens Ag Gasturbine zur Verbrennung eines Brenngases
DE19536836C2 (de) * 1995-10-02 2003-11-13 Alstom Verfahren zum Betrieb einer Kraftwerksanlage
US5997596A (en) 1997-09-05 1999-12-07 Spectrum Design & Consulting International, Inc. Oxygen-fuel boost reformer process and apparatus
US6277894B1 (en) * 1999-03-30 2001-08-21 Syntroleum Corporation System and method for converting light hydrocarbons into heavier hydrocarbons with a plurality of synthesis gas subsystems
US6509000B1 (en) * 2000-08-31 2003-01-21 Council Of Scientific And Industrial Research Low temperature process for the production of hydrogen
DE10051563A1 (de) * 2000-10-18 2002-05-02 Emitec Emissionstechnologie Verfahren zur Gewinnung von Wasserstoff aus Kohlenwasserstoff
US20040031388A1 (en) * 2001-06-15 2004-02-19 Hsu Michael S. Zero/low emission and co-production energy supply station
JP3826770B2 (ja) * 2001-11-16 2006-09-27 日産自動車株式会社 燃料改質システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944002A (ja) * 1972-07-03 1974-04-25
JPS60215502A (ja) * 1984-03-09 1985-10-28 アンステイテユ・フランセ・デユ・ペトロール 炭化水素の間接酸化による合成ガスの新規製造方法
JP2000511253A (ja) * 1993-10-20 2000-08-29 テキサコ・デベロップメント・コーポレーション 発電を伴う部分酸化方法
JPH10214631A (ja) * 1996-12-19 1998-08-11 Westinghouse Electric Corp <We> 電気を生産し水素を副生産するための装置及び方法
JPH11336511A (ja) * 1998-05-26 1999-12-07 Natl Space Dev Agency Japan(Nasda) 動力装置
JP2001139303A (ja) * 1999-11-04 2001-05-22 Hitachi Ltd 水素・一酸化炭素混合ガスの製造方法、製造装置及びこれを備える燃料・電力併産プラント
JP2001302210A (ja) * 2000-04-14 2001-10-31 Toyota Motor Corp 燃料改質装置
JP2002021652A (ja) * 2000-07-07 2002-01-23 Nissan Motor Co Ltd 燃料改質ガスエンジンの水回収制御装置
JP2002321902A (ja) * 2001-04-24 2002-11-08 Nissan Motor Co Ltd 改質装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517226A (ja) * 2007-01-22 2010-05-20 ロールス−ロイス・フューエル・セル・システムズ(ユーエス)インコーポレーテッド 多段燃焼器及び燃料電池システムを始動するための方法

Also Published As

Publication number Publication date
US20050144961A1 (en) 2005-07-07
JP5051974B2 (ja) 2012-10-17
CN1654312B (zh) 2011-10-05
CN1654312A (zh) 2005-08-17
EP1547971B1 (en) 2015-06-03
EP1547971A2 (en) 2005-06-29
EP1547971A3 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP5051974B2 (ja) 水素と電気を同時に発生させるシステム及び方法
US7802434B2 (en) Systems and processes for reducing NOx emissions
EP1582502B1 (en) System and method for co-production of hydrogen and electrical energy
JP5075900B2 (ja) 水素含有燃料対応燃焼器および、その低NOx運転方法
CA2718803C (en) Low emission power generation and hydrocarbon recovery systems and methods
JP2008163944A (ja) 部分的co2回収式サイクルプラント用の改質システム
MXPA06007819A (es) Sistemas y metodos para la generacion de energia con aislamiento de dioxido de carbono.
KR100260461B1 (ko) 합성가스와 전력의 조합식 발생방법
US6282902B1 (en) Waste processing system and fuel reformer used in the waste processing system
US9273607B2 (en) Generating power using an ion transport membrane
JPH11148316A (ja) ごみ発電システム,ごみ処理システム及びそれに用いられる燃料改質装置
Budzianowski Role of catalytic technologies in combustion of gaseous fuels
JPH11159741A (ja) 燃料改質装置
JP3764649B2 (ja) 改質型ガス化ガス発電プラントおよびその運転方法
Varatharajan et al. systems and processes for reducing NOx emissions
JP2704411B2 (ja) 水蒸気改質装置
ITMI20072249A1 (it) Sistemi e procedimenti per la riduzione di emission i di nox

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110304

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120228

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees