CN1654312A - 用于氢电联产的系统和方法 - Google Patents

用于氢电联产的系统和方法 Download PDF

Info

Publication number
CN1654312A
CN1654312A CNA2004100954976A CN200410095497A CN1654312A CN 1654312 A CN1654312 A CN 1654312A CN A2004100954976 A CNA2004100954976 A CN A2004100954976A CN 200410095497 A CN200410095497 A CN 200410095497A CN 1654312 A CN1654312 A CN 1654312A
Authority
CN
China
Prior art keywords
hydrogen
fuel
stream
combustion
produce
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100954976A
Other languages
English (en)
Other versions
CN1654312B (zh
Inventor
A·科利巴巴-埃乌莱特
B·瓦拉塔拉彦
C·巴兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1654312A publication Critical patent/CN1654312A/zh
Application granted granted Critical
Publication of CN1654312B publication Critical patent/CN1654312B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0877Methods of cooling by direct injection of fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/678Aviation using fuels of non-fossil origin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

一种用于电氢联产的系统,包括至少一个主燃烧系统,用于燃烧富含燃料的混合物并产生富含氢气的部分氧化的燃烧产物。该系统进一步包括至少一个喷射系统,用于将燃料和蒸汽喷入部分氧化的燃烧产物中,从而产生混合产品流。该混合产品流在转化器中进行转化,以产生浓缩氢流。该浓缩氢流的至少一部分在次级燃烧系统内燃烧以产生电,该浓缩氢流的至少第二部分被送至氢气处理系统以在那里产生氢气。

Description

用于氢电联产的系统和方法
发明背景
本发明涉及用于氢电联产的系统和方法。更具体地说,本发明涉及利用富集-燃烧-骤冷-转化设备生产富含氢的燃料气,并将该富含氢的燃料气用于氢电联产。
已知燃料气在某些情况下是燃气轮机的一种合适燃料来源。典型地,这类燃料气是利用催化燃烧法在约400℃~约800℃的温度范围内产生的。有利地,这些温度足够低以使氮氧化物的形成最少。但这些低的温度和压力不足以为涡轮机提供动力,因此必须用辅助燃烧室为涡轮机提供动力。在某些催化燃烧法中,将原料气和空气预混以形成一种混合物,该混合物在包含也表现出蒸汽转化活性的燃烧催化剂的燃烧区内燃烧。在燃烧区内发生混合物的部分燃烧和转化,从而形成热的转化气流。该热转化气流的一部分再循环回到前述燃烧区中。余下的热转化气流作为燃料气输送给燃气轮机燃烧室。在其它方法中,燃料气燃烧,与燃烧醇类和醛类的辅助燃烧室结合使用。
上述涉及用燃气轮机发电的方法并没有教导能够用非催化方法形成转化气(即燃料气或合成气)。而且,燃气轮机系统没有给出对电的需求、转化气的形成、和增强效率的操作考虑之间的相互作用。通常,当系统位于稳定状态时,系统几乎总是在较高的效率下操作。所需的是用于产生在涡轮机燃烧室内燃烧的转化气的方法,其中不要求催化燃烧的工艺。此外,所需的是一种适于适应电需求波动、且同时使该工艺能够在基本稳定状态下操作的方法。
鉴于显现的氢气经济性,在发电的同时产生氢对工业是有利的。通过催化转化而从燃料产生氢是一种公知的方法。所需的是一种用于生产氢的方法,其中制氢工艺从效果上说是发电的副产品,其中电氢的联产降低了二者的生产成本,并导致了系统效率和操作性的增加。
发明概述
此处所公开的是一种用于电氢联产的系统,包括至少一个主燃烧系统,用于燃烧富含燃料的混合物并产生富含氢气的部分氧化的燃烧产物。该系统进一步包括至少一个喷射系统,用于将燃料和蒸汽喷入所述部分氧化的燃烧产物中,从而产生混合产品流。该混合产品流在转化器中进行转化,以产生浓缩氢流。该浓缩氢流的至少一部分在次级燃烧系统中燃烧以产生电,该浓缩氢流的至少第二部分被送入氢气处理系统,以在那里产生氢气。
另一方面,一种用于电氢联产的系统,包括多个重复单元,每个单元包括一个主燃烧系统,用于燃烧富含燃料的混合物并产生富含氢气的部分氧化的燃烧产物;一个喷射系统,用于将燃料和蒸汽喷入所述部分氧化的燃烧产物中,从而形成混合物产品流;和一个转化器,用于转化所述混合物产品流以产生浓缩氢流。该系统进一步包括一个次级燃烧系统,用于燃烧浓缩氢流的至少一部分以产生电;和一个氢气处理系统,用于接收浓缩氢流的至少第二部分以从中产生氢气。来自一个重复单元的转化器的浓缩氢流被送入下一个重复单元的燃烧系统中。
另一方面,一种电氢联产的方法,包括如下步骤:燃烧富含燃料的混合物,从而产生富含氢气的部分氧化的燃烧产物。将燃料和蒸汽喷入所述部分氧化的燃烧产物中,以产生混合产品流。该方法进一步包括转化混合产品流,以产生浓缩氢流。接下来的步骤包括燃烧浓缩氢流的至少一部分以产生电,和处理浓缩氢流的至少第二部分以从中产生氢气。
附图说明
参考随后的附图并阅读下面的详细描述时,将更好地理解本发明的这些及其它的特征、方面及优点,在附图中用同样的附图标记表示附图中同样的部分,其中:
图1示出用于氢电联产的一个示例性系统的流程图。
图2示出用于氢电联产的另一个示例性系统的流程图。
图3是用于形成浓缩氢流的c-q-r阶段的示意图,其中c-q-r阶段包括燃烧、骤冷和转化步骤;和
图4是如图3所示c-q-r阶段的重复步骤的示意图。
发明详述
为了促进对本发明的理解,现在参考如图1~4所示的本发明的某些示例性实施方式,及用于描述该实施方式的具体语言。此处所用术语旨在描述,而非限制。此处所公开的具体结构和功能细节不可解释为限制,其仅作为权利要求书的基础,作为一个代表性的基础以教导本领域技术人员多样地利用本发明。所述支持结构和方法中的任何改型或变化,以及诸如本领域技术人员通常想到的对此处所述发明原理的进一步应用,都将被认为落入本发明的精神和范围内。
图1示出用于电氢联产的系统10的一个示例性实施方式。该联产系统10包括用于燃烧富燃料混合物的至少一个主燃烧系统14,和用于转化燃料的至少一个转化器16。氧化剂18和燃料20的混合物被喷入用于燃烧富燃料混合物并产生富含氢气的部分氧化的燃烧产物的主燃烧系统14中。该联产系统进一步包括一个喷射系统,该系统中蒸汽22和燃料24被喷入部分氧化的燃烧产物中,以在骤冷操作中形成混合产品流12。该混合产品流12被送入一个用于转化混合产品流12以产生浓缩氢流26的转化器中。在某些实施方式中,主燃烧室14和转化器16位于在一个共同的燃烧室16中。
该浓缩氢流的一部分30在次级燃烧系统38内燃烧,以产生可连接到电网44的电力。向次级燃烧系统38中加入补充燃料34和氧化剂36。该浓缩氢流的第二部分32被送入氢气处理单元40中以产生氢气。
如图1所示,联产系统10联合生产了电和氢,同时具有较目前可行的更低的氮氧化物(NOX)污染物产量、更高的火焰稳定性、和更少的一氧化碳排放。此处的火焰温度是当量比的函数,该当量比是由化学计量的燃料与氧化剂比率规格化的主燃烧系统14中燃料与氧化剂比率的量度。当量比为1.0时,达到化学计量条件,火焰温度在该点处最高。当量比小于1.0时,燃烧室为“贫”燃烧室;当量比大于1.0时,燃烧室为“富”燃烧室。当达到化学计量的火焰温度时,NOX的生产非常快速地增加;当远离化学计量的火焰温度时,热NOX的生产快速减少。
再次参考图1,燃烧室16包括用于富燃料燃烧的一个主燃烧系统14,和转化来自主燃烧系统14的部分氧化燃烧产物的一个转化器16。燃料20(可为气体)和氧化剂18被预混并喷入主燃烧系统14中。在某些实施方式中,燃料和氧化剂可分别喷入主燃烧系统14中。在某些其它实施方式中,燃料和氧化剂可在被送入主燃烧系统14之前部分地或充分地混合。燃料20可包括任何适当气体或液体,例如天然气、甲烷、石脑油、丁烷、丙烷、柴油、煤油、航空燃料、煤衍生的燃料、生物燃料、氧化烃原料、以及它们的混合物。在某些实施方式中,燃料优选包括天然气(NG)。天然气的可用性、低成本和易于混合弥补了它的低热含量,使得天然气成为优选的燃烧燃料。氧化剂18可包括任何适当的含氧气体,例如空气、富氧空气、贫氧空气、和/或纯氧。在富燃烧阶段,当量比大于1,优选地更接近富火焰一稳定极限。在某些实施方式中,预混的燃料和氧化剂通过一个含有旋流器的喷嘴而喷入主燃烧系统14中,该旋流器包括使进入的氧化剂旋转的多个旋转叶片,以及使燃料分布到旋转氧化剂流中的多个燃料轮辐。在主燃烧系统14内进行反应之前,燃料和氧化剂在预混燃料喷嘴内的环形通道中进行混合。在富燃烧操作之后,用一个喷射系统在骤冷步骤中进行燃料24和蒸汽22的喷射。在某些实施方式中,燃料和蒸汽被喷入离开主燃烧系统14的混合产品流12中。在骤冷步骤中喷入的燃料24还可通过位于燃烧室46内壁上的一系列狭缝而喷入燃烧室46中。燃料24可包括低沸点烃原料、天然气、甲烷、石脑油、丁烷、丙烷、和/或它们的混合物。在某些实施方式中,优选的燃料是大部分为甲烷的天然气。燃料和蒸汽的摩尔比优选为约1∶1,从而产生被称为混合产品流的热气流。该混合产品流被送入转化器16中,以产生包括大量氢气的浓缩氢流26。在某些实施方式中,该浓缩氢流26可进一步包括一氧化碳、氮气、平衡常数量的水、二氧化碳和未燃烧的燃料。该浓缩氢流26能够进一步分流至次级燃烧系统38和/或氢气处理单元40。在某些实施方式中,用物流调节器28将富含氢气流26的特定量分流到次级燃烧系统38、和/或氢气处理单元40。该物流调节器可为控制阀,或能够将分流浓缩氢流26的预定部分的任何其它设备。
在此处公开的联产系统中,主燃烧系统14中的燃烧室和燃气轮机的燃烧室54采用了燃料和氧化剂的预混混合物,且可包括预混的旋流系统或非旋流系统。径向、轴向和/或双反旋旋流器也可采用。
表示另一个示例性联产系统50的实施方式示于图2中,该图中用同样的附图标记表示同样的特征。该联产系统50包括至少一个主燃烧系统14以燃烧富燃料的混合物,和至少一个转化器16。氧化剂18和燃料20的混合物喷入用于燃烧富燃料混合物并产生富含氢气的部分氧化的燃烧产物的主燃烧系统14中。在某些实施方式中,主燃烧室14和转化器16容纳在一个共同的燃烧室16中。该联产系统进一步包括一个喷射系统,在该喷射系统中,蒸汽22和燃料24被喷入部分氧化的燃烧产物中,以在骤冷操作中形成混合的产品流12。该混合产品流12被送入用于转化混合产品流12以产生浓缩氢流26的转化器16中。在某些实施方式中,物流52的一部分被直接送至主燃烧系统14中以控制火焰温度。
浓缩氢流的一部分30在次级燃烧系统38内燃烧,以产生可连接到电网44的电力。将补充燃料34和氧化剂36加入该次级燃烧系统38中。浓缩氢流的第二部分32被送入氢气处理单元40中以产生氢气。
次级燃烧系统38进一步包括一个燃气轮机燃烧室54,一个联产涡轮机56,和一个热量回收及水蒸气再利用系统58。输入联产涡轮机56的热气热力学膨胀做功以驱动联产涡轮机56,该涡轮机反过来又产生电力。来自联产涡轮机56的电力被转化成适当的形式提供给分配电力供应网44。
此处公开的联产系统包括控制当量比的系统和方法,从而通过降低主燃烧系统14内的火焰温度而将热NOX的产生降至最少。在传统涡轮燃烧室中,控制热NOX的主要方法是降低燃烧室内的火焰温度。由于整体燃烧系统的当量比必须为贫化的(以限制涡轮机的入口温度并使效率最大化),因此旨在降低NOX排放的首要努力就在于设计一种具有更贫反应区的燃烧室。在预混系统中,火焰温度因整体当量比为贫化的而降低。在扩散系统中,火焰温度通过水的喷射而降低。使火焰区为贫化的(即,降低火焰区的当量比)也降低了火焰长度,并因此降低了气体分子在NOX形成温度下停留的停留时间。这两种机理减少了NOX的形成。但是,因为在工业燃气轮机中大负荷的燃料流动(40∶1)、空气流动(30∶1)和燃料/空气比例(5∶1),所以在满操作条件下,主区域当量比的减少受到限制。在传统的燃气轮机中,燃料和空气直接喷入其中的反应区内,燃烧通常发生在贫化条件下、或者发生在化学计量条件或接近化学计量的条件下,而且在反应区域内存在相当大的再循环。
一种减少NOX形成的方法是通过将散热器引入火焰区中以降低火焰温度。水和蒸汽都能非常有效地实现这一目标。但是,尽管因通过涡轮机的附加质量流而增加了燃气轮机的输出,整体的效率却因将水加热到燃烧室温度所需的额外燃料而受损。不可避免地,水必须具有锅炉原料水的质量,以防止在燃烧室下游的热轮机气体路径面积上的沉积物和腐蚀。水的喷射是降低NOX形成的一个极有效方法。但是,当采用此项降低技术时,燃烧室的设计必须观察某些量度。为了使所用水的效率最大化,将燃料喷嘴设计为具有附加的通道以将水喷入燃烧室首端。水因此与进入的燃烧空气充分混合,并在其最热点处到达火焰区。用于减少NOX的蒸汽喷射基本上沿着和水一样的路径进入燃烧室首端。但是,在减少热NOX形成上,蒸汽不象水那样有效。在降低火焰温度中,水的高潜热充当了强散热器。总体上,对既定的NOX减少而言,为了实现控制,就需要以质量计为水的约1.6倍的蒸汽。对燃气轮机的长硬件寿命而言,存在着对喷入燃烧室的水或蒸汽量的实际限制。
将水和/或蒸汽喷入燃烧室内影响着多个参数。其一,水的喷射比蒸汽的喷射更趋向于激发动力活动。燃烧硬件上的振荡压力负荷起到振荡强迫的功能,因此必须将该负荷减至最少以确保长的硬件寿命。通过燃烧室设计的改型,例如加入多喷嘴燃料系统,就可能显著减少动压力的活动。在所公开的联产系统中,水和/或蒸汽被喷入燃烧室16内,而非喷入燃气轮机燃烧室54内。这一分离使得能够更有效地抑制并相当地隔离动力振动。其二,因为越来越多的水和/或蒸汽被加入燃烧室中,因此就达到了能观察到一氧化碳显著增加的一个点。通常地,在常规涡轮燃烧室内这是不希望发生的,因为一氧化碳的排放量也将增加。但在所公开的联产系统内,一氧化碳基本上不是问题。这归因于这一事实,即,浓缩氢流26并未直接送入联产涡轮机。该浓缩氢流26的一部分被分流至燃气轮机燃烧室54,在那里接触其中一氧化碳可能已被氧化的氧化气氛。该浓缩氢流的第二部分被引导至包括一个水-气催化介质的氢气发生器,一氧化碳在该介质中被转化成二氧化碳。其三,增加水和/或蒸汽的喷射减少了燃烧室操作的稳定性,并最终达到火焰吹熄的那一点。其四,未燃烧烃(UHCs)可能增加,但能够通过选择特别是关于烟雾方面的燃料组成而将其减至最少。
再参见图2,在某些实施方式中,燃气轮机54包括一个贫的预混燃烧组件(未示出),一个次级或贫的直接喷射(LDI)燃料喷射器组件,和一个用于使燃烧的热补充气体流动至涡轮喷嘴和涡轮桨叶的过渡部件。贫的预混燃烧室组件包括一个壳体、多个预混燃烧喷嘴、和一个位于套管内的燃烧衬里。在该贫的预混燃烧室组件内的燃烧发生在燃烧衬里内。燃烧氧化剂经由流动套管引入衬里中,并通过燃烧衬里上的多个开孔进入燃烧衬里内。衬里中发生燃烧反应,释放出驱动燃气轮机的热量。用于贫的预混燃烧室组件的高压氧化剂从环状增压室进入流动套管和过渡部件碰撞套管中。该高压氧化剂是通过采用一系列叶和桨的压缩机供应的。每个预混燃料喷嘴包括一个旋流器,该旋流器包括多个旋流叶片以使进入的氧化剂旋转;和多个燃料轮辐,以将燃料优选为天然气分配到旋转的氧化剂流中。如果需要,补充燃料34和氧化剂36可预混并加入燃气轮机燃烧室54中。然后,燃料和氧化剂在预混燃料喷嘴的环状通道内混合,再在燃气轮机燃烧室54内的主反应区中发生反应,在那里产生热的补充气体。该主反应区充满了来自燃烧室的热且加压的气体。燃气轮机燃烧室54能够在燃料轮机的高负荷条件、中负荷条件和低负荷条件下操作。在操作中,选择火焰的贫乏程度和补充气体的流量,以使来源的组合(即,浓缩氢流30和燃气轮机燃烧室54内产生的热补充气体)产生少于1∶1化学计量比的燃料与氧化剂的燃烧混合物,换言之,即产生整体上为贫的燃烧混合物。燃气轮机燃烧室54为联产涡轮机56提供动力,从而产生能够提供给电力网44的电流。由此产生的相转变热能从排放气中回收,由此产生的水能通过热量回收和水蒸气再利用系统58而进行回收和再利用。
进入燃气轮机燃烧室54的浓缩氢流30富含燃料,而且不是足够热的和高压的,不能为涡轮机提供动力。因此,在燃料贫火焰中向它们中加入补充燃烧燃料34和氧化剂36。往燃气轮机54中加入补充燃料和氧化剂之后,燃气轮机燃烧室54的气体就足够地热和高压,从而有效地为由发生器56驱动的联产涡轮机提供动力,在那里产生足够量的电力。离开联产涡轮机的废气处于低压下,但仍含有相当的潜热。这些废气的潜热能够通过换热器而回收,该能量能够存储起来以用于工厂,例如预热锅炉中的水。废气中的水也能够保存,以再利用作为蒸汽用水,或者用作换热器的介质。
将浓缩氢流用于在较贫条件下操作的贫燃料涡轮燃烧室54中,减少了其中的排放,提供了贫燃料涡轮燃烧室54的更好稳定性,并产生了更好的操作特性。
在根据本技术的一个实施方式中,富燃烧阶段包括一个或多个往复式动力机。
在所公开的联产系统中,主燃烧系统14中的富燃料火焰在低温下操作。燃料20和氧化剂的预混确保了不会发生因燃料和氧化剂的化学计量混合而导致的过热点,否则该化学计量混合物将燃烧产物的温度升至足够高以致于氧化周围的氮气而形成NOX。燃料和氧化剂的化学计量混合定义为足以将全部燃料氧化成二氧化碳和水的氧化剂与燃料比率。在所公开的联产系统中,较低的火焰温度和预混将主燃烧系统14中NOX的形成减至最少。燃料的富燃烧促进了部分氧化反应(1),而非标准的燃烧反应(2)。
     (1)
   (2)
富含氢气的来自主燃烧系统14的部分氧化的物流通过后续加入的蒸汽22和燃料24而骤冷,以形成混合产品流12。向部分氧化的物流中喷入蒸汽22和燃料24降低了部分氧化的物流的温度。热量、燃料和蒸汽的组合促进了诸如天然气的燃料的转化,如反应(3)所示。该转化工艺导致转化气体(通常被称作合成气)的形成,该转化气被称为浓缩氢流26。
      (3)
部分地是因为蒸汽和天然气形成氢气和一氧化碳的反应(3)是吸热的,所以燃烧室46内的温度进一步降低。蒸汽和燃料的加入抑制了氮氧化物(NOX)的形成。
由转化器16产生的浓缩氢流32的第二部分被分流至氢气处理单元40。该氢气处理单元40包括一个氢气发生器60和一个纯化系统62。在某些实施方式中,氢气发生器60是一个水-气催化转化器,以进一步浓缩氢气在浓缩氢流32的含量。在氢气发生器60中发生下面的水气转化反应(4)。
              (4)
离开氢气发生器60的物流进一步浓缩了氢气,并包括在水气转化反应(4)中形成的相当量二氧化碳。离开氢气发生器60的物流被送入纯化系统62中。该纯化系统包括一个或多个冷凝器/换热器(未示出),该冷凝器/换热器从来自氢气发生器60的离开物流中分离出水,从而形成干燥的转化气。这些换热器回收了系统中的潜热。这一回收的潜热可用于工厂的多种用途,例如用于预热锅炉中的水。在一个实施方式中,纯化系统60可包括一个去湿器(未示出),该去湿器可为诸如离心机的机械设备以分离水。在另一个实施方式中,利用吸收湿气的至少一个分子筛床将水分离出来。在某些实施方式中,干燥的转化器除含有氢气之外,还包括氮气、一氧化碳、二氧化碳和少量气体燃料(即天然气)。
纯化系统62进一步包括一个分离单元,在该分离单元中可通过施加包括但不限于变压吸附、化学吸收和膜分离的本领域已知的多种技术而实现干燥转化气的纯化。
变压吸附(PSA)可用于从含氢气的气体混合物中分离二氧化碳。在PSA技术中,在高分压下,固体分子筛能够比吸附氢气更强烈地吸附二氧化碳。其结果是,在高压下,当含氢的气体混合物通过吸附床时,从该混合物中除去了二氧化碳。床的再生可通过减压和吹扫实现。典型地,对临界操作而言,采用多个吸附器以连续分离二氧化碳,其中一个吸附床进行使用,而其它床进行再生。
从气流中分离二氧化碳的另一项技术是用氧化物如氧化钙(CaO)和氧化镁(MgO)或其混合物的化学吸收。在一个实施方式中,在高压和高温下,CO2被CaO吸收以形成碳酸钙(CaCO3),从而从气体混合物中除去了CO2。吸附剂CaO的再生通过焙烧CaCO3实现,焙烧能够将CaCO3再次分解为CaO。
用于从干燥转化流中分离CO2的另一项技术是用胺的CO2化学吸收。干燥的转化气可冷却至适当的温度,以采用利用胺的二氧化碳化学吸收。该技术是基于链烷醇胺溶剂,该溶剂具有在相对低的温度下吸收二氧化碳的能力,而且易于通过提高富集溶剂的温度而得以再生。用于此项技术的溶剂可包括三乙醇胺、单乙醇胺、二乙醇胺、二异丙醇胺、二乙二醇胺和甲基二乙醇胺。
膜分离技术也可用于从气流中分离二氧化碳。膜工艺通常比吸收工艺更加能量高效,而且易于操作。用于高温二氧化碳分离的膜包括对CO2是选择性的沸石和陶瓷膜。但是,膜技术的分离效率低,通过膜分离可能不能实现完全的二氧化碳分离。典型地,膜分离器在较高压力下更加有效,而且用膜分离器从氢气处理单元40的干燥转化气中分离二氧化碳可能需要压缩机以压缩干燥的转化气。
在某些实施方式中,氢气处理单元40中的干燥转化气采用膜分离技术以得到纯氢气。可用多种聚合物作为在相对低的温度下操作的氢气选择性膜。在一个实施方式中,可通过联合PSA单元和CO2分离膜而增强氢气的分离效率。在第一个步骤中由PSA技术分离出H2。在接下来的步骤中由CO2分离膜分离出CO2。某些聚合膜在相对低的温度下显示出对CO2分离的良好渗透性。
在某些实施方式中,氢气纯化系统62可采用低温分离技术。当重要的是回收多种馏分和多种产品时,可采用低温分离。在某些实施方式中,纯化系统62包括液化设备、冷冻激冷器和蒸馏设备,以从转化气中分离出单独的组成气。
离开纯化系统的纯化氢气流可分流为数个路径。该纯化氢气的一部分64可存储在氢气储罐68内。纯化氢气可储存为冷的高压液体、加压气体,或在某些实施方式中储存在吸收性材料如碳纳米管、石墨密封金属、纳米材料、和/或其它吸附材料中。在另一个实施方式中,纯化的氢气可存储为金属氢化物。然后将这样存储的氢气在工厂外装船、销售、或用于联产系统50中。所存储氢气的一部分72a可作为补充燃料而分流至次级燃烧系统38。
此外,纯化氢气的另一部分66可用在包括一个或多个燃料电池的燃料电池系统74中。该燃料电池选自固体氧化物燃料电池(SOFC)、质子交换膜(PEM)燃料电池、熔融碳酸盐燃料电池、磷酸燃料电池、碱燃料电池、直接甲醇燃料电池、再生燃料电池、锌空气燃料电池、和质子陶瓷燃料电池。燃料电池系统74利用氢气以将其直接转化成电,该电流如果需要则随后送至电力网44。诸如PEM燃料电池或SOFC的燃料电池系统74中反应的副产品是水和热量,它们可通过热量和水蒸汽的再利用系统78而得以回收,以用于联产系统。燃料电池系统76的氢气可通过物流72b而来自氢气储罐68,或者直接来自氢气纯化单元62。
此处所公开的联产系统涉及利用富燃烧-骤冷-转化设备而生产氢气的系统和方法。这些系统和方法优选利用形成热气流的燃烧系统,该热气流是富含氢气的部分氧化的燃烧产物。燃烧室是一个富燃烧-骤冷-转化设备,包括至少一个c-q-r阶段,其中每个c-q-r阶段包括燃烧、骤冷和转化步骤。
图3示出示例性的富燃烧-骤冷-转化(c-q-r)阶段80的概略图。这样的富燃烧-骤冷-转化阶段80能够用于优化氢气的生产。c-q-r阶段80包括三个步骤。第一,在燃烧步骤90中,燃料和氧化剂82在喷入物流84的存在下燃烧。氧化剂可以是空气、富氧空气、贫氧空气或纯氧气。所产生的热气在骤冷步骤92中接下来和附加燃料和蒸汽86混合,形成高度富含燃料的热气流。接下来,在转化步骤96中,喷入附加的蒸汽94,这改变了混合物向着氢气的平衡。进一步浓缩了氢气的热气流离开转化步骤,然后送入另一个类似的c-q-r阶段,以进一步浓缩氢气。图3概略地示出一个示例性的富燃烧-骤冷-转化(combustion-quench-reform,c-q-r)设备100,其包括三个串联的c-q-r阶段80。每个阶段80提高了热气流质量或氢气含量。多个c-q-r阶段增加了氢气的产量,并显著增加了当量比,从而整体当量比高于1。该富燃烧-骤冷-转化设备可包括一个或多个c-q-r阶段,阶段的数量取决于所需的氢气产量。
除了燃料和氧化剂的预混混合物之外,可以预期并非全部燃烧气体都将完全预混,这是由于燃烧室、主燃烧系统、和向主燃烧系统供应燃料和氧化剂的组件的结构限制。燃料和氧化剂的混合物能够在燃烧之前部分地预混,例如在燃烧室具有扩散燃烧和预混燃烧的情况下。
如上所述,此处公开的氢电联产的系统和方法提供的系统,它们对电力的高峰负荷要求波动具有独特的响应,同时能以实稳态条件进行损伤。在高峰负荷期间,燃料电池技术和燃气轮机技术的组合创造了易于获得的备份电源。当电负载低时,较大量的燃料将转化成氢气,氢气被储存起来以备以后用于燃料电池或任何其它的应用。当电需求高时,可使燃料电池联机以产生所需的电流,从而满足更高的电需求。如果涡轮机系统出现失误,或是计划内的关闭,则燃料电池能够为其提供一个部分备份系统。如果存在过量的电生产能力,则该过量能力能用于以相对便宜的价格制造氢气。氢气然后可用作离线或甚至是移动的燃料电池的燃料源。此外,过量的氢气甚至可以以类似于石油基燃料的方式进行销售和散发,以用于离线的燃料电池。
已经描述了本发明多种实施方式,以满足本发明所遇到的不同需求。应该认识到,这些实施方式仅仅是对本发明不同实施方式的原理的说明。本领域技术人员显而易见,在不背离本发明的精神和范围的条件下存在着多种改型和改变。因此,这意味着本发明覆盖了在所附权利要求书及其等价物范围内的所有适当改型和变化。
元件列表:
    10     用于电氢联产的系统
    12     混合产品流
    14     主燃烧系统
    16     转化器
    18     氧化剂
    20     燃料
    22     蒸汽
    24     喷入12的燃料
    26     浓缩氢流
    28     物流调节器
    30     26分流至次级燃烧系统的部分
    32     26分流全氢气处理单元的部分
    34     补充燃料
    36     补充氧化剂
    38     次级燃烧系统
    40     氢气处理单元
    42     氢气流
    44     电网
    46     燃烧室
    50     用以电氢联产的系统
    54     燃气轮机燃烧室
    56     联产涡轮机
    58     热量回收和水蒸汽再利用
    60     氢气发生器
    62     纯化系统
    64     分流至储罐的氢气部分
    66     分流至燃料电池的氢气部分
    68     氢气储存
    70     氢气装船
    72a     氢气至次级燃烧系统的再利用
    72b     至燃料电池的氢气
    74     燃料电池系统
    76     来自燃料电池的废气
    78     热量回收和水蒸汽再利用系统
    80     c-q-r阶段设备
    82     燃料和氧化剂
    84     蒸汽
    86     蒸汽和燃料
    90     富燃烧步骤
    92     骤冷步骤
    94     蒸汽
    96     转化步骤
    100     c-q-r设备

Claims (10)

1.一种用于电氢联产的系统(10),包括:
至少一个主燃烧系统(14),用于燃烧富含燃料的混合物并产生富含氢气的部分氧化的燃烧产物;
至少一个喷射系统,用于将燃料(24)和蒸汽(22)喷入所述部分氧化的燃烧产物中,从而产生混合产品流;
至少一个转化器(16),用于转化所述的混合产品流以产生浓缩氢流(26);
一个次级燃烧系统(38),用于燃烧所述浓缩氢流的至少一部分(30)以产生电;和
一个氢气处理单元(40),用于接收所述浓缩氢流的至少第二部分(32)以从中产生氢气。
2.根据权利要求1的系统,其中所述主燃烧系统(14)包括一个燃烧室,该燃烧室具有一系列的缝隙以使蒸汽可以加入所述燃烧室中。
3.根据权利要求1的系统,进一步包括一个物流调节器(28),用于将所述浓缩氢流的预定部分分流至所述次级燃烧系统(38)和所述氢气处理单元(40)。
4.根据权利要求1的系统,其中所述次级燃烧系统(38)包括一个联产涡轮机(56)以产生电。
5.根据权利要求1的系统,其中所述氢气处理单元(40)包括一个氢气发生器(60),该氢气发生器被设计成以接收所述浓缩氢流(32)。
6.根据权利要求1的系统,其中所述燃料选自由天然气、甲烷、石脑油、丁烷、丙烷、柴油、煤油、航空燃料、煤衍生燃料、生物燃料、氧化的烃原料以及它们的混合物组成的组。
7.根据权利要求1的系统,进一步包括多个重复单元,该单元包括一燃烧系统、一喷射系统和一转化器,所述重复单元串联连接,其中,所述浓缩氢流被送入第一重复单元的所述燃烧系统内,来自所述第一重复单元的所述转化器的第一浓缩氢流被送入第二重复单元的所述燃烧系统内。
8.一种用于电氢联产的系统,包括:
多个重复单元(80),该单元包括一个主燃烧系统,用于燃烧富含燃料的混合物并产生富含氢气的部分氧化的燃烧产物;一个喷射系统,用于将燃料和蒸汽喷入所述部分氧化的燃烧产物中,从而形成混合物产品流;以及一个转化器,用于转化所述混合物产品流以产生浓缩氢流;
一个次级燃烧系统(38),用于燃烧所述浓缩氢流的至少一部分以产生电;
一个氢气处理单元(40),用于接收所述浓缩氢流的至少第二部分以从中产生氢气,
其中,来自一个重复单元的所述转化器的所述浓缩氢流被送入下一个重复单元的所述燃烧系统中。
9.一种用于电氢联产的方法,包括如下步骤:
燃烧富含燃料的混合物,从而产生富含氢气的部分氧化的燃烧产物;
将所述燃料和蒸汽喷入所述部分氧化的燃烧产物中,以产生混合产品流;
转化所述混合产品流以产生浓缩氢流;
燃烧所述浓缩氢流的至少一部分以产生电;和
处理所述浓缩氢流的至少第二部分以从中产生氢气。
10.根据权利要求9的方法,其中,一个次级燃烧系统(38)用于燃烧所述浓缩氢流的至少所述部分以产生电,一个氢气处理单元(40)用于处理所述浓缩氢流的至少所述第二部分以产生氢气。
CN2004100954976A 2003-12-24 2004-12-24 用于氢电联产的系统和方法 Expired - Fee Related CN1654312B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/745356 2003-12-24
US10/745,356 US20050144961A1 (en) 2003-12-24 2003-12-24 System and method for cogeneration of hydrogen and electricity

Publications (2)

Publication Number Publication Date
CN1654312A true CN1654312A (zh) 2005-08-17
CN1654312B CN1654312B (zh) 2011-10-05

Family

ID=34552871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004100954976A Expired - Fee Related CN1654312B (zh) 2003-12-24 2004-12-24 用于氢电联产的系统和方法

Country Status (4)

Country Link
US (1) US20050144961A1 (zh)
EP (1) EP1547971B1 (zh)
JP (1) JP5051974B2 (zh)
CN (1) CN1654312B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213142A (zh) * 2011-05-30 2011-10-12 重庆大学 基于甲烷重整提高燃气轮机再热循环热效率的方法
CN102220903A (zh) * 2011-05-30 2011-10-19 重庆大学 基于甲烷燃烧-重整的提高燃气轮机循环热力性能的方法
CN103026031A (zh) * 2010-07-02 2013-04-03 埃克森美孚上游研究公司 低排放三循环动力产生系统和方法

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050241311A1 (en) 2004-04-16 2005-11-03 Pronske Keith L Zero emissions closed rankine cycle power system
US7694523B2 (en) 2004-07-19 2010-04-13 Earthrenew, Inc. Control system for gas turbine in material treatment unit
US7024796B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and apparatus for manufacture of fertilizer products from manure and sewage
US7685737B2 (en) 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US7024800B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
WO2007021909A2 (en) * 2005-08-10 2007-02-22 Clean Energy Systems, Inc. Hydrogen production from an oxyfuel combustor
GB2429516B (en) * 2005-08-27 2010-12-29 Siemens Ind Turbomachinery Ltd An apparatus for modifying the content of a gaseous fuel
US20070130830A1 (en) * 2005-12-14 2007-06-14 Balachandar Varatharajan Staged combustion for a fuel reformer
US7610692B2 (en) 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
US7802434B2 (en) * 2006-12-18 2010-09-28 General Electric Company Systems and processes for reducing NOx emissions
AU2008209376B8 (en) * 2007-01-22 2012-11-29 Lg Fuel Cell Systems, Inc. Multistage combustor and method for starting a fuel cell system
US7837973B2 (en) * 2007-05-08 2010-11-23 Air Products And Chemicals, Inc. Hydrogen production method
US20090031698A1 (en) * 2007-07-31 2009-02-05 O'brien & Gere Engineers Inc. Liquid and Solid Biofueled Combined Heat and Renewable Power Plants
US9464573B2 (en) * 2007-09-25 2016-10-11 Airbus Sas Method for operating a gas turbine engine, power supplying device for conducting such method and aircraft using such method
WO2009118697A2 (en) * 2008-03-26 2009-10-01 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cogeneration of hydrogen and power
EP2268897B1 (en) 2008-03-28 2020-11-11 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery system and method
CN104098070B (zh) 2008-03-28 2016-04-13 埃克森美孚上游研究公司 低排放发电和烃采收系统及方法
CN102177326B (zh) 2008-10-14 2014-05-07 埃克森美孚上游研究公司 控制燃烧产物的方法与装置
MX336605B (es) 2009-06-05 2016-01-25 Exxonmobil Upstream Res Co Sistemas de camara de combustion y metodos para usar los mismos.
CA2777768C (en) * 2009-11-12 2016-06-07 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
US7818969B1 (en) 2009-12-18 2010-10-26 Energyield, Llc Enhanced efficiency turbine
US8733109B2 (en) * 2010-03-29 2014-05-27 Gas Technology Institute Combined fuel and air staged power generation system
EP2588727B1 (en) 2010-07-02 2018-12-12 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
SG186157A1 (en) 2010-07-02 2013-01-30 Exxonmobil Upstream Res Co Stoichiometric combustion of enriched air with exhaust gas recirculation
MX352291B (es) 2010-07-02 2017-11-16 Exxonmobil Upstream Res Company Star Sistemas y métodos de generación de potencia de triple ciclo de baja emisión.
CN105863844B (zh) 2010-07-02 2017-11-14 埃克森美孚上游研究公司 低排放动力产生系统和方法
TWI593878B (zh) 2010-07-02 2017-08-01 艾克頌美孚上游研究公司 用於控制燃料燃燒之系統及方法
US8752390B2 (en) * 2010-07-13 2014-06-17 Air Products And Chemicals, Inc. Method and apparatus for producing power and hydrogen
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
CA2805089C (en) 2010-08-06 2018-04-03 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
US8991188B2 (en) 2011-01-05 2015-03-31 General Electric Company Fuel nozzle passive purge cap flow
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
CN104428490B (zh) 2011-12-20 2018-06-05 埃克森美孚上游研究公司 提高的煤层甲烷生产
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
RU2637609C2 (ru) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани Система и способ для камеры сгорания турбины
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
AU2014226413B2 (en) 2013-03-08 2016-04-28 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
WO2014145603A1 (en) * 2013-03-15 2014-09-18 Tmg Energy Systems, Inc. Integrated sustainable energy system
EP2784288B1 (de) * 2013-03-28 2020-02-19 Lumenion AG Kraftwerksanlage und Verfahren zum Erzeugen von elektrischem Strom
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
WO2023230359A1 (en) * 2022-05-26 2023-11-30 Jonathan Jay Feinstein Parallel process heating against serial combustion

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1137930A (en) * 1966-11-04 1968-12-27 Woodall Duckham Ltd Improvements in or relating to the production of combustible gas
DE2232506C2 (de) * 1972-07-03 1982-03-25 Siemens AG, 1000 Berlin und 8000 München Verfahren und Vorrichtung zur Erzeugung eines durch katalytische Umsetzung von Brennstoff und einem als Sauerstoffträger dienenden Gas zu bildenden Gasgemisches
FR2560866B1 (fr) * 1984-03-09 1988-05-20 Inst Francais Du Petrole Nouveau procede de fabrication de gaz de synthese par oxydation indirecte d'hydrocarbures
US5048284A (en) * 1986-05-27 1991-09-17 Imperial Chemical Industries Plc Method of operating gas turbines with reformed fuel
EP0254395B1 (en) * 1986-05-27 1990-11-22 Imperial Chemical Industries Plc Method of starting a process for the production of a gas stream containing hydrogen and carbon oxides
US5501162A (en) * 1993-07-19 1996-03-26 Kravets; Alexander Method of fuel combustion
US5345756A (en) * 1993-10-20 1994-09-13 Texaco Inc. Partial oxidation process with production of power
DE19521308A1 (de) * 1995-06-12 1996-12-19 Siemens Ag Gasturbine zur Verbrennung eines Brenngases
DE19536836C2 (de) * 1995-10-02 2003-11-13 Alstom Verfahren zum Betrieb einer Kraftwerksanlage
US5955039A (en) * 1996-12-19 1999-09-21 Siemens Westinghouse Power Corporation Coal gasification and hydrogen production system and method
US5997596A (en) * 1997-09-05 1999-12-07 Spectrum Design & Consulting International, Inc. Oxygen-fuel boost reformer process and apparatus
JPH11336511A (ja) * 1998-05-26 1999-12-07 Natl Space Dev Agency Japan(Nasda) 動力装置
WO2000058242A2 (en) * 1999-03-30 2000-10-05 Syntroleum Corporation System and method for converting light hydrocarbons into heavier hydrocarbons with a plurality of synthesis gas subsystems
JP2001139303A (ja) * 1999-11-04 2001-05-22 Hitachi Ltd 水素・一酸化炭素混合ガスの製造方法、製造装置及びこれを備える燃料・電力併産プラント
JP2001302210A (ja) * 2000-04-14 2001-10-31 Toyota Motor Corp 燃料改質装置
JP2002021652A (ja) * 2000-07-07 2002-01-23 Nissan Motor Co Ltd 燃料改質ガスエンジンの水回収制御装置
US6509000B1 (en) * 2000-08-31 2003-01-21 Council Of Scientific And Industrial Research Low temperature process for the production of hydrogen
DE10051563A1 (de) * 2000-10-18 2002-05-02 Emitec Emissionstechnologie Verfahren zur Gewinnung von Wasserstoff aus Kohlenwasserstoff
JP3815248B2 (ja) * 2001-04-24 2006-08-30 日産自動車株式会社 改質装置
US20040031388A1 (en) * 2001-06-15 2004-02-19 Hsu Michael S. Zero/low emission and co-production energy supply station
JP3826770B2 (ja) * 2001-11-16 2006-09-27 日産自動車株式会社 燃料改質システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026031A (zh) * 2010-07-02 2013-04-03 埃克森美孚上游研究公司 低排放三循环动力产生系统和方法
CN103026031B (zh) * 2010-07-02 2017-02-15 埃克森美孚上游研究公司 低排放三循环动力产生系统和方法
CN102213142A (zh) * 2011-05-30 2011-10-12 重庆大学 基于甲烷重整提高燃气轮机再热循环热效率的方法
CN102220903A (zh) * 2011-05-30 2011-10-19 重庆大学 基于甲烷燃烧-重整的提高燃气轮机循环热力性能的方法
CN102213142B (zh) * 2011-05-30 2014-01-01 重庆大学 基于甲烷重整提高燃气轮机再热循环热效率的方法
CN102220903B (zh) * 2011-05-30 2014-01-01 重庆大学 基于甲烷燃烧-重整的提高燃气轮机循环热力性能的方法

Also Published As

Publication number Publication date
EP1547971B1 (en) 2015-06-03
EP1547971A2 (en) 2005-06-29
JP2005187325A (ja) 2005-07-14
EP1547971A3 (en) 2010-12-08
CN1654312B (zh) 2011-10-05
US20050144961A1 (en) 2005-07-07
JP5051974B2 (ja) 2012-10-17

Similar Documents

Publication Publication Date Title
CN1654312A (zh) 用于氢电联产的系统和方法
EP1582502B1 (en) System and method for co-production of hydrogen and electrical energy
US7802434B2 (en) Systems and processes for reducing NOx emissions
US7634915B2 (en) Systems and methods for power generation and hydrogen production with carbon dioxide isolation
CA2804389C (en) Syngas production through the use of membrane technologies
KR101210684B1 (ko) 수소 리사이클형 mcfc 발전 시스템
JP2008163944A (ja) 部分的co2回収式サイクルプラント用の改質システム
CA3016453A1 (en) Integrated operation of molten carbonate fuel cells
JP5183093B2 (ja) オンサイト水素燃焼による熱供給で炭化水素の留分を水蒸気改質することにより水素富有ガスと電力とを併産する方法
MXPA06007819A (es) Sistemas y metodos para la generacion de energia con aislamiento de dioxido de carbono.
HU222969B1 (hu) Eljárás villamos energia, gőz és szén-dioxid termelésére szénhidrogén nyersanyagból
Andersen et al. Gas turbine combined cycle with CO2-capture using auto-thermal reforming of natural gas
US20070130831A1 (en) System and method for co-production of hydrogen and electrical energy
CN1178191A (zh) 合成气体和动力的联合生产方法
KR20140057103A (ko) 석탄가스화 복합발전 연계형 연료전지 시스템 및 가스 공급 방법
US11952274B1 (en) Process for producing hydrogen product having reduced carbon intensity
Varatharajan et al. systems and processes for reducing NOx emissions
EP4375235A2 (en) Integration of hydrogen fueled gas turbine with a hydrocarbon reforming process
WO2024063808A1 (en) Process for producing hydrogen product having reduced carbon intensity
ITMI20072249A1 (it) Sistemi e procedimenti per la riduzione di emission i di nox

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111005

Termination date: 20151224

EXPY Termination of patent right or utility model